生态环境学报 ›› 2021, Vol. 30 ›› Issue (6): 1240-1248.DOI: 10.16258/j.cnki.1674-5906.2021.06.015
薛力园1,2(), 刘志亮1,2,*(
), 宋伟3, 安颖1,2, 袁晓博1,2, 陈晓1,2
收稿日期:
2021-01-25
出版日期:
2021-06-18
发布日期:
2021-09-10
通讯作者:
* 刘志亮(1977年生),男,研究员,研究方向为海洋环流动力学和海洋观测。E-mail: zhlliu3897@hevttc.edu.cn作者简介:
薛力园(1989年生),男,博士,研究方向为近海生态环境。E-mail: xuealytt@126.com
基金资助:
Xue Liyuan1,2(), Liu Zhiliang1,2,*(
), Song Wei3, An Ying1,2, Yuan Xiaobo1,2, Chen Xiao1,2
Received:
2021-01-25
Online:
2021-06-18
Published:
2021-09-10
摘要:
基于2020年春季秦皇岛海域水母幼体和海洋环境调查数据,分析该海域春季海月水母(Aurelia sp.)幼体丰度的空间分布特征,并探讨了海月水母幼体空间分布与海洋环境因子之间的关系。水母幼体样品利用标准的浅水Ⅱ型浮游生物网(网口内径31.6 cm,网衣孔径160 μm)采用全水柱拖网方式进行采集。调查结果显示,4月秦皇岛海域水体温度范围在9.8—12.2 ℃之间,近岸水体温度高,离岸水体逐渐降低。盐度范围在31.49—32.03之间,受河流冲淡水的影响,汤河口和新开河口水体盐度较低。溶解氧质量浓度范围在7.70—9.56 mg∙L-1之间,在新开河口较低,高值区分布在石河口、莲花岛和金山嘴外侧海域。水体pH范围在8.01—8.32之间,在汤河口和新开河口水域较低。4月海月水母主要以碟状体形式存在,伞径范围在1—10 mm之间。海月水母碟状幼体丰度分布中心位于金梦海湾内莲花岛水域。该水域海月水母碟状幼体丰度最高(94 ind∙m-3),伞径较小,在1—1.5 mm之间。金梦海湾以外水域,海月水母碟状幼体伞径逐渐增大,丰度较少。4月莲花岛水域温暖、富氧和低盐的水体环境为海月水母碟状幼体的大量聚集提供了有利条件。统计分析结果显示,海月水母碟状幼体丰度与海水盐度呈极显著负相关性(P<0.01),与温度和溶解氧含量呈显著正相关性(P<0.05);海月水母碟状幼体伞径与海水温度呈极显著负相关性(P<0.01)。综上,该海域海月水母为本地生长型,研究结果为深入研究该海域海月水母的时空变化规律及关键驱动因子提供了基础数据。
中图分类号:
薛力园, 刘志亮, 宋伟, 安颖, 袁晓博, 陈晓. 秦皇岛海域春季海月水母碟状幼体空间分布及其与海洋环境因子的关系[J]. 生态环境学报, 2021, 30(6): 1240-1248.
Xue Liyuan, Liu Zhiliang, Song Wei, An Ying, Yuan Xiaobo, Chen Xiao. Spatial Distribution of Aurelia sp. Ephyrae and Its Relationship with Environmental Factors in the Coastal Waters of Qinhuangdao in Spring, 2020[J]. Ecology and Environment, 2021, 30(6): 1240-1248.
图1 2020年4月秦皇岛海域调查站位与水深分布图 黑色实心圆点和数字代表调查站位和名称,黑色曲线上数字为水深,单位:m;水深来源于船载LOWRANCE HDS-7声呐探测仪
Fig. 1 Investigation area with sampling locations and water depth of Qinhuangdao in April, 2020 Solid black dots and number represent for sampling stations, black lines represent for water depth, derived from the LOWRANCE HDS-7, units: meters
图2 2020年4月秦皇岛海域海水温度(temperature,t)、盐度(salinity,S)、溶解氧含量(dissolved oxygen,DO)和pH分布图
Fig. 2 Distribution of temperature (t), salinity (S), dissolved oxygen (DO), and pH of Qinhuangdao in April, 2020
图6 2020年春季秦皇岛海域各站位温度、盐度、溶解氧含量、pH和水母丰度分布 a-5为Kriging法插值数据;Y为水母丰度值,“lg(Y+0.001)+3”为标准化后的水母丰度数据
Fig. 6 Variation of sea temperature (t), salinity (S), dissolved oxygen (DO), pH, and abundance of Aurelia sp. ephyrae of Qinhuangdao in spring, 2020 a-5: Interpolation data based on Kriging method; “lg(Y+0.001)+3” represents for the normalized value of abundance of Aurelia sp. ephyrae
图7 2020年春季秦皇岛海域海月水母碟状幼体丰度与海洋环境因子相关性分析结果 *代表双尾检验在0.05水平上显著相关,**代表双尾检验在0.01水平上显著相关
Fig. 7 Results of Pearson correlation analysis between abundance of Aurelia sp. ephyrae and sea temperature (t), salinity (S), dissolved oxygen (DO), and pH of Qinhuangdao in spring, 2020 *Means significant at the level of 0.05, ** means significant at the level of 0.01
[1] |
BLACKETT M, LUCAS C H, COOK K, et al., 2017. Occurrence of the siphonophore Muggiaea atlantica in Scottish coastal waters: Source or sink?[J]. Journal of Plankton Research, 39(1): 122-137.
DOI URL |
[2] |
BOERO F, BOUILLON J, GRAVILI C, et al., 2008. Gelatinous plankton: irregularities rule the world (sometimes)[J]. Marine Ecology Progress, 356: 299-310.
DOI URL |
[3] |
BROTZ L, CHEUNG W W L, KLEISNER K, et al., 2012. Increasing jellyfish populations: Trends in large marine ecosystems[J]. Hydrobiologia, 690(1): 3-20.
DOI URL |
[4] |
COLIN S P, KREMER P, 2002. Population maintenance of the scyphozoan Cyanea sp. settled planulae and the distribution of medusae in the Niantic River, Connecticut, USA[J]. Estuaries, 25: 70-75.
DOI URL |
[5] |
CONDON R H, DECKER M B, PURCELL J E, 2001. Effects of low dissolved oxygen on survival and asexual reproduction of scyphozoan polyps (Chrysaora quinquecirrha)[J]. Hydrobiologia, 451: 89-95.
DOI URL |
[6] |
CONDON R H, DUARTE C M, PITT K A, et al., 2013. Recurrent jellyfish blooms are a consequence of global oscillations[J]. Proceedings of the National Academy of Sciences, 110(3): 1000-1005.
DOI URL |
[7] |
CONDON R H, GRAHAM W M, DUARTE C M, et al., 2012. Questioning the rise of gelatinous zooplankton in the world's oceans[J]. Bioscience, 62(2): 160-169.
DOI URL |
[8] |
CONDON R H, STEINBERG D K, DEL GIORGIO P A, 2011. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems[J]. Proceedings of the National Academy of Science, 108(25): 10225-10230.
DOI URL |
[9] |
DECKER M B, ROBINSON K L, DORJI S, et al., 2018. Jellyfish and forage fish spatial overlap on the eastern Bering Sea shelf during periods of high and low jellyfish biomass[J]. Marine Ecology Progress, 591: 57-69.
DOI URL |
[10] |
DONG Z J, LIU D Y, KEESING J K, 2010. Jellyfish blooms in China: Dominant species, causes and consequences[J]. Marine Pollution Bulletin, 60(7): 954-963.
DOI URL |
[11] |
DUARTE C, PITT K, LUCAS C, et al., 2012. Is global ocean sprawl a Trojan Horse for jellyfish blooms?[J]. Frontiers in Ecology and the Environment, 10(7): 91-97.
DOI URL |
[12] |
FENG S, ZHANG G T, SUN S, et al., 2015a. Effects of temperature regime and food supply on asexual reproduction in Cyanea nozakii and Nemopilema nomurai[J]. Hydrobiologia, 754: 201-214.
DOI URL |
[13] |
FENG S, ZHANG F, SUN S, et al., 2015b. Effects of duration at low temperature on asexual reproduction in polyps of the scyphozoan Nemopilema nomurai (Scyphozoa: Rhizostomeae)[J]. Hydrobiologia, 754: 97-111.
DOI URL |
[14] |
GOLDSTEIN J, RIISGÅRD H U, 2016. Population dynamics and factors controlling somatic degrowth of the common jellyfish, Aurelia aurita, in a temperate semi-enclosed cove (Kertinge Nor, Denmark)[J]. Marine Biology, 163: 33.
DOI URL |
[15] |
GRAHAM W M, FRANSESC PAGÈS, HAMNER W M, 2001. A physical context for gelatinous zooplankton aggregations: A review[J]. Hydrobiologia, 451(1-3): 199-212.
DOI URL |
[16] | HAN H B, SONG W, WANG Z L, et al., 2019. Distribution of green algae micro-propagules and their function in the formation of the green tides in the coast of Qinhuangdao, the Bohai Sea, China[J]. Acta Oceanologica Sinica, 38(8): 72-77. |
[17] |
HERRMANN B, KEISTER J E, 2020. Species composition and distribution of jellyfish in a seasonally hypoxic estuary, Hood Canal, Washington[J]. Diversity, 12(2): 53.
DOI URL |
[18] |
HOLST S, JARMS G, 2010. Effects of low salinity on settlement and strobilation of Scyphozoa (Cnidaria): Is the lion's mane Cyanea capillata (L.) able to reproduce in the brackish Baltic Sea?[J]. Hydrobiologia, 645: 53-68.
DOI URL |
[19] |
HOLST S, 2012. Effects of climate warming on strobilation and ephyra production of North Sea scyphozoan jellyfish[J]. Hydrobiologia, 690: 127-140.
DOI URL |
[20] | ISHII H, OHBA T, KOBAYASHI T, 2008. Effects of low dissolved oxygen on planula settlement, polyp growth and asexual reproduction of Aurelia aurita[J]. Plankton Benthos Research, 3(Suppl.): 107-113. |
[21] |
JAVIDPOUR J, CIPRIANO-MAACK A N, MITTERMAYR A, et al., 2016. Temporal dietary shift in jellyfish revealed by stable isotope analysis[J]. Marine Biology, DOI: 10.1007/s00227-016-2892-0.
DOI |
[22] |
KEISTER J E, WINANS A K, HERRMANN B, 2020. Zooplankton community response to seasonal hypoxia: A test of three hypotheses[J]. Diversity, 12(1): 21.
DOI URL |
[23] |
KEISTER J, HOUDE E D, BREITBURG D L, 2000. Effects of bottom-layer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay[J]. Marine ecology progress series, 205: 43-59.
DOI URL |
[24] |
LARSON R J, 1988. Feeding and functional morphology of the lobate ctenophore Mnemiopsis mccradyi[J]. Estuarine Coastal and Shelf Science, 27(5): 495-502.
DOI URL |
[25] |
LIU W C, LO W T, PURCELL J E, et al., 2009. Effects of temperature and light intensity on asexual reproduction of the scyphozoan, Aurelia aurita (L.) in Taiwan[J]. Hydrobiologia, 616: 247-258.
DOI URL |
[26] | LUCAS C H, GRAHAM W M, WIDMER C, 2012. Jellyfish life histories: Role of polyps in forming and maintaining scyphomedusa populations[J]. Advances in Marine Biology, 63: 133-196. |
[27] |
LUCAS C H, JONES D O B, HOLLYHEAD C J, et al., 2014. Gelatinous zooplankton biomass in the global oceans: Geographic variation and environmental drivers[J]. Global Ecology and Biogeography, 23(7): 701-714.
DOI URL |
[28] |
LUCAS C H, 2001. Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment[J]. Hydrobiologia, 451(1-3): 229-246.
DOI URL |
[29] |
LÜSKOW F, 2020. Importance of environmental monitoring: Long-term record of jellyfish (Aurelia aurita) biomass in a shallow semi-enclosed cove (Kertinge Nor, Denmark)[J]. Regional Studies in Marine Science, 34: 100998.
DOI URL |
[30] |
LYNAM C P, HAY S J, BRIERLEY A S, 2004. Interannual variability in abundance of North Sea jellyfish and links to the North Atlantic Oscillation[J]. Limnology and Oceanography, 49(3): 637-643.
DOI URL |
[31] |
MILLS C E, 2001. Jellyfish blooms: Are populations increasing globally in response to changing ocean conditions?[J]. Hydrobiologia, 451: 55-68.
DOI URL |
[32] |
MØLLER L F, RIISGÅRD H U, 2007. Impact of jellyfish and mussels on algal blooms caused by seasonal oxygen depletion and nutrient release from the sediment in a Danish fjord[J]. Journal of Experimental Marine Biology and Ecology, 351(1-2): 92-105.
DOI URL |
[33] |
MUTLU E, 2001. Distribution and abundance of moon jellyfish (Aurelia aurita) and its zooplankton food in the Black Sea[J]. Marine Biology, 138: 329-339.
DOI URL |
[34] |
PURCELL J E, ARAI M N, 2001a. Interactions of pelagic cnidarians and ctenophores with fish: A review[J]. Hydrobiologia, 451(1-3): 27-44.
DOI URL |
[35] | PURCELL J E, BREITBURG D L, DECKER M B, et al., 2001b. Pelagic cnidarians and ctenophores in low dissolved xxygen environments: A review [M]//In: RABALAIS N N, TURNER R E (eds). Coastal hypoxia: Consequences for living resources and ecosystems. American Geophysical Union, Washington, DC, Coastal & Estuarine Studies, 58: 77-100. |
[36] |
PURCELL J E, UYE S I, LO W T, 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: A review[J]. Marine Ecology Progress Series, 350: 153-174.
DOI URL |
[37] |
PURCELL J E, WHITE J R, NEMAZIE D A, et al., 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha[J]. Marine Ecology Progress Series, 180: 187-196.
DOI URL |
[38] |
PURCELL J E, 2005. Climate effects on formation of jellyfish and ctenophore blooms: A review[J]. Journal of the Marine Biological Association of the United Kingdom, 85(3): 461-476.
DOI URL |
[39] |
PURCELL J E, 2007. Environmental effects on asexual reproduction rates of the scyphozoan Aurelia labiata[J]. Marine Ecology Progress Series, 348: 183-196.
DOI URL |
[40] |
RIISGÅRD H U, BARTH-JENSEN C, MADSEN C V, 2010. High abundance of the jellyfish Aurelia aurita excludes the invasive ctenophore Mnemiopsis leidyi to establish in a shallow cove (Kertinge Nor, Denmark)[J]. Aquatic Invasions, 5(4): 347-356.
DOI URL |
[41] |
SCHNEIDER G, BEHRENDS G, 1994. Population dynamics and the trophic role of Aurelia aurita medusae in the Kiel Bight and western Baltic[J]. ICES Journal of Marine Science, 51(4): 359-367.
DOI URL |
[42] |
SHI Y Q, SUN S, ZHANG G T, et al., 2015. Distribution pattern of zooplankton functional groups in the Yellow Sea in June: A possible cause for geographical separation of giant jellyfish species[J]. Hydrobiologia, 754: 59-74.
DOI URL |
[43] |
SLATER W L, PIERSON J J, DECKER M B, et al., 2020. Fewer copepods, fewer anchovies, and more jellyfish: How does hypoxia impact the Chesapeake Bay zooplankton community?[J]. Diversity, DOI: 10.3390/d12010035.
DOI |
[44] |
SUN S, SUN X X, JENKINSON I R, 2015. Preface: Giant jellyfish blooms in Chinese waters[J]. Hydrobiologia, 754: 1-11.
DOI URL |
[45] |
TREIBLE L M, CONDON R H, 2019. Temperature-driven asexual reproduction and strobilation in three scyphozoan jellyfish polyps[J]. Journal of Experimental Marine Biology and Ecology, DOI: 10.1016/j.jembe.2019.151204.
DOI |
[46] | UYE S, 2008. Blooms of the giant jellyfish Nemopilema nomurai: A threat to the fisheries sustainability of the East Asian Marginal Seas[J]. Plankton and Benthos Research, 3 (Suppl.): 125-131. |
[47] |
VAN WALRAVEN L, DRIESSEN F,VAN BLEIJSEIJK J, 2016. Where are the polyps? Molecular identification, distribution and population differentiation of Aurelia aurita jellyfish polyps in the southern North Sea area[J]. Marine Biology, 163(8): 1-13.
DOI URL |
[48] |
WANG N, LI C L, 2015. The effect of temperature and food supply on the growth and ontogeny of Aurelia sp. 1 ephyrae[J]. Hydrobiologia, 754: 157-167.
DOI URL |
[49] |
WATANABE T, ISHII H, 2001. In situ estimation of ephyrae liberated from polyps of Aurelia aurita using settling plates in Tokyo Bay, Japan[J]. Hydrobiologia, 451(1): 247-258.
DOI URL |
[50] |
WIDMER C L, 2005. Effects of temperature on growth of north-east Pacific moon jellyfish ephyrae, Aurelia labiata (Cnidaria: Scyphozoa)[J]. Journal of the Marine Biological Association of the United Kingdom, 85(3): 569-573.
DOI URL |
[51] |
WILLCOX S, MOLTSCHANIWSKYJ N A, CRAWFORD C M, 2008. Population dynamics of natural colonies of Aurelia sp. scyphistomae in Tasmania[J]. Marine Biology, 154(4): 661-670.
DOI URL |
[52] |
WILLCOX S, MOLTSCJANIWSKYJ N, CRAWFORD C, 2007. Asexual reproduction in scyphistomae of Aurelia sp.: Effects of temperature and salinity in an experimental study[J]. Journal of Experimental Marine Biology and Ecology, 353(1): 107-114.
DOI URL |
[53] |
WU L J, WANG J, GAO S, et al., 2016. An analysis of dynamical factors influencing 2013 giant jellyfish bloom near Qinhuangdao in the Bohai Sea, China[J]. Estuarine Coastal and Shelf science, 185: 141-151.
DOI URL |
[54] |
YOON E A, LEE K, CHAE J, et al., 2019. Density estimates of moon jellyfish (Aurelia coerulea) in the Yeongsan Estuary using nets and hydroacoustics[J]. Ocean science Journal, 54(3): 457-465.
DOI URL |
[55] | 付志璐, 董婧, 孙明, 等, 2011. 温度、盐度对黄海北部海月水母碟状幼体生长的影响[J]. 水产科学, 30(4): 221-224. |
FU Z L, DONG J, SUN M, et al., 2011. Effects of water temperature and salinity on growth of ephyrae in moon jellyfish Aurelia sp. in North Yellow Sea in China[J]. Fisheries Science, 30(4): 221-224. | |
[56] | 和振武, 1985. 秦皇岛和北戴河的水母类[J]. 河南师范大学学报 (4): 69-74. |
HE Z W, 1985. The medsae from the Qinhuangdao and Beidaihe[J]. Journal of Henan Normal University (4): 69-73. | |
[57] | 刘婧美, 齐学军, 刘春洋, 等, 2015. 秦皇岛近海水母种类及利用价值分析[J]. 河北渔业 (11): 50-53. |
LIU J M, QI X J, LIU C Y, et al., 2015. Analysis of jellyfish species in the coastal waters of Qinhuangdao and their utilizing value[J]. Hebei Fisheries (11): 50-53. | |
[58] | 刘婧美, 饶庆贺, 2016. 秦皇岛近岸海域水母暴发原因分析及防治对策研究[J]. 河北渔业 (1): 55-57. |
LIU J M, RAO Q H, 2016. Study on causes and prevention countermeasures of jellyfish bloom in the coastal waters of Qinhuangdao[J]. Hebei Fisheries (1): 55-57. | |
[59] | 曲长凤, 宋金明, 李宁, 2014. 水母旺发的诱因及对海洋环境的影响[J]. 应用生态学报, 25(12): 3701-3712. |
QU C F, SONG J M, L N, 2014. Causes of jellyfish blooms and their influence on marine environment[J]. Chinese Journal of Applied Ecology, 25(12): 3701-3712. | |
[60] | 万艾勇, 张光涛, 2012. 胶州湾海月水母 (Aurelia sp.1) 丰度周年变化及对浮游动物群落的影响[J]. 海洋与湖沼, 43(3): 494-501. |
WAN A Y, ZHANG G T, 2012. Annual occurrence of moon jellyfish Aurelia sp.1 in the jiaozhoubay and its impacts on zooplankton community[J]. Oceanologia et Limnologia Sinica, 43(3): 494-501. | |
[61] | 张海松, 2015. 秦皇岛海域水母发生现状及防治对策[J]. 河北渔业 (1): 17-18, 33. |
ZHANG H S, 2015. The current situation and strategies for prevention of jellyfish bloom in the coastal waters of Qinhuangdao[J]. Hebei Fisheries (1): 17-18, 33. | |
[62] | 张万磊, 李莉, 张建乐, 2015. 秦皇岛海域水母类特征分析[J]. 河北渔业 (2): 16-18. |
ZHANG W L, LI L, ZHANG J L, 2015. The characteristics of jellyfish species in the coastal waters of Qinhuangdao[J]. Hebei Fisheries (2): 16-18. | |
[63] | 郑向荣, 李燕, 饶庆贺, 等, 2014. 秦皇岛近海大型水母暴发性增长原因探析[J]. 河北渔业 (2): 16-20. |
ZHENG X R, LI Y, RAO Q H, et al., 2014. Causes of explosive increase of jellyfish in the coastal waters of Qinhuangdao[J]. Hebei Fisheries (2): 16-20. | |
[64] | 左涛, 王俊, 吴强, 等, 2016. 2015年5月黄海及东海北部大型水母分布及生物量估算[J]. 海洋与湖沼, 47(1): 195-204. |
ZUO T, WANG J, WU Q, et al., 2016. Spatial distribution and biomass of large jellyfish in the Yellow Sea and northern part of the East China Sea in May 2015 [J]. Oceanologia et Limnologia Sinica, 47(1): 195-204. |
[1] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[2] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[3] | 寇祝, 卿纯, 袁昌果, 李平. 西藏东北部热泉水中硫氧化菌的多样性及分布特征[J]. 生态环境学报, 2023, 32(5): 989-1000. |
[4] | 杨春亮, 刘旻霞, 王千月, 苗乐乐, 肖音迪, 王敏. 单户与联户放牧经营下草玉梅与嵩草种群空间格局及其关联性[J]. 生态环境学报, 2023, 32(4): 651-659. |
[5] | 王馨雨, 高灯州, 刘博林, 王斌, 郑艳玲, 李小飞, 侯立军. 长江口水体化能自养固碳过程的潮周期变化特征及影响因素[J]. 生态环境学报, 2023, 32(4): 733-743. |
[6] | 李善家, 王兴敏, 刘海锋, 孙梦格, 雷雨昕. 河西走廊荒漠植物多样性及其对环境因子的响应[J]. 生态环境学报, 2023, 32(3): 429-438. |
[7] | 吴胜义, 王飞, 徐干君, 马浩, 党禹杰, 吴菲. 川西北高山峡谷区森林碳储量及空间分布研究--以四川洛须自然保护区为例[J]. 生态环境学报, 2022, 31(9): 1735-1744. |
[8] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[9] | 姜倪皓, 张世浩, 张诗函. 哀牢山紫茎泽兰入侵群落主要物种种间联结及环境解释[J]. 生态环境学报, 2022, 31(7): 1370-1382. |
[10] | 温智峰, 魏识广, 李林, 叶万辉, 练琚愉. 南亚热带常绿阔叶林植物不同分类水平上的空间分布格局及空间关联[J]. 生态环境学报, 2022, 31(3): 440-450. |
[11] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[12] | 刘娣, 苏超, 张红, 秦冠宇. 典型煤炭产业聚集区土壤重金属污染特征与风险评价[J]. 生态环境学报, 2022, 31(2): 391-399. |
[13] | 薛文凯, 朱攀, 德吉, 郭小芳. 纳木措水体可培养丝状真菌优势种的时空特征研究[J]. 生态环境学报, 2022, 31(12): 2331-2340. |
[14] | 张楷悦, 刘增辉, 王颜昊, 王敬宽, 崔德杰, 柳新伟. 黄河三角洲自然保护区土壤PAHs的风险评估和空间特征[J]. 生态环境学报, 2022, 31(11): 2198-2205. |
[15] | 李聪, 吕晶花, 陆梅, 杨志东, 刘攀, 任玉连, 杜凡. 滇东南亚热带土壤细菌群落对植被垂直带变化的响应[J]. 生态环境学报, 2022, 31(10): 1971-1983. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||