生态环境学报 ›› 2023, Vol. 32 ›› Issue (3): 429-438.DOI: 10.16258/j.cnki.1674-5906.2023.03.001
• 研究论文 • 下一篇
李善家1,2(), 王兴敏1, 刘海锋1, 孙梦格1, 雷雨昕1
收稿日期:
2022-08-22
出版日期:
2023-03-18
发布日期:
2023-06-02
作者简介:
李善家(1980年生),男,教授,博士,主要从事荒漠植物逆境生理生态的研究。E-mail: lishanjia@lut.edu.cn
基金资助:
LI Shanjia1,2(), WANG Xingmin1, LIU Haifeng1, SUN Mengge1, LEI Yuxin1
Received:
2022-08-22
Online:
2023-03-18
Published:
2023-06-02
摘要:
研究河西走廊荒漠植物多样性结构特征及其对环境因子的响应有利于保护干旱区植物多样性、维持荒漠生态系统稳定。沿河西走廊由东南至西北方向自然降水递减梯度设置样带,探讨荒漠植物α、β多样性的变化规律及其对环境因子的响应。研究结果显示,(1)Margalef丰富度指数(R)范围为1.22-8.22,Simpson优势度指数(D)范围为0.25-0.97,Shannon-Wiener多样性指数(H')范围为0.05-1.52,Pielou均匀度指数(E)范围为0.08—0.90。河西走廊荒漠植物物种数少且分布不均,少数物种占据较大优势。(2)表征β多样性的Bray-Curtis距离指数(dBC)普遍较高,河西走廊东、中部样带间dBC平均值为0.91,西部样带间dBC平均值为0.78。东、中部样带(年均降水量大于50 mm)与西部样带(年均降水量约50 mm)之间dBC大都为1.00,说明东中部与西部之间荒漠植物相似性极低。(3)α多样性和环境因子的Spearman分析和冗余分析(Redundancy Analysis,RDA)表明,α多样性的变化由比湿、年均风速、年均降水量、短波辐射总强度、土壤含水量、土壤氮磷等因素解释,其中比湿、年均风速的解释率较高,分别为35.4%、19.8%。(4)β多样性和环境因子的Mantel检验表明,β多样性与土壤、气候和经纬度都显著相关,其中表征水分的比湿、年均降水量相关系数较高,分别为0.40、0.36。综上所述,水分是影响河西走廊荒漠植物多样性的主要因子,年均风速、年均温度、辐射总强度、土壤养分等也会影响植物多样性。
中图分类号:
李善家, 王兴敏, 刘海锋, 孙梦格, 雷雨昕. 河西走廊荒漠植物多样性及其对环境因子的响应[J]. 生态环境学报, 2023, 32(3): 429-438.
LI Shanjia, WANG Xingmin, LIU Haifeng, SUN Mengge, LEI Yuxin. Diversity of Desert Plants in Hexi Corridor and Its Response to Environmental Factors[J]. Ecology and Environment, 2023, 32(3): 429-438.
样带编号 | 行政区 | 海拔/ m | 纬度 (N) | 经度 (E) | 年均降水量/ mm | 年均温度/ ℃ | 比湿/ (g·kg-1) | 长波辐射总强度/ (W·m-2) | 短波辐射总强度/ (W·m-2) | 年均风速/ (m·s-1) |
---|---|---|---|---|---|---|---|---|---|---|
HX1 | 古浪县黄花滩 | 1780.60 | 103°19′ | 37°38′ | 467.77 | 3.43 | 3.39 | 230.35 | 219.38 | 4.66 |
HX2 | 古浪县南湖乡 | 1494.80 | 102°52′ | 38°02′ | 241.37 | 10.83 | 4.04 | 260.84 | 213.99 | 4.61 |
HX3 | 民勤县红崖山水库 | 1399.50 | 102°48′ | 38°27′ | 202.34 | 10.44 | 3.87 | 258.23 | 215.34 | 4.67 |
HX4 | 民勤县青土湖 | 1310.50 | 103°39′ | 39°09′ | 151.37 | 9.78 | 3.65 | 255.72 | 215.60 | 5.83 |
HX5 | 张掖市 | 1790.30 | 100°23′ | 38°42′ | 697.72 | -2.75 | 2.46 | 200.71 | 229.89 | 3.76 |
HX6 | 张掖市 | 1590.50 | 100°15′ | 38°54′ | 460.78 | 2.15 | 3.09 | 221.16 | 226.93 | 3.71 |
HX7 | 临泽县-工程 | 1340.50 | 99°45′ | 39°27′ | 187.05 | 10.03 | 3.64 | 252.56 | 213.89 | 3.94 |
HX8 | 高台县 | 1400.50 | 100°07′ | 39°24′ | 126.55 | 11.51 | 3.67 | 260.10 | 214.57 | 4.28 |
HX9 | 临泽县 | 1380.20 | 100°08′ | 39°21′ | 126.55 | 11.51 | 3.67 | 260.10 | 214.57 | 4.28 |
HX10 | 临泽县 | 1382.80 | 100°09′ | 39°22′ | 126.55 | 11.51 | 3.67 | 260.10 | 214.57 | 4.28 |
HX11 | 瓜州县昌马水库 | 1716.40 | 96°47′ | 40°09′ | 89.03 | 8.50 | 2.79 | 236.74 | 221.83 | 5.94 |
HX12 | 瓜州县布隆吉乡 | 1370.20 | 96°26′ | 40°26′ | 53.51 | 12.02 | 3.14 | 254.31 | 219.37 | 5.59 |
HX13 | 瓜州县城东 | 1200.40 | 95°55′ | 40°31′ | 38.35 | 13.28 | 3.06 | 260.23 | 219.29 | 5.15 |
HX14 | 瓜州县城西 | 1149.10 | 95°37′ | 40°33′ | 33.96 | 13.69 | 3.06 | 262.27 | 217.26 | 5.03 |
HX15 | 瓜州县北夹湖 | 1067.20 | 94°55′ | 40°35′ | 28.16 | 13.74 | 2.95 | 262.75 | 216.22 | 4.86 |
HX16 | 瓜州县西湖乡北 | 1076.10 | 95°04′ | 40°36′ | 27.88 | 13.91 | 3.02 | 263.33 | 216.86 | 4.94 |
表1 样带基本信息及所在区域气候因子年平均值
Table1 Basic information of transects and annual average of climatic factors in the region
样带编号 | 行政区 | 海拔/ m | 纬度 (N) | 经度 (E) | 年均降水量/ mm | 年均温度/ ℃ | 比湿/ (g·kg-1) | 长波辐射总强度/ (W·m-2) | 短波辐射总强度/ (W·m-2) | 年均风速/ (m·s-1) |
---|---|---|---|---|---|---|---|---|---|---|
HX1 | 古浪县黄花滩 | 1780.60 | 103°19′ | 37°38′ | 467.77 | 3.43 | 3.39 | 230.35 | 219.38 | 4.66 |
HX2 | 古浪县南湖乡 | 1494.80 | 102°52′ | 38°02′ | 241.37 | 10.83 | 4.04 | 260.84 | 213.99 | 4.61 |
HX3 | 民勤县红崖山水库 | 1399.50 | 102°48′ | 38°27′ | 202.34 | 10.44 | 3.87 | 258.23 | 215.34 | 4.67 |
HX4 | 民勤县青土湖 | 1310.50 | 103°39′ | 39°09′ | 151.37 | 9.78 | 3.65 | 255.72 | 215.60 | 5.83 |
HX5 | 张掖市 | 1790.30 | 100°23′ | 38°42′ | 697.72 | -2.75 | 2.46 | 200.71 | 229.89 | 3.76 |
HX6 | 张掖市 | 1590.50 | 100°15′ | 38°54′ | 460.78 | 2.15 | 3.09 | 221.16 | 226.93 | 3.71 |
HX7 | 临泽县-工程 | 1340.50 | 99°45′ | 39°27′ | 187.05 | 10.03 | 3.64 | 252.56 | 213.89 | 3.94 |
HX8 | 高台县 | 1400.50 | 100°07′ | 39°24′ | 126.55 | 11.51 | 3.67 | 260.10 | 214.57 | 4.28 |
HX9 | 临泽县 | 1380.20 | 100°08′ | 39°21′ | 126.55 | 11.51 | 3.67 | 260.10 | 214.57 | 4.28 |
HX10 | 临泽县 | 1382.80 | 100°09′ | 39°22′ | 126.55 | 11.51 | 3.67 | 260.10 | 214.57 | 4.28 |
HX11 | 瓜州县昌马水库 | 1716.40 | 96°47′ | 40°09′ | 89.03 | 8.50 | 2.79 | 236.74 | 221.83 | 5.94 |
HX12 | 瓜州县布隆吉乡 | 1370.20 | 96°26′ | 40°26′ | 53.51 | 12.02 | 3.14 | 254.31 | 219.37 | 5.59 |
HX13 | 瓜州县城东 | 1200.40 | 95°55′ | 40°31′ | 38.35 | 13.28 | 3.06 | 260.23 | 219.29 | 5.15 |
HX14 | 瓜州县城西 | 1149.10 | 95°37′ | 40°33′ | 33.96 | 13.69 | 3.06 | 262.27 | 217.26 | 5.03 |
HX15 | 瓜州县北夹湖 | 1067.20 | 94°55′ | 40°35′ | 28.16 | 13.74 | 2.95 | 262.75 | 216.22 | 4.86 |
HX16 | 瓜州县西湖乡北 | 1076.10 | 95°04′ | 40°36′ | 27.88 | 13.91 | 3.02 | 263.33 | 216.86 | 4.94 |
样带编号 | 荒漠 类型 | pH | 电导率 γ/ (mS·cm-1) | w(土壤水分)/ % | w(有机碳)/ (mg·g-1) | w(速效磷)/ (mg·kg-1) | w(速效钾)/ (mg·kg-1) | w(速效氮)/ (mg·kg-1) | w(全磷)/ (mg·g-1) | w(全钾)/ (mg·g-1) | w(全氮)/ (mg·g-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
HX1 | 山前砾漠、壤漠 | 8.67±0.04 | 0.85±0.01 | 4.64±0.12 | 0.22±0.06 | 68.52±3.17 | 174.21±7.77 | 21.05±1.25 | 0.36±0.02 | 0.80±0.07 | 0.28±0.06 |
HX2 | 沙漠 | 8.89±0.04 | 0.09±0.00 | 1.51±0.04 | 0.02±0.00 | 62.61±2.49 | 93.73±1.99 | 10.54±0.57 | 0.11±0.04 | 0.20±0.00 | 0.19±0.06 |
HX3 | 沙漠 | 8.75±0.02 | 0.48±0.01 | 0.47±0.03 | 0.03±0.00 | 117.12±12.04 | 29.85±1.72 | 15.22±2.15 | 0.17±0.03 | 0.61±0.00 | 0.24±0.04 |
HX4 | 沙漠 | 9.20±0.01 | 0.17±0.00 | 0.63±0.05 | 0.06±0.01 | 81.20±2.15 | 240.76±3.12 | 11.32±0.37 | 0.20±0.03 | 0.29±0.00 | 0.23±0.07 |
HX5 | 山前壤漠 | 8.60±0.02 | 3.32±0.01 | 2.07±0.09 | 0.23±0.02 | 229.45±3.16 | 156.78±1.95 | 15.12±1.81 | 0.65±0.01 | 0.99±0.01 | 0.44±0.05 |
HX6 | 山前壤漠 | 9.28±0.01 | 0.75±0.03 | 1.02±0.07 | 0.21±0.01 | 189.76±3.41 | 157.45±5.25 | 26.88±3.01 | 0.20±0.01 | 0.47±0.01 | 0.41±0.05 |
HX7 | 壤漠 | 9.24±0.02 | 1.44±0.03 | 0.50±0.06 | 0.23±0.02 | 270.32±4.75 | 120.84±0.96 | 10.92±0.51 | 0.26±0.02 | 0.22±0.01 | 0.12±0.03 |
HX8 | 壤漠 | 8.89±0.02 | 0.07±0.01 | 0.52±0.03 | 0.16±0.01 | 242.56±4.29 | 87.01±13.24 | 9.24±1.12 | 0.03±0.01 | 1.62±0.08 | 0.22±0.03 |
HX9 | 壤漠 | 8.87±0.03 | 1.70±0.03 | 0.94±0.02 | 0.12±0.00 | 252.31±2.81 | 114.64±1.73 | 12.60±1.19 | 0.29±0.03 | 0.48±0.02 | 0.15±0.03 |
HX10 | 壤漠 | 8.84±0.03 | 1.23±0.02 | 0.82±0.01 | 1.55±0.31 | 210.29±2.47 | 210.29±2.87 | 14.28±0.43 | 0.26±0.05 | 0.46±0.01 | 0.14±0.04 |
HX11 | 山前砾漠、壤漠 | 8.98±0.04 | 0.22±0.00 | 0.67±0.05 | 0.14±0.03 | 60.91±1.13 | 45.80±1.40 | 15.20±1.61 | 0.24±0.02 | 0.61±0.01 | 0.26±0.05 |
HX12 | 山前砾漠、壤漠 | 9.40±0.01 | 0.32±0.01 | 4.07±0.13 | 0.29±0.11 | 68.41±2.08 | 133.18±2.47 | 17.15±1.24 | 0.33±0.01 | 0.27±0.04 | 0.22±0.05 |
HX13 | 砾漠、壤漠 | 8.97±0.02 | 1.32±0.03 | 2.57±0.05 | 0.18±0.05 | 58.28±1.52 | 70.71±1.87 | 30.77±1.37 | 0.30±0.01 | 0.21±0.00 | 0.23±0.03 |
HX14 | 砾漠、壤漠 | 8.51±0.01 | 0.01±0.00 | 12.88±0.21 | 0.45±0.02 | 98.57±1.66 | 66.65±4.71 | 69.67±3.41 | 0.67±0.06 | 1.55±0.04 | 0.51±0.03 |
HX15 | 砾漠、壤漠 | 8.39±0.01 | 2.35±0.07 | 4.61±0.35 | 0.46±0.03 | 63.89±2.01 | 175.84±0.87 | 58.03±3.64 | 0.51±0.00 | 0.45±0.00 | 0.27±0.03 |
HX16 | 砾漠、壤漠 | 8.58±0.01 | 6.68±0.13 | 8.85±0.95 | 0.26±0.12 | 161.61±2.16 | 197.90±0.98 | 46.47±2.53 | 0.32±0.01 | 0.86±0.03 | 0.40±0.03 |
表2 样带土壤理化性质
Table 2 Physical and chemical properties of transects soil
样带编号 | 荒漠 类型 | pH | 电导率 γ/ (mS·cm-1) | w(土壤水分)/ % | w(有机碳)/ (mg·g-1) | w(速效磷)/ (mg·kg-1) | w(速效钾)/ (mg·kg-1) | w(速效氮)/ (mg·kg-1) | w(全磷)/ (mg·g-1) | w(全钾)/ (mg·g-1) | w(全氮)/ (mg·g-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
HX1 | 山前砾漠、壤漠 | 8.67±0.04 | 0.85±0.01 | 4.64±0.12 | 0.22±0.06 | 68.52±3.17 | 174.21±7.77 | 21.05±1.25 | 0.36±0.02 | 0.80±0.07 | 0.28±0.06 |
HX2 | 沙漠 | 8.89±0.04 | 0.09±0.00 | 1.51±0.04 | 0.02±0.00 | 62.61±2.49 | 93.73±1.99 | 10.54±0.57 | 0.11±0.04 | 0.20±0.00 | 0.19±0.06 |
HX3 | 沙漠 | 8.75±0.02 | 0.48±0.01 | 0.47±0.03 | 0.03±0.00 | 117.12±12.04 | 29.85±1.72 | 15.22±2.15 | 0.17±0.03 | 0.61±0.00 | 0.24±0.04 |
HX4 | 沙漠 | 9.20±0.01 | 0.17±0.00 | 0.63±0.05 | 0.06±0.01 | 81.20±2.15 | 240.76±3.12 | 11.32±0.37 | 0.20±0.03 | 0.29±0.00 | 0.23±0.07 |
HX5 | 山前壤漠 | 8.60±0.02 | 3.32±0.01 | 2.07±0.09 | 0.23±0.02 | 229.45±3.16 | 156.78±1.95 | 15.12±1.81 | 0.65±0.01 | 0.99±0.01 | 0.44±0.05 |
HX6 | 山前壤漠 | 9.28±0.01 | 0.75±0.03 | 1.02±0.07 | 0.21±0.01 | 189.76±3.41 | 157.45±5.25 | 26.88±3.01 | 0.20±0.01 | 0.47±0.01 | 0.41±0.05 |
HX7 | 壤漠 | 9.24±0.02 | 1.44±0.03 | 0.50±0.06 | 0.23±0.02 | 270.32±4.75 | 120.84±0.96 | 10.92±0.51 | 0.26±0.02 | 0.22±0.01 | 0.12±0.03 |
HX8 | 壤漠 | 8.89±0.02 | 0.07±0.01 | 0.52±0.03 | 0.16±0.01 | 242.56±4.29 | 87.01±13.24 | 9.24±1.12 | 0.03±0.01 | 1.62±0.08 | 0.22±0.03 |
HX9 | 壤漠 | 8.87±0.03 | 1.70±0.03 | 0.94±0.02 | 0.12±0.00 | 252.31±2.81 | 114.64±1.73 | 12.60±1.19 | 0.29±0.03 | 0.48±0.02 | 0.15±0.03 |
HX10 | 壤漠 | 8.84±0.03 | 1.23±0.02 | 0.82±0.01 | 1.55±0.31 | 210.29±2.47 | 210.29±2.87 | 14.28±0.43 | 0.26±0.05 | 0.46±0.01 | 0.14±0.04 |
HX11 | 山前砾漠、壤漠 | 8.98±0.04 | 0.22±0.00 | 0.67±0.05 | 0.14±0.03 | 60.91±1.13 | 45.80±1.40 | 15.20±1.61 | 0.24±0.02 | 0.61±0.01 | 0.26±0.05 |
HX12 | 山前砾漠、壤漠 | 9.40±0.01 | 0.32±0.01 | 4.07±0.13 | 0.29±0.11 | 68.41±2.08 | 133.18±2.47 | 17.15±1.24 | 0.33±0.01 | 0.27±0.04 | 0.22±0.05 |
HX13 | 砾漠、壤漠 | 8.97±0.02 | 1.32±0.03 | 2.57±0.05 | 0.18±0.05 | 58.28±1.52 | 70.71±1.87 | 30.77±1.37 | 0.30±0.01 | 0.21±0.00 | 0.23±0.03 |
HX14 | 砾漠、壤漠 | 8.51±0.01 | 0.01±0.00 | 12.88±0.21 | 0.45±0.02 | 98.57±1.66 | 66.65±4.71 | 69.67±3.41 | 0.67±0.06 | 1.55±0.04 | 0.51±0.03 |
HX15 | 砾漠、壤漠 | 8.39±0.01 | 2.35±0.07 | 4.61±0.35 | 0.46±0.03 | 63.89±2.01 | 175.84±0.87 | 58.03±3.64 | 0.51±0.00 | 0.45±0.00 | 0.27±0.03 |
HX16 | 砾漠、壤漠 | 8.58±0.01 | 6.68±0.13 | 8.85±0.95 | 0.26±0.12 | 161.61±2.16 | 197.90±0.98 | 46.47±2.53 | 0.32±0.01 | 0.86±0.03 | 0.40±0.03 |
样带编号 | 建群种 | 主要物种(重要值) | ||
---|---|---|---|---|
灌木 | 草本 | |||
HX1 | 红砂 | 红砂 (0.37)、驼绒藜 (0.24)、白刺 (0.07)、 紫菀木 (0.09)、白沙蒿 (0.13) | ||
HX2 | 沙拐枣 | 沙拐枣 (0.54)、花棒 (0.09) | 雾冰藜 (0.15)、沙米 (0.11) | |
HX3 | 驼绒藜 | 驼绒藜 (0.22)、沙拐枣 (0.13)、白沙蒿 (0.13)、泡泡刺 (0.11) | 刺蓬 (0.11)、针茅 (0.06)、砂蓝刺头 (0.05) | |
HX4 | 白沙蒿 | 梭梭 (0.26)、白沙蒿 (0.23)、白刺 (0.18) | 冰草 (0.19)、苦豆子 (0.02) | |
HX5 | 合头草 | 合头草 (0.73)、珍珠猪毛菜 (0.09)、红砂 (0.06) | ||
HX6 | 珍珠猪毛菜 | 珍珠猪毛菜 (0.43)、红砂 (0.33)、中亚紫菀木 (0.05) | 驼蹄瓣 (0.08) | |
HX7 | 泡泡刺 | 泡泡刺 (0.24)、红砂 (0.21)、合头草 (0.05) | 画眉草 (0.17)、刺旋花 (0.09)、 白茎盐生草 (0.08)、节节草 (0.05) | |
HX8 | 红砂 | 红砂 (0.39)、泡泡刺 (0.23)、白沙蒿 (0.13) | 白茎盐生草 (0.11) | |
HX9 | 白沙蒿 | 白沙蒿 (0.18)、梭梭 (0.15)、沙拐枣 (0.10)、泡泡刺 (0.04) | 雾冰藜 (0.19)、沙米 (0.17) | |
HX10 | 沙拐枣 | 泡泡刺 (0.22)、沙拐枣 (0.13)、白沙蒿 (0.12)、梭梭 (0.10) | 雾冰藜 (0.18)、羊草 (0.09)、白茎盐生草 (0.06) | |
HX11 | 合头草 | 合头草 (0.29)、红砂 (0.19)、霸王 (0.17)、裸果木 (0.06) | 雾冰藜 (0.25) | |
HX12 | 河西菊 | 白刺 (0.19) | 河西菊 (0.77) | |
HX13 | 黑果枸杞 | 黑果枸杞 (0.42) | 河西菊 (0.23)、胀果甘草 (0.13)、苦豆子 (0.08) | |
HX14 | 黑果枸杞 | 黑果枸杞 (0.40) | 河西菊 (0.26)、芦苇 (0.29) | |
HX15 | 黑果枸杞 | 黑果枸杞 (0.37)、柽柳 (0.26)、盐爪爪 (0.22) | 花花柴 (0.09) | |
HX16 | 泡泡刺 | 泡泡刺 (0.49) | 芦苇 (0.42) |
表3 河西走廊各样带植物信息
Table 3 Plant information of Hexi Corridor transects
样带编号 | 建群种 | 主要物种(重要值) | ||
---|---|---|---|---|
灌木 | 草本 | |||
HX1 | 红砂 | 红砂 (0.37)、驼绒藜 (0.24)、白刺 (0.07)、 紫菀木 (0.09)、白沙蒿 (0.13) | ||
HX2 | 沙拐枣 | 沙拐枣 (0.54)、花棒 (0.09) | 雾冰藜 (0.15)、沙米 (0.11) | |
HX3 | 驼绒藜 | 驼绒藜 (0.22)、沙拐枣 (0.13)、白沙蒿 (0.13)、泡泡刺 (0.11) | 刺蓬 (0.11)、针茅 (0.06)、砂蓝刺头 (0.05) | |
HX4 | 白沙蒿 | 梭梭 (0.26)、白沙蒿 (0.23)、白刺 (0.18) | 冰草 (0.19)、苦豆子 (0.02) | |
HX5 | 合头草 | 合头草 (0.73)、珍珠猪毛菜 (0.09)、红砂 (0.06) | ||
HX6 | 珍珠猪毛菜 | 珍珠猪毛菜 (0.43)、红砂 (0.33)、中亚紫菀木 (0.05) | 驼蹄瓣 (0.08) | |
HX7 | 泡泡刺 | 泡泡刺 (0.24)、红砂 (0.21)、合头草 (0.05) | 画眉草 (0.17)、刺旋花 (0.09)、 白茎盐生草 (0.08)、节节草 (0.05) | |
HX8 | 红砂 | 红砂 (0.39)、泡泡刺 (0.23)、白沙蒿 (0.13) | 白茎盐生草 (0.11) | |
HX9 | 白沙蒿 | 白沙蒿 (0.18)、梭梭 (0.15)、沙拐枣 (0.10)、泡泡刺 (0.04) | 雾冰藜 (0.19)、沙米 (0.17) | |
HX10 | 沙拐枣 | 泡泡刺 (0.22)、沙拐枣 (0.13)、白沙蒿 (0.12)、梭梭 (0.10) | 雾冰藜 (0.18)、羊草 (0.09)、白茎盐生草 (0.06) | |
HX11 | 合头草 | 合头草 (0.29)、红砂 (0.19)、霸王 (0.17)、裸果木 (0.06) | 雾冰藜 (0.25) | |
HX12 | 河西菊 | 白刺 (0.19) | 河西菊 (0.77) | |
HX13 | 黑果枸杞 | 黑果枸杞 (0.42) | 河西菊 (0.23)、胀果甘草 (0.13)、苦豆子 (0.08) | |
HX14 | 黑果枸杞 | 黑果枸杞 (0.40) | 河西菊 (0.26)、芦苇 (0.29) | |
HX15 | 黑果枸杞 | 黑果枸杞 (0.37)、柽柳 (0.26)、盐爪爪 (0.22) | 花花柴 (0.09) | |
HX16 | 泡泡刺 | 泡泡刺 (0.49) | 芦苇 (0.42) |
多样性指数 | 经度 (E) | 比湿/ (g·kg-1) | 年均降水量/ mm | 短波辐射总强度/ (W·m-2) | 年均风速/ (m·s-1) | w(土壤水分)/ % | w(全氮)/ (mg·g-1) | w(速效氮)/ (mg·kg-1) | w(全磷)/ (mg·g-1) |
---|---|---|---|---|---|---|---|---|---|
Simpson优势度指数 | -0.549* | -0.712** | -0.528* | 0.555* | 0.421 | 0.591* | 0.517* | 0.449 | 0.490 |
Pielou均匀度指数 | 0.296 | 0.526* | 0.140 | -0.298 | 0.046 | -0.068 | -0.123 | -0.022 | -0.181 |
Shannon-Wiener多样性指数 | 0.408 | 0.721** | 0.391 | -0.592* | -0.440 | -0.670** | -0.550* | -0.494 | -0.542* |
Margalef丰富度指数 | 0.351 | 0.616* | 0.397 | -0.555* | -0.517* | -0.733** | -0.558* | -0.554* | -0.577* |
表4 植物α多样性与环境因子的Spearman分析
Table 4 Spearman analysis of plant α diversity index and environmental factors
多样性指数 | 经度 (E) | 比湿/ (g·kg-1) | 年均降水量/ mm | 短波辐射总强度/ (W·m-2) | 年均风速/ (m·s-1) | w(土壤水分)/ % | w(全氮)/ (mg·g-1) | w(速效氮)/ (mg·kg-1) | w(全磷)/ (mg·g-1) |
---|---|---|---|---|---|---|---|---|---|
Simpson优势度指数 | -0.549* | -0.712** | -0.528* | 0.555* | 0.421 | 0.591* | 0.517* | 0.449 | 0.490 |
Pielou均匀度指数 | 0.296 | 0.526* | 0.140 | -0.298 | 0.046 | -0.068 | -0.123 | -0.022 | -0.181 |
Shannon-Wiener多样性指数 | 0.408 | 0.721** | 0.391 | -0.592* | -0.440 | -0.670** | -0.550* | -0.494 | -0.542* |
Margalef丰富度指数 | 0.351 | 0.616* | 0.397 | -0.555* | -0.517* | -0.733** | -0.558* | -0.554* | -0.577* |
图3 植物α多样性指数与显著环境因子的RDA分析 D、R、H′、E、MAP、SH、SWR、AWS、Long、SW、TP、TN、AN分别代表Simpson优势度指数、Margalef丰富度指数、Shannon-Wiener多样性指数、Pielou均匀度指数、年均降水量、比湿、短波辐射总强度、年均风速、经度、土壤含水量、全磷、全氮、速效氮
Figure 3 RDA analysis of plant α diversity index and significant environmental factors
因子 | 解释率/% | 贡献率/% | F值 | P值 |
---|---|---|---|---|
比湿/(g·kg-1) | 35.4 | 48.7 | 7.7 | 0.016 |
年均风速/(m·s-1) | 19.8 | 27.2 | 5.8 | 0.032 |
w(全氮)/(mg·g-1) | 10.0 | 13.7 | 3.4 | 0.086 |
年均降水量/mm | 0.7 | 1.0 | 0.2 | 0.684 |
经度 (E) | 5.8 | 7.9 | 2.0 | 0.186 |
w(速效氮)/(mg·kg-1) | 0.5 | 0.7 | 0.2 | 0.744 |
w(土壤水分)/% | 0.5 | 0.7 | 0.1 | 0.744 |
w(全磷)/(mg·g-1) | <0.1 | 0.1 | <0.1 | 0.950 |
短波辐射总强度/(W·m-2) | <0.1 | <0.1 | <0.1 | 0.982 |
表5 植物α多样性指数与显著环境因子的RDA分析结果
Table 5 RDA analysis results of plant α diversity index and significant environmental factors
因子 | 解释率/% | 贡献率/% | F值 | P值 |
---|---|---|---|---|
比湿/(g·kg-1) | 35.4 | 48.7 | 7.7 | 0.016 |
年均风速/(m·s-1) | 19.8 | 27.2 | 5.8 | 0.032 |
w(全氮)/(mg·g-1) | 10.0 | 13.7 | 3.4 | 0.086 |
年均降水量/mm | 0.7 | 1.0 | 0.2 | 0.684 |
经度 (E) | 5.8 | 7.9 | 2.0 | 0.186 |
w(速效氮)/(mg·kg-1) | 0.5 | 0.7 | 0.2 | 0.744 |
w(土壤水分)/% | 0.5 | 0.7 | 0.1 | 0.744 |
w(全磷)/(mg·g-1) | <0.1 | 0.1 | <0.1 | 0.950 |
短波辐射总强度/(W·m-2) | <0.1 | <0.1 | <0.1 | 0.982 |
样带编号 | HX1 | HX2 | HX3 | HX4 | HX5 | HX6 | HX7 | HX8 | HX9 | HX10 | HX11 | HX12 | HX13 | HX14 | HX15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HX2 | 1.00 | ||||||||||||||
HX3 | 0.62 | 0.92 | |||||||||||||
HX4 | 0.80 | 1.00 | 0.79 | ||||||||||||
HX5 | 0.99 | 1.00 | 1.00 | 1.00 | |||||||||||
HX6 | 0.93 | 1.00 | 1.00 | 1.00 | 0.98 | ||||||||||
HX7 | 0.91 | 0.99 | 0.92 | 0.96 | 0.99 | 0.92 | |||||||||
HX8 | 0.88 | 1.00 | 0.90 | 0.94 | 1.00 | 0.90 | 0.56 | ||||||||
HX9 | 0.89 | 0.84 | 0.78 | 0.78 | 1.00 | 1.00 | 0.94 | 0.91 | |||||||
HX10 | 0.97 | 0.97 | 0.91 | 0.95 | 1.00 | 0.54 | 0.90 | 0.81 | 0.78 | ||||||
HX11 | 0.90 | 0.92 | 1.00 | 1.00 | 0.94 | 0.98 | 0.94 | 0.97 | 0.56 | 0.83 | |||||
HX12 | 0.98 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||
HX13 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | 1.00 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 0.81 | |||
HX14 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.70 | 0.41 | ||
HX15 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.48 | 0.65 | |
HX16 | 1.00 | 1.00 | 0.94 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.97 | 0.99 | 1.00 | 1.00 | 1.00 | 0.79 | 1.00 |
表6 河西走廊各样带间荒漠植物Bray-Curtis距离指数
Table 6 Bray-Curtis distance index of desert plants in Hexi Corridor
样带编号 | HX1 | HX2 | HX3 | HX4 | HX5 | HX6 | HX7 | HX8 | HX9 | HX10 | HX11 | HX12 | HX13 | HX14 | HX15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HX2 | 1.00 | ||||||||||||||
HX3 | 0.62 | 0.92 | |||||||||||||
HX4 | 0.80 | 1.00 | 0.79 | ||||||||||||
HX5 | 0.99 | 1.00 | 1.00 | 1.00 | |||||||||||
HX6 | 0.93 | 1.00 | 1.00 | 1.00 | 0.98 | ||||||||||
HX7 | 0.91 | 0.99 | 0.92 | 0.96 | 0.99 | 0.92 | |||||||||
HX8 | 0.88 | 1.00 | 0.90 | 0.94 | 1.00 | 0.90 | 0.56 | ||||||||
HX9 | 0.89 | 0.84 | 0.78 | 0.78 | 1.00 | 1.00 | 0.94 | 0.91 | |||||||
HX10 | 0.97 | 0.97 | 0.91 | 0.95 | 1.00 | 0.54 | 0.90 | 0.81 | 0.78 | ||||||
HX11 | 0.90 | 0.92 | 1.00 | 1.00 | 0.94 | 0.98 | 0.94 | 0.97 | 0.56 | 0.83 | |||||
HX12 | 0.98 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||
HX13 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | 1.00 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 0.81 | |||
HX14 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.70 | 0.41 | ||
HX15 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.48 | 0.65 | |
HX16 | 1.00 | 1.00 | 0.94 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.97 | 0.99 | 1.00 | 1.00 | 1.00 | 0.79 | 1.00 |
图4 植物Bray-Curtis距离指数与环境因子的Mantel检验结果 Lat、Long、Alt、SW、AN、SOC、MAP、SH、MAT、LWR、SWR、AWS分别代表纬度、经度、海拔、土壤含水量、速效氮、有机碳、年均降水量、比湿、年均温度、长波辐射总强度、短波辐射总强度、年均风速。*表示P<0.05;**表示P<0.01;***表示P<0.001
Figure 4 Mantel test results of plant Bray-Curtis distance index and environmental factors
[1] |
FAN L L, LI Y M, MA J, et al., 2022. Snow and rainfall independently affect the density, composition and productivity of ephemerals in a temperate desert[J]. Science of the Total Environment, 807: 151033.
DOI URL |
[2] |
GONZÁLEZ-HERNÁNDEZ M P, MOURONTE V, ROMERO R, et al., 2020. Plant diversity and botanical composition in an Atlantic heather-gorse dominated understory after horse grazing suspension: Comparison of a continuous and rotational management[J]. Global Ecology and Conservation, 23: e01134.
DOI URL |
[3] |
HEFFELFINGER L J, STEWART K M, BUSH A P, et al., 2018. Timing of precipitation in an arid environment: Effects on population performance of a large herbivore[J]. Ecology and Evolution, 8(6): 3354-3366.
DOI PMID |
[4] |
HU D, JIANG L M, HOU Z F, et al., 2022. Environmental filtration and dispersal limitation explain different aspects of beta diversity in desert plant communities[J]. Global Ecology and Conservation, 33: e01956.
DOI URL |
[5] |
LI S J, WANG H, GOU W, et al., 2021. Leaf functional traits of dominant desert plants in the Hexi Corridor, Northwestern China: Trade-off relationships and adversity strategies[J]. Global Ecology and Conservation, 28: e01666.
DOI URL |
[6] |
LI T F, KAMRAN M, CHANG S H, et al., 2022. Climate-soil interactions improve the stability of grassland ecosystem by driving alpine plant diversity[J]. Ecological Indicators, 141: 109002.
DOI URL |
[7] |
LIN J K, GUAN Q Y, TIAN J, et al., 2020. Assessing temporal trends of soil erosion and sediment redistribution in the Hexi Corridor region using the integrated RUSLE-TLSD model[J]. Catena, 195: 104756.
DOI URL |
[8] |
LIU J, WU P, WANG Y B, et al., 2015. Impacts of changing cropping pattern on virtual water flows related to crops transfer: A case study for the Hetao Irrigation District, China[J]. Journal of the Science of Food and Agriculture, 94(14): 2992-3000.
DOI URL |
[9] |
OMIDIPOUR R, TAHMASEBI P, FAIZABADI M F, et al., 2021. Does β diversity predict ecosystem productivity better than species diversity[J]. Ecological Indicators, 122: 107212.
DOI URL |
[10] |
PETERSEN H, JACK S L, HOFFMAN M T, et al., 2020. Patterns of plant species richness and growth form diversity in critical habitats of the Nama-Karoo Biome, South Africa[J]. South African Journal of Botany, 135: 201-211.
DOI URL |
[11] |
REY A, BELELLI-MARCHESINI L, WERE A, et al., 2012. Wind as a main driver of the net ecosystem carbon balance of a semiarid mediterranean steppe in the south east of Spain[J]. Global Change Biology, 18(2): 539-554.
DOI URL |
[12] |
SILES G, VOIRIN Y, BÉNIÉ G B, 2018. Open-source based geo-platform to support management of wetlands and biodiversity in Quebec[J]. Ecological Informatics, 43: 84-95.
DOI URL |
[13] |
WANG J M, LONG T, ZHONG Y M, et al., 2017. Disentangling the influence of climate, soil and belowground microbes on local species richness in a dryland ecosystem of Northwest China[J]. Scientific Reports, 7: 18029.
DOI PMID |
[14] |
WANG J M, WANG Y, LI M X, et al., 2021. Divergent roles of environmental and spatial factors in shaping plant β-diversity of different growth forms in drylands[J]. Global Ecology and Conservation, 26: e01487.
DOI URL |
[15] |
WU G L, ZHANG Z N, WANG D, et al., 2014. Interactions of soil water content heterogeneity and species diversity patterns in semi-arid steppes on the Loess Plateau of China[J]. Journal of Hydrology, 519: 1362-1367.
DOI URL |
[16] |
YANG L S, FENG Q, ADAMOWSKI J F, et al.., 2020. Causality of climate, food production and conflict over the last two millennia in the Hexi Corridor, China[J]. Science of The Total Environment, 713: 136587.
DOI URL |
[17] |
YU D S, LI Y H, YIN B L, et al., 2022. Spatiotemporal variation of net primary productivity and its response to drought in Inner Mongolian desert steppe[J]. Global Ecology and Conservation, 33: e01991.
DOI URL |
[18] |
ZANG Y X, MIN X J, VÍCTOR R D, et al., 2020. Extreme drought affects the productivity, but not the composition, of a desert plant community in Central Asia differentially across microtopographies[J]. Science of The Total Environment, 717: 137251.
DOI URL |
[19] |
ZHANG P P, SHAO M A, ZHANG X C, 2017. Spatial pattern of plant species diversity and the influencing factors in a Gobi Desert within the Heihe River Basin, Northwest China[J]. Journal of Arid Land, 9(3): 379-393.
DOI |
[20] |
ZHANG Q P, WANG J, WANG Q, 2021. Effects of abiotic factors on plant diversity and species distribution of alpine meadow plants[J]. Ecological Informatics, 61: 101210.
DOI URL |
[21] |
ZHANG T, XU X, JIANG H L, et al., 2022. Widespread decline in winds promoted the growth of vegetation[J]. Science of The Total Environment, 825: 153682.
DOI URL |
[22] |
ZHANG Y Y, ZHAO W Z, 2015. Vegetation and soil property response of short-time fencing in temperate desert of the Hexi Corridor, northwestern China[J]. Catena, 133: 43-51.
DOI URL |
[23] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 2000. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press. | |
[24] | 陈功, 李晓玲, 黄杰, 等, 2022. 三峡水库秭归段消落带植物群落特征及其与环境因子的关系[J]. 生态学报, 42(2): 688-699. |
CHEN G, LI X L, HUANG J, et al., 2022. Characteristics of plant communities and their relationships with environmental factors in the water level fluctuation zone of the Zigui region of the Three Gorges Reservoir[J]. Acta Ecologica Sinica, 42(2): 688-699. | |
[25] | 董雪, 李永华, 辛智鸣, 等, 2020. 河西走廊西段戈壁灌木群落多样性及其分布格局研究[J]. 干旱区地理, 43(6): 1514-1522. |
DONG X, LI Y H, XIN Z M, et al., 2020. Gobi shrub species diversity and its distribution pattern in the west Hexi Corridor[J]. Arid Land Geography, 43(6): 1514-1522. | |
[26] | 韩兰英, 万信, 方峰, 等, 2013. 甘肃河西地区沙漠化遥感监测评估[J]. 干旱区地理, 36(1): 131-138. |
HAN L Y, WAN X, FANG F, et al., 2013. Desertification assessments of Hexi regions in Gansu province by remote sensing[J]. Arid Land Geography, 36(1): 131-138. | |
[27] | 郝媛媛, 颉耀文, 魏伟, 等, 2018. 疏勒河流域植被覆盖及植物群落多样性空间分布[J]. 兰州大学学报 (自然科学版), 54(2): 245-251. |
HAO Y Y, JIE Y W, WEI W, et al., 2018. Spatial distribution of vegetation cover and plant community diversity in Shule River Basin[J]. Journal of Lanzhou University: Natural Science, 54(2): 245-251. | |
[28] | 胡冬, 吕光辉, 王恒方, 等, 2021. 水分梯度下荒漠植物多样性与稳定性对土壤因子的响应[J]. 生态学报, 41(17): 6738-6748. |
HU D, LÜ G H, WANG H F, et al., 2021. Response of desert plant diversity and stability to soil factors on water gradient[ J]. Acta Ecologica Sinica, 41(17): 6738-6748. | |
[29] | 黄甫昭, 丁涛, 李先琨, 等, 2016. 弄岗喀斯特季节性雨林不同群丛物种多样性随海拔的变化[J]. 生态学报, 36(14): 4509-4517. |
HUANG F Z, DING T, LI X K, et al., 2016. Species diversity for various associations along an altitudinal gradient in the karst seasonal rainforest in Nonggang[J]. Acta Ecologica Sinica, 36(14): 4509-4517. | |
[30] | 李善家, 王福祥, 从文倩, 等, 2022. 河西走廊荒漠土壤微生物群落结构及环境响应[J]. 土壤学报, 59(6): 1718-1728. |
LI S J, WANG F X, CONG W Q, et al., 2022. Microbial community structure and environmental response of desert soil in Hexi Corridor[J]. Acta Pedologica Sinica, 59(6): 1718-1728. | |
[31] |
李艳朋, 许涵, 李意德, 等, 2016. 海南尖峰岭热带山地雨林物种多样性空间分布格局的尺度效应[J]. 植物生态学报, 40(9): 861-870.
DOI |
LI Y P, XU H, LI Y D, et al., 2016. Scale-dependent spatial patterns of species diversity in tropical mountain rain forest in Jianfengling, Hainan island,China[J]. Chinese Journal of Plant Ecology, 40(9): 861-870.
DOI URL |
|
[32] | 彭思羿, 胡广, 于明坚, 2014. 千岛湖岛屿维管植物β多样性及其影响因素[J]. 生态学报, 34(14): 3866-3872. |
PENG S Y, HU G, YU M J, 2014. Beta diversity of vascular plants and its influencing factors on island in the thousand island lake[J]. Acta Ecologica Sinica, 34(14): 3866-3872. | |
[33] |
濮阳雪华, 王春春, 苟清平, 等, 2019. 陕北黄土区植被群落特征与土壤水分关系研究[J]. 草业学报, 28(11): 184-191.
DOI |
PUYANG X H, WANG C C, GOU Q P, et al., 2019. Relationship between vegetation community characteristics and soil moisture in the loess region of northern Shaanxi Province[J]. Acta Prataculturae Sinica, 28(11): 184-191. | |
[34] |
齐丹卉, 杨洪晓, 卢琦, 等, 2021. 浑善达克沙地植物群落物种多样性及环境解释[J]. 中国沙漠, 41(6): 65-77.
DOI |
QI D H, YANG H X, LU Q, et al., 2021. Biodiversity of plant communities and its environmental interpretation in the Otindag Sandy Land, China[J]. Journal of Desert Research, 41(6): 65-77. | |
[35] | 苏日古嘎, 张金屯, 王永霞, 2013. 北京松山自然保护区森林群落物种多样性及其神经网络预测[J]. 生态学报, 33(11): 3394-3403. |
SURI G G, ZHANG J T, WANG Y X, 2013. Species diversity of forest community and its forecasting by neural network in Songshan National Nature Reserve, Beijing[J]. Acta Ecologica Sinica, 33(11): 3394-3403.
DOI URL |
|
[36] | 王佳, 田青, 王理德, 等, 2022. 民勤青土湖区不同年限退耕地对土壤水分与物种多样性的影响[J]. 干旱区研究, 39(2): 605-614. |
WANG J, TIAN Q, WANG L D, et al., 2022. Effects of different years of returning farmland on soil moisture and species diversity in Minqin Qingtu Lake area[J]. Arid Zone Research, 39(2): 605-614. | |
[37] |
王健铭, 王文娟, 李景文, 等, 2017. 中国西北荒漠区植物物种丰富度分布格局及其环境解释[J]. 生物多样性, 25(11): 1192-1201.
DOI |
WANG J M, WANG W J, LI J W, et al.., 2017. Biogeographic patterns and environmental interpretation of plant species richness in desert regions of Northwest China[J]. Biodiversity Science, 25(11): 1192-1201.
DOI |
|
[38] | 王乐, 杜灵通, 丹杨, 等, 2020. 不同气候变化情景下荒漠草原生态系统碳动态模拟[J]. 生态学报, 40(2): 657-666. |
WANG L, DU L T, DAN Y, et al., 2020. Carbon dynamic simulation of desert steppe ecosystem in different climate scenarios[J]. Acta Ecologica Sinica, 40(2): 657-666. | |
[39] | 夏莹莹, 郝丙青, 江泽鹏, 等, 2020. 广西油茶人工林林下植物多样性区域变化规律[J]. 生态学报, 40(10): 3507-3518. |
XIA Y Y, HAO B Q, JIANG Z P, et al., 2020. Variation of undergrowth species diversity on Camellia oleifera plantations in Guangxi[J]. Acta Ecologica Sinica, 40(10): 3507-3518.. | |
[40] | 杨振奇, 秦富仓, 张晓娜, 等, 2018. 砒砂岩区不同立地类型人工沙棘林下草本物种多样性环境解释[J]. 生态学报, 38(14): 5132-5140. |
YANG Z Q, QIN F C, ZHANG X N, et al., 2018. Environmental interpretation of herb species diversity under different site types of Hippophae rhamnoides forest in feldspathic sandstone region[J]. Acta Ecologica Sinica, 38(14): 5132-5140. | |
[41] | 余轩, 王兴, 吴婷, 等, 2021. 荒漠草原植物多样性恢复与土壤生境的关系[J]. 生态学报, 41(21):8516-8524. |
YU X, WANG X, WU T, et al., 2021. Relationship between restoration of plant diversity and soil habitat in desert steppe[J]. Acta Ecologica Sinica, 41(21): 8516-8524. | |
[42] | 张金屯, 2018. 数量生态学[M]. 北京: 科学出版社. |
ZHANG J T, 2018. Quantitative Ecology[M]. Beijing: Science Press. | |
[43] | 张淼淼, 秦浩, 王烨, 等, 2016. 汾河中上游湿地植被β多样性[J]. 生态学报, 36(11): 3292-3299. |
ZHANG M M, QIN H, WANG Y, et al.., 2016. Beta diversity of wetland vegetation in the middle and upper reaches of Fenhe River watershed[J]. Acta Ecologica Sinica, 36(11): 3292-3299. | |
[44] | 张晓龙, 周继华, 蔡文涛, 等, 2017. 水分梯度下黑河流域荒漠植物群落多样性特征[J]. 生态学报, 37(14): 4627-4635. |
ZHANG X L, ZHOU J H, CAI W T, et al.., 2017. Diversity characteristics of plant communities in the arid desert of the Heihe basin under different moisture gradient[J]. Acta Ecologica Sinica, 37(14): 4627-4635. | |
[45] | 张芝萍, 尚雯, 王祺, 等, 2020. 河西走廊荒漠区光伏电站植物群落物种多样性研究[J]. 西北林学院学报, 35(2): 190-196. |
ZHANG Z P, SHANG W, WANG Q, et al.., 2020. Biodiversity of herbaceous species under large photovoltaic (PV) power stations in desert region of Hexi Corridor[J]. Journal of Northwest Forestry University, 35(2): 190-196. | |
[46] | 郑奕, 杨莲梅, 刘艳, 2020. 新疆天山山区禾本科牧草物候区域差异及其驱动力分析[J]. 生态学报, 40(4): 1281-1294. |
ZHENG Y, YANG L M, LIU Y, 2020. Analysis of regional differences and driving forces of gramineous forage phenology in Tianshan Mountains, Xinjiang[J]. Acta Ecologica Sinica, 40(4): 1281-1294. | |
[47] | 朱趁趁, 龚吉蕊, 杨波, 等, 2021. 内蒙古荒漠草原防风固沙服务变化及其驱动力[J]. 生态学报, 41(11): 4606-4617. |
ZHU C C, GONG J R, YANG B, et al., 2021. Changes of windbreak and sand fixation services and the driving factors in the desert steppe, Inner Mongolia[J]. Acta Ecologica Sinica, 41(11): 4606-4617. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[3] | 寇祝, 卿纯, 袁昌果, 李平. 西藏东北部热泉水中硫氧化菌的多样性及分布特征[J]. 生态环境学报, 2023, 32(5): 989-1000. |
[4] | 宋志斌, 周佳诚, 谭路, 唐涛. 高原河流着生藻类群落沿海拔梯度的变化特征--以西藏黑曲、雪曲为例[J]. 生态环境学报, 2023, 32(2): 274-282. |
[5] | 姜倪皓, 张世浩, 张诗函. 哀牢山紫茎泽兰入侵群落主要物种种间联结及环境解释[J]. 生态环境学报, 2022, 31(7): 1370-1382. |
[6] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
[7] | 陈瑶, 李云红, 邵英男, 刘玉龙, 刘延坤. 阔叶红松林物种多样性与土壤理化特征研究[J]. 生态环境学报, 2022, 31(4): 679-687. |
[8] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[9] | 玄锦, 李祖婵, 邹诚, 秦子博, 吴雅华, 黄柳菁. 江心洲景观类型和格局对植物多样性的多尺度影响——以闽江流域福州段为例[J]. 生态环境学报, 2022, 31(12): 2320-2330. |
[10] | 薛文凯, 朱攀, 德吉, 郭小芳. 纳木措水体可培养丝状真菌优势种的时空特征研究[J]. 生态环境学报, 2022, 31(12): 2331-2340. |
[11] | 韩鑫, 袁春阳, 李济宏, 洪宗文, 刘宣, 杜婷, 李晗, 游成铭, 谭波, 朱鹏, 徐振锋. 树种和土层对土壤无机氮的影响[J]. 生态环境学报, 2022, 31(11): 2143-2151. |
[12] | 李聪, 吕晶花, 陆梅, 杨志东, 刘攀, 任玉连, 杜凡. 滇东南亚热带土壤细菌群落对植被垂直带变化的响应[J]. 生态环境学报, 2022, 31(10): 1971-1983. |
[13] | 何瑞, 蒋然, 杨芳, 张心凤, 林键銮, 朱小平, 彭松耀. 茂名近岸海域中、小型浮游动物群落特征及其与环境因子的关系[J]. 生态环境学报, 2022, 31(1): 142-150. |
[14] | 刘小菊, 褚江涛, 张越, 单奇. 环境因子和火干扰因子对喀纳斯泰加林柳兰分布的影响[J]. 生态环境学报, 2022, 31(1): 37-43. |
[15] | 蔡锡安, 黄娟, 吴彤, 刘菊秀, 蒋芬, 王森浩. 植物叶片排放甲烷的初步研究[J]. 生态环境学报, 2021, 30(9): 1842-1847. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 469
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 461
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||