[1] |
BEERLING D, GARDINER T, LEGGETT G, et al., 2008. Missing methane emissions from leaves of terrestrial plants[J]. Global Change Biology, 14(8): 1821-1826.
DOI
URL
|
[2] |
BRUHN D, MIKKELSEN T N, ØBRO J, et al., 2009. Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material[J]. Plant Biology, 11(1): 43-48.
DOI
URL
|
[3] |
CAO G M, XU X L, LONG R J, et al., 2008. Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau[J]. Biology Letters, 4(6): 681-684.
DOI
URL
|
[4] |
COVEY K R, MEGONIGAL P J, 2019. Methane production and emissions in trees and forests[J]. New Phytologist, 222(1): 35-51.
DOI
URL
|
[5] |
CRUTZEN P J, SANHUEZA E, BRENNINKMEIJER C A M, 2006. Methane production from mixed tropical savanna and forest vegetation in Venezuela[J]. Atmospheric Chemistry and Physics Discussions, 6(2): 3093-3097.
|
[6] |
DUECK T A, D E VISSER R, POORTER H, et al., 2007. No evidence for substantial aerobic methane emission by terrestrial plants: A δ13C-labelling approach[J]. New Phytologist, 175(1): 29-35.
DOI
URL
|
[7] |
JEFFREY L, REITHMAIER G, SIPPO J Z, et al., 2019. Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality[J]. New Phytologist, 224(1): 146-154.
DOI
URL
|
[8] |
KEPPLER F, HAMILTON J T G, MCROBERTS W C, et al., 2008. Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labeling studies[J]. New Phytologist, 178(4): 808-814.
DOI
URL
|
[9] |
KEPPLER F, HAMILTON JTG, BRAΒ M, et al., 2006. Methane emissions from terrestrial plants under aerobic conditions[J]. Nature, 439: 187-191.
DOI
URL
|
[10] |
KIRSCHBAUM M U F, WALCROFT A, 2008. No detectable aerobic methane efflux from plant material, nor from adsorption/desorption processes[J]. Biogeosciences, 5(4): 1551-1558.
DOI
URL
|
[11] |
NISBET R E R, FISHER R, NIMMO R H, et al., 2009. Emission of methane from plants[J]. Proceedings of the Royal Society B: Biological Sciences, 276(1660): 1347-1354.
DOI
URL
|
[12] |
PETERS V, CONRAD R, 1996. Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils[J]. Soil Biology and Biochemistry, 28(3): 371-382.
DOI
URL
|
[13] |
SANHUEZA E, DONOSO L, 2006. Methane emission from tropical savanna Trachypogon sp. Grasses[J]. Atmospheric Chemistry and Physics Discussions, 6(12): 5315-5319.
|
[14] |
SEGERS R, 1998. Methane production and methane consumption: a review of process underlying wetland methane fluxes[J]. Biogeochemistry, 41(1): 23-51.
DOI
URL
|
[15] |
SUNDQVIST E, CRILL P, MÖLDER M, et al., 2012. Atmospheric methane removal by boreal plants[J]. Geophysical Research Letters, DOI: 10.1029/2012gl053592.
DOI
|
[16] |
SUNDQVIST E, MÖLDER M, CRILL P, et al., 2015. Methane exchange in boreal forest estimated by gradient method[J]. Tellus B: Chemical and Physical Meteorology, 67(1): 26688.
DOI
URL
|
[17] |
VIGANO I, VANWEELDEN H, HOLZINGER R, et al., 2008. Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components[J]. Biogeosciences, 5(3): 937-947.
DOI
URL
|
[18] |
VILLANUEVA I, POPP C J, MARTIN R S, 2004. Biogenic emissions and ambient concentrations of hydrocarbons, carbonyl compounds and organic acids from ponderosa pine and cottonwood trees at rural and forested sites in Central New Mexico[J]. Atmospheric Environment, 38(2): 249-260.
DOI
URL
|
[19] |
WANG Z P, GU Q, DENG F D, et al., 2016. Methane emissions from the trunks of living trees on upland soils[J]. New Phytologist, 211(2): 429-439.
DOI
URL
|
[20] |
WANG Z P, HAN X G, WANG G G, et al., 2008. Aerobic methane emission from plants in the Inner Mongloia steppe[J]. Environmental Science & Technology, 42(1): 62-68.
DOI
URL
|
[21] |
WYKA T P, OLEKSYN J, ŻYTKOWIAK R P, et al., 2012. Response of leaf structure and photosynthetic properties to intra-canopy light gradients: A common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species[J]. Oecologia, 170(1): 11-24.
DOI
URL
|
[22] |
ZHANG X, LEE X H, GRIFFIS T J, et al., 2014. The influence of plants on atmospheric methane in an agriculture-dominated landscape[J]. International Journal of Biomteorology, 58: 819-833.
|
[23] |
邓永翠, 杜岩功, 吴伊波, 等, 2010. 植物释放甲烷研究进展[J]. 生态学报, 30(13): 3608-3615.
|
|
DENG Y C, DU Y G, WU Y B, et al., 2010. Methane emissions from plants: a review[J]. Acta Ecologica Sinica, 30(13): 3608-3615.
|
[24] |
刘菊秀, 李跃林, 刘世忠, 等, 2013. 气温上升对模拟森林生态系统影响实验的介绍[J]. 植物生态学报, 37(6): 558-565.
DOI
|
|
LIU J X, LI Y L, LIU S Z, et al., 2013. An introduction to an experimental design for studying effects of air temperature rise on model forest ecosystems[J]. Chinese Journal of Plant Ecology, 37(6): 558-565.
DOI
URL
|
[25] |
许大全, 2002. 光合作用效率[M]. 上海: 上海科学技术出版社: 17-18.
|
|
XU D Q, 2002. Photosynthetic efficiency[M]. Shanghai: Shanghai Science and Technology Press: 17-18.
|
[26] |
杨燕华, 易黎明, 谢锦升, 等, 2013. 温度对亚热带地区常见树种叶片甲烷排放的影响[J]. 应用生态学报, 24(6): 1545-1550.
|
|
YANG Y H, YU L M, XIE J S, et al., 2013. Effects of temperature on CH4 emission from subtropical common tree species leaves[J]. Chinese Journal of Applied Ecology, 24(6): 1545-1550.
|