生态环境学报 ›› 2022, Vol. 31 ›› Issue (10): 1971-1983.DOI: 10.16258/j.cnki.1674-5906.2022.10.005
李聪1,2(), 吕晶花1, 陆梅1,*(
), 杨志东1, 刘攀1, 任玉连3, 杜凡4
收稿日期:
2022-03-14
出版日期:
2022-10-18
发布日期:
2022-12-09
通讯作者:
*陆梅(1979年生),女,教授,从事土壤微生物生态、森林和湿地生态研究。E-mail: lumeizx@126.com作者简介:
李聪(1997年生),男,博士研究生,从事土壤微生物、森林生态恢复研究。E-mail: licongswfu@126.com
基金资助:
LI Cong1,2(), LÜ Jinghua1, LU Mei1,*(
), YANG Zhidong1, LIU Pan1, REN Yulian3, DU Fan4
Received:
2022-03-14
Online:
2022-10-18
Published:
2022-12-09
摘要:
为探究南亚热带森林土壤细菌群落的变化特征及其与环境因子的耦合机制,沿海拔自下而上选取滇东南文山国家级自然保护区亚热带季风常绿阔叶林(E1)、半湿润常绿阔叶林(E2)、中山湿性常绿阔叶林(E3)3种典型森林类型为研究对象,采用Illumina高通量测序技术研究土壤细菌群落组成、结构和多样性对植被垂直带变化的响应规律,以及它们与环境因子之间的关系。研究发现,(1)环境因子沿植被垂直带变化显著(P<0.05)。E3植被带的凋落物厚度、Simpson指数、土壤含水量、有机质、氮、磷、钾含量较E1和E2显著增加,而植物的Margalef指数、Shannon指数、Pielou指数、土壤密度、pH、温度较E1和E2显著减少,其平均增幅和降幅分别3倍和1.5倍。(2)酸杆菌门、变形菌门、放线菌门等细菌优势菌群的相对丰度沿植被垂直带和土层变化差异显著(P<0.05);次优势菌门变形菌、放线菌在E3植被带的相对丰度显著高于E1和E2(P<0.05),而酸杆菌门相对丰度略低于其他两个植被带(P>0.05);变形菌与放线菌主要富集于土壤表层(0—10 cm)、酸杆菌富集在中层(10—30 cm)、绿弯菌富集在底层(40—50 cm)。(3)土壤细菌多样性沿植被垂直变化呈显著的增加趋势(P<0.05),并在E3达到最大值,沿土层则表现为减小变化。(4)随着海拔上升,植被多样性及凋落物厚度对细菌群落结构及多样性的主导因子从E1的3个减至E3的1个,而土壤理化对二者的解释率从E1的0个增至E3的7个,E1的植被多样性负向影响转变为E3含水量、碳氮等养分元素的正向影响。因此,文山自然保护区植被群落沿海拔的垂直变化,导致凋落物厚度、土壤水分、pH、养分含量的显著改变,进而决定了森林土壤细菌群落组成、结构及多样性的分布格局。
中图分类号:
李聪, 吕晶花, 陆梅, 杨志东, 刘攀, 任玉连, 杜凡. 滇东南亚热带土壤细菌群落对植被垂直带变化的响应[J]. 生态环境学报, 2022, 31(10): 1971-1983.
LI Cong, LÜ Jinghua, LU Mei, YANG Zhidong, LIU Pan, REN Yulian, DU Fan. Responses of Soil Bacterial Communities to Vertical Vegetarian Zone Changes in the Subtropical Forests, Southeastern Yunnan[J]. Ecology and Environment, 2022, 31(10): 1971-1983.
海拔 Altitdes/ m | 植被带 Vegetarian zones | 坡向 Aspect of slope | 坡度 Slope/ (°) | 主要优势种 Dominant plant | 平均高度 Average height/m | 平均胸径 Mean DBH/ cm | 凋落物厚度 Litter thickness/cm | 郁闭度 Canopy density | 植物多样性 Vegetation diversity | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shannon- Wiener | Simpson | Margalef | Pielou | |||||||||
1480 | E1 | S3°E-N6°E | 30-42 | 窄叶锥 Castanopsis choboensis | 12.40± 3.17c | 9.33± 2.79c | 3±2c | 0.75 | 0.81± 0.08c | 3.26± 0.35a | 12.71± 1.22a | 1.13± 0.10a |
1660 | E2 | N18°W-N30°W | 5-10 | 木荷 Schima superba | 16.60± 1.52b | 18.09± 2.05b | 15±1b | 0.85 | 1.57± 0.10b | 2.68± 0.22b | 11.67± 0.74b | 1.08± 0.08a |
1760 | E3 | N30°W-S68°W | 30-34 | 栎类 Quercus | 20.67± 2.41a | 24.16± 3.12a | 23±4a | 0.95 | 1.88± 0.12a | 2.29± 0.17c | 10.68± 0.55c | 0.85± 0.04b |
表1 样地概况
Table 1 The basic situation of the sample sites
海拔 Altitdes/ m | 植被带 Vegetarian zones | 坡向 Aspect of slope | 坡度 Slope/ (°) | 主要优势种 Dominant plant | 平均高度 Average height/m | 平均胸径 Mean DBH/ cm | 凋落物厚度 Litter thickness/cm | 郁闭度 Canopy density | 植物多样性 Vegetation diversity | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shannon- Wiener | Simpson | Margalef | Pielou | |||||||||
1480 | E1 | S3°E-N6°E | 30-42 | 窄叶锥 Castanopsis choboensis | 12.40± 3.17c | 9.33± 2.79c | 3±2c | 0.75 | 0.81± 0.08c | 3.26± 0.35a | 12.71± 1.22a | 1.13± 0.10a |
1660 | E2 | N18°W-N30°W | 5-10 | 木荷 Schima superba | 16.60± 1.52b | 18.09± 2.05b | 15±1b | 0.85 | 1.57± 0.10b | 2.68± 0.22b | 11.67± 0.74b | 1.08± 0.08a |
1760 | E3 | N30°W-S68°W | 30-34 | 栎类 Quercus | 20.67± 2.41a | 24.16± 3.12a | 23±4a | 0.95 | 1.88± 0.12a | 2.29± 0.17c | 10.68± 0.55c | 0.85± 0.04b |
图1 不同垂直植被带土壤理化性质特征 各植被带:n=15。0—50 cm土层均值:n=5不同小写字母表示差异显著(P<0.05),下同;不同小写字母代表该指标在同一土层各垂直植被带间差异显著,不同大写字母表示该指标在同一植被带各土层差异显著,最大的平均数标记为a和A
Figure 1 The changes in soil physicochemical properties across different vertical vegetarian zones n=15 for each vegetation zone; and n=5 is the average value for 0-50 cm soil layers Different lower-case letters indicate that plant factors are significantly differences (P<0.05), the same as below; Different lower-cases indicate significant difference of an index among the three zonal vegetations in the same layer; the different capital letters indicate significant difference of an index among the five layers in the same zonal vegetation, the maximum mean value mark as a and A
图2 不同垂直植被带土壤细菌优势群落Anosim分析 同一植被带:n=15
Figure 2 The changes of bacterial community across different vertical vegetarian zones (Phylum) n=15 for the same vegetation zone
图3 不同垂直植被带土壤细菌群落特征(门水平) 各植被带均值:n=3实线表示变量之间存在显著性(P<0.05),虚线表示变量之间没有显著性(P>0.05)下同
Figure 3 Analysis of similarities of soil bacterial dominant communities in different vertical vegetarian zones n=3 is the average value for each vegetation zoneThe solid line indicates that there is significance between variables (P<0.05), and the dotted line indicates that there is no significance between variables (P>0.05), the same as below
图4 不同垂直植被带土壤细菌优势群落沿土层变化的Anosim分析 同一土层:n=9LI、L2、L3、L4、L5分别代表0—10、10—20、20—30、30—40和40—50 cm。下同
Figure 4 Anosim analysis of soil bacterial dominant communities along soil layers in different vertical vegetarian zones n=9 for the same soil layersL1=0-10 cm, L2=10-20 cm, L3=20-30 cm, L4=30-40 cm, L5=40-50 cm. The same as below
图5 不同垂直植被带土壤细菌群落的土层变化特征(门水平) 各植被带均值:n=3。0—50 cm土层均值:n=5
Figure 5 The profile changes of bacterial community across different vertical vegetarian zones (Phylum) n=3 is the average value for each vegetation zone; and n=5 is also the average value for 0-50 cm soil layers
图6 不同垂直植被带土壤细菌多样性特征 各植被带均值:n=3
Figure 6 The changes of bacterial diversity across different vertical vegetarian zones n=3 is the average value for each vegetation zone
样品 Samples | 丰富度指数 Richness index | Chao 1指数 Chao index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|
E1-L1 | 2977±56.12Aa | 3644±73.38Aa | 6.70±0.01Aa | 0.0035±0.0001Bc |
E1-L2 | 1915±114.84Bab | 2630±179.85Ba | 5.71±0.08Bb | 0.0095±0.0012ABa |
E1-L3 | 1949±13.20Bb | 2663±45.54Bb | 5.65±0.06Bb | 0.0107±0.0011Aa |
E1-L4 | 1763±63.38Cb | 2441±28.96Cb | 5.64±0.11Bc | 0.0103±0.0011Aa |
E1-L5 | 1829±13.48Ca | 2408±66.77Ca | 5.70±0.07Ba | 0.0100±0.0030Ab |
E2-L1 | 2033±93.46Bb | 2510±94.83Cc | 6.17±0.02Ac | 0.0049±0.0002Cb |
E2-L2 | 2112±74.60Ba | 2790±96.40Ba | 6.08±0.10Aa | 0.0064±0.0015BCb |
E2-L3 | 2194±97.84Bab | 2808 ±111.50Ba | 6.03±0.05ABa | 0.0066±0.0005Bb |
E2-L4 | 2322±29.17Aa | 3083 ±92.46Aa | 6.01±0.07ABa | 0.0071±0.0007Bb |
E2-L5 | 1417±68.47Cc | 1966±157.87Db | 5.24±0.10Bb | 0.0162±0.0023Aa |
E3-L1 | 1773±27.74Cc | 2135±26.19Cc | 5.97±0.01ABc | 0.0061±0.0005ABa |
E3-L2 | 2232±135.46Aa | 2852±131.10Aa | 6.07±0.10Aa | 0.0059±0.0008Bb |
E3-L3 | 2443±270.49Aa | 3103±247.07Aa | 6.14±0.14Aa | 0.0056±0.0010Bb |
E3-L4 | 1847±56.88Bb | 2408±94.32Bb | 5.86±0.09Bb | 0.0075±0.0010ABb |
E3-L5 | 1689±28.59Db | 2199±50.39Cb | 5.72±0.02Ca | 0.0082±0.0002Ab |
表2 不同植被垂直带土壤细菌多样性的垂直分布特征
Table 2 The vertical changes in soil physicochemical properties across different vertical vegetarian zones
样品 Samples | 丰富度指数 Richness index | Chao 1指数 Chao index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|
E1-L1 | 2977±56.12Aa | 3644±73.38Aa | 6.70±0.01Aa | 0.0035±0.0001Bc |
E1-L2 | 1915±114.84Bab | 2630±179.85Ba | 5.71±0.08Bb | 0.0095±0.0012ABa |
E1-L3 | 1949±13.20Bb | 2663±45.54Bb | 5.65±0.06Bb | 0.0107±0.0011Aa |
E1-L4 | 1763±63.38Cb | 2441±28.96Cb | 5.64±0.11Bc | 0.0103±0.0011Aa |
E1-L5 | 1829±13.48Ca | 2408±66.77Ca | 5.70±0.07Ba | 0.0100±0.0030Ab |
E2-L1 | 2033±93.46Bb | 2510±94.83Cc | 6.17±0.02Ac | 0.0049±0.0002Cb |
E2-L2 | 2112±74.60Ba | 2790±96.40Ba | 6.08±0.10Aa | 0.0064±0.0015BCb |
E2-L3 | 2194±97.84Bab | 2808 ±111.50Ba | 6.03±0.05ABa | 0.0066±0.0005Bb |
E2-L4 | 2322±29.17Aa | 3083 ±92.46Aa | 6.01±0.07ABa | 0.0071±0.0007Bb |
E2-L5 | 1417±68.47Cc | 1966±157.87Db | 5.24±0.10Bb | 0.0162±0.0023Aa |
E3-L1 | 1773±27.74Cc | 2135±26.19Cc | 5.97±0.01ABc | 0.0061±0.0005ABa |
E3-L2 | 2232±135.46Aa | 2852±131.10Aa | 6.07±0.10Aa | 0.0059±0.0008Bb |
E3-L3 | 2443±270.49Aa | 3103±247.07Aa | 6.14±0.14Aa | 0.0056±0.0010Bb |
E3-L4 | 1847±56.88Bb | 2408±94.32Bb | 5.86±0.09Bb | 0.0075±0.0010ABb |
E3-L5 | 1689±28.59Db | 2199±50.39Cb | 5.72±0.02Ca | 0.0082±0.0002Ab |
指标 Index | 去趋势对应分析 Detrended correspondence analysis | ||||
---|---|---|---|---|---|
DCA1 | DCA2 | DCA3 | DCA4 | ||
群落 Community | 特征值 Eigenvalues | 0.468 | 0.056 | 0.036 | 0.029 |
DCA值 Decorana values | 0.476 | 0.046 | 0.015 | 0.006 | |
排序轴长 Axis lengths | 1.778 | 0.856 | 0.727 | 0.678 | |
多样性 Diversity | 特征值 Eigenvalues | 0.081 | 0.001 | 0.001 | 0.001 |
DCA值 Decorana values | 0.371 | 0.001 | 0.001 | 0.001 | |
排序轴长 Axis lengths | 1.414 | 0.605 | 0.759 | 1.023 |
表3 土壤细菌群落组成-多样性的DCA判别分析
Table 3 Principal component dimension reduction analysis of environmental factors and soil bacterial community composition diversity
指标 Index | 去趋势对应分析 Detrended correspondence analysis | ||||
---|---|---|---|---|---|
DCA1 | DCA2 | DCA3 | DCA4 | ||
群落 Community | 特征值 Eigenvalues | 0.468 | 0.056 | 0.036 | 0.029 |
DCA值 Decorana values | 0.476 | 0.046 | 0.015 | 0.006 | |
排序轴长 Axis lengths | 1.778 | 0.856 | 0.727 | 0.678 | |
多样性 Diversity | 特征值 Eigenvalues | 0.081 | 0.001 | 0.001 | 0.001 |
DCA值 Decorana values | 0.371 | 0.001 | 0.001 | 0.001 | |
排序轴长 Axis lengths | 1.414 | 0.605 | 0.759 | 1.023 |
图7 不同垂直植被带环境因子与土壤细菌群落组成及多样性的冗余分析 各植被带:n=15pH代表酸碱度、MC代表土壤含水量,ST代表土壤温度,BD代表密度,SM代表有机质,TN代表全氮,TP代表全磷,TK代表全钾,W代表植物香浓指数,D代表植物辛普森指数,J代表植物均匀度指数,R代表植物丰富度指数,LT代表凋落物厚度,B_Shannon代表细菌香浓指数,B_Simpson代表细菌Simpson指数
Figure 7 Redundancy analysis of environmental factors and bacterial community composition and diversity n=15 for each vegetation zonepH=pH value, MC=Moisture content, ST=Soil temperature, BD=Bulk density, SM=Soil organic matter, TN=Total nitrogen, TP=Total phosphorus, TK=Total potassium, W=Plant Shannon-Wiener index, D=Plant Simpson index, J=Plant Pielou index, R=Plant Margalef index, LT=Litter thickness, B_Shannon=Bacterial shannon-wiener index, B_Simpson=Bacterial simpson index
图8 不同垂直植被带环境因子与土壤细菌群落和多样性的mantel分析 各植被带:n=15 pH代表酸碱度、MC代表土壤含水量,ST代表土壤温度,BD代表密度,SM代表有机质,TN代表全氮,TP代表全磷,TK代表全钾,W代表植物香浓指数,D代表植物辛普森指数,J代表植物均匀度指数,R代表植物多样性指数,LT代表凋落物厚度
Figure 8 Mantel analysis of environmental factors and soil bacterial dominant communities-diversity across different vertical vegetarian zones n=15 for each vegetation zonepH=pH value, MC=Moisture content, ST=Soil temperature, BD=Bulk density, SM=Soil organic matter, TN=Total nitrogen, TP=Total phosphorus, TK=Total potassium, W=Plant Shannon-Wiener index, D=Plant Simpson index, J=Plant Pielou index, R=Plant Margalef index, LT=Litter thicknes
[1] |
BARDGETT R D, VAN DER PUTTEN W H, 2014. Belowground biodiversity and ecosystem functioning[J]. Nature, 515(7528): 505-511.
DOI URL |
[2] |
FIERER N, LEFF J W, ADAMS B J, et al., 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes[J]. Proceedings of the National Academy of Sciences, 109(52): 21390-21395.
DOI URL |
[3] |
FIERER N, MC CAIN C M, MEIR P, et al., 2011. Microbes do not follow the elevational diversity patterns of plants and animals[J]. Ecology, 92(4): 797-804.
PMID |
[4] |
LI G X, XU G R, SHEN C C, et al., 2016. Contrasting elevational diversity patterns for soil bacteria between two ecosystems divided by the treeline[J]. Science China Life Sciences, 59(11): 1-10
DOI URL |
[5] | LIU C L, ZUO W Y, ZHAO Z Y, et al., 2012. Bacterial diversity of different successional stage forest soils in Dinghushan[J]. Acta Microbiologica Sinica, 52(12): 1489-1496. |
[6] |
JIANG S, XING Y J, LIU G C, et al., 2021. Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests[J]. Soil Biology and Biochemistry, 161: 108393.
DOI URL |
[7] |
NAVARRETE A A, KURAMAE E E, de Hollander M, et al., 2013. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils[J]. FEMS Microbiol Ecology, 83(3): 607-621.
DOI URL |
[8] | QIN X H, LIANG Y, CHENG C F, et al., 2021. Effects of Different Tree Species Plantations on Soil Bacterial Community Diversity in South Subtropical China[J]. Forest Research, 34(4): 120-127. |
[9] |
WANG J M, ZHANG T H, LI L P, et al. 2017. The patterns and drivers of bacterial and fungal β-diversity in a typical dryland ecosystem of northwest China[J]. Frontiers in Microbiology, 8: 2126.
DOI PMID |
[10] |
ZHU H, ZHOU S S, YAN L C, et al., 2019. Studies on the evergreen broad-leaved forests of Yunnan, southwestern China[J]. The Botanical Review, 85(2): 131-148.
DOI URL |
[11] |
ZHAO Z, MA Y, FENG T, et al., 2022. Assembly processes of abundant and rare microbial communities in orchard soil under a cover crop at different periods[J]. Geoderma, 406: 115543.
DOI URL |
[12] | 段益莉, 李继侠, 江强, 等, 2019. 长白山东坡不同海拔落叶松土壤微生物碳代谢及酶活性研究[J]. 生态环境学报, 28(4): 652-660. |
DUAN Y L, LI J X, JIANG Q, et al., 2019. Soil microbial carbon metabolism and enzyme activity of Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China[J]. Ecology and Environmental Sciences, 28(4): 652-660. | |
[13] | 冯晓川, 曹新光, 居文华, 等, 2019. 庐山国家级自然保护区森林土壤细菌群落特征研究[J]. 林业资源管理 (6): 101-107. |
FENG X C, CAO X G, JU W H, et al., 2019. A study on community characteristics of forest soil bacteria in Lushan National Nature Reserve[J]. Forest Resources Management (6): 101-107. | |
[14] | 国家林草局, 2000. 森林土壤样品的采集与制备: LYT 1210—1999 [S]. 北京: 中国标准出版社. |
State Forestry Bureau, 2000. Collection and preparation of forest soil samples: LYT 1210—1999 [S]. Beijing: Standards Press of China. | |
[15] | 国家林草局, 2000. 森林土壤分析方法:LY/T 1215—1999、LY/T 1237—1999、LY/T 1228—1999、LY/T 1232—1999、LY/T 1254—1999) [S]. 北京: 中国标准出版社. |
State Forestry Bureau, 2000. Soil analysis for forest ecosystem:LY/T 1215—1999, LY/T 1237—1999, LY/T 1228—1999, LY/T 1232—1999, LY/T 1254—1999 [S]. Beijing: Standards Press of China. | |
[16] | 郭龙洁, 白帆, 代陆娇, 等, 2017. 文山国家级自然保护区灵长类种群数量研究[J]. 西南林业大学学报(自然科学), 37(3): 101-106. |
GUO L J, BAN F, DAI L J, et al., 2017. Primates Population at the Wenshan National Nature Reserve, Yunnan[J]. Journal of Southwest Forestry University (Natural Sciences), 37(3): 101-106. | |
[17] | 韩冬雪, 王宁, 王楠楠, 等, 2015. 不同海拔红松林土壤微生物功能多样性[J]. 应用生态学报, 26(12): 3649-3656. |
HAN D X, WANG N, WAN N N, et al., 2015. Soil microbial functional diversity of different altitude Pinus koraiensis forests[J]. Chinese Journal of Applied Ecology, 26(12): 3649-3656. | |
[18] | 贺婧, 闫冰, 李俊生, 等, 2019. 秦岭中段北坡不同海拔土壤中细菌群落的分布特征及区域差异比较[J]. 环境科学研究, 32(8): 1374-1383. |
HE J, YAN B, LI J S, et al., 2019. Altitude distribution patterns and regional differences of soil bacterial community in Northern Slopes in the Middle Qinling Mountains[J]. Research of Environmental Sciences, 32(8): 1374-1383. | |
[19] | 侯萌, 陈一民, 焦晓光, 等, 2020. 两种气候条件下不同有机质含量农田黑土真菌群落结构特征[J]. 微生物学通报, 47(9): 147-157. |
HOU M, CHEN Y M, JIAO X G, et al., 2020. Characteristics of fungal community structure in arable mollisols with different organic matter content under two climatic conditions[J]. Microbiology China, 47(9): 2822-2832. | |
[20] | 侯贻菊, 吴晓悦, 张喜, 等, 2019. 林木根际土壤研究进展[J]. 贵州林业科技, 47(4): 39-45. |
HOU Y J, WU X Y, ZHANG X, et al., 2019. The Research Progress of rhizosphere soil of forest trees[J]. Guizhou Forestry Science and Technology, 47(4): 39-45. | |
[21] | 胡华英, 张燕林, 褚昭沛, 等, 2021. 红壤侵蚀区不同植被恢复阶段土壤酶活性和微生物多样性变化[J]. 应用与环境生物学报, 27(6): 1-10. |
HU H Y, ZHANG Y L, CHU Z P, et al., 2021. Changes of soil enzyme activity and microbial diversity in different vegetation restoration stages in eroded red soil[J]. Chinese Journal of Applied & Environmental Biology, 27(6): 1-10. | |
[22] | 黄乐乐, 2015. 中国境内中越边境地区苔类植物区系研究[D]. 上海: 华东师范大学. |
HUANG L L, 2015. Studies on the liverwort of the Sino-Vietnam border area[D]. Shang Hai: East China Normal University. | |
[23] | 黄萍, 王楠, 周紫羽, 等, 2020. 白云山落叶阔叶林土壤细菌群落结构及环境因子的相关性分析[J]. 河南农业大学学报, 54(3): 415-421 |
HUANG P, WANG N, ZHOU Z Y, et al., 2020. Soil microbial diversity under typical vegetation zones along an elevation gradient in Helan Mountains[J]. Journal of Henan Agricultural University, 54(3): 415-421. | |
[24] |
李超男, 李家宝, 李香真, 2017. 贡嘎山海拔梯度上不同植被类型土壤甲烷氧化菌群落结构及多样性[J]. 应用生态学报, 28(3): 805-814.
DOI |
LI C N, LI J B, LI X Z, 2017. Soil methanotrophic community structure and diversity in different vegetation types at elevation gradient of Gongga Mountain, Southwest China[J]. Chinese Journal of Applied Ecology, 28(3): 805-814. | |
[25] | 厉桂香, 马克明, 2018. 土壤微生物多样性海拔格局研究进展[J]. 生态学报, 38(5): 1521-1529. |
LI G X, MA K M, 2018. Progress in the study of elevational patterns of soil microbial diversity[J]. Acta Ecologica Sinica, 38(5): 1521-1529. | |
[26] | 陆梅, 2018. 纳帕海湿地退化对土壤微生物群落结构及多样性的影响[D]. 北京: 北京林业大学. |
LU M, 2018. Effects of wetlands degradation on structure and biodiversity of soil microbial community in Napahai Plateau Wetlands[D]. Beijing: Beijing Forestry University. | |
[27] |
梁艳, 明安刚, 何友均, 等, 2021. 南亚热带马尾松-红椎混交林及其纯林土壤细菌群落结构与功能[J]. 应用生态学报, 32(3): 878-886.
DOI |
LIANG Y, MING A G, HE Y J, et al., 2021. Structure and function of soil bacterial communities in the monoculture and mixed plantation of Pinus massoniana and Castanopsis hystrix in southern subtropical China[J]. Chinese Journal of Applied Ecology, 32(3): 878-886.
DOI |
|
[28] | 彭淑娴, 陆梅, 王震, 等, 2017. 纳帕海农田土壤氨氧化细菌的群落结构[J]. 贵州农业科学, 45(6): 91-97. |
PENG S X, LU M, WANG Z, et al., 2017. Ammonia oxidizing bacteria community structure in Napahai farmland soil[J]. Guizhou Agricultural Sciences, 45(6): 91-97. | |
[29] | 刘秉儒, 2021. 生物多样性的海拔分布格局研究及进展[J]. 生态环境学报, 30(2): 438-444. |
LIU B R, 2021. Recent advances in altitudinal distribution patterns of biodiversity[J]. Ecology and Environmental Sciences, 30(2): 438-444. | |
[30] | 刘秉儒, 张秀珍, 胡天华, 等, 2013. 贺兰山不同海拔典型植被带土壤微生物多样性[J]. 生态学报, 33(22): 7211-7220. |
LIU B R, ZHANG X Z, HU T H, et al., 2013. Soil microbial diversity under typical vegetation zones along an elevation gradient in Helan Mountains[J]. Acta Ecologica Sinica, 33(22):7211-7220.
DOI URL |
|
[31] | 任玉连, 曹乾斌, 李聪, 等, 2019. 南滚河自然保护区森林群落特征与土壤性质之间关联分析[J]. 西北林学院学报, 34(3): 50-59. |
REN Y L, CAO Q B, LI C, et al., 2019. Correlation analysis between forest community characteristics and soil characteristics in Nangunhe Nature Reserve[J]. Journal of Northwest Forestry University, 34(3): 50-59. | |
[32] | 沈开强, 韩晓彤, 张銮, 等, 2020. 泰山不同海拔土壤的细菌多样性初步分析[J]. 山东农业科学, 52(6):51-56. |
SHENG K Q, HAN X T, ZHANG L, et al., 2020. Preliminary analysis of bacterial diversity in soil at different altitudes in Mount Tai[J]. Shandong Agricultural Sciences, 52(6):51-56. | |
[33] | 孙佳, 夏江宝, 苏丽, 等, 2020. 黄河三角洲盐碱地不同植被模式的土壤改良效应[J]. 应用生态学报, 31(4): 1323-1332. |
SUN J, XIA J C, SU L, et al., 2020. Soil amelioration of different vegetation types in saline-alkali land of the Yellow River Delta, China[J]. Chinese Journal of Applied Ecology, 31(4): 1323-1332. | |
[34] |
王光华, 刘俊杰, 于镇华, 等, 2016. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 32(2): 14-20.
DOI |
WANG G H, LIU J J, YU Z H, et al., 2016. Research progress of acidobacteria ecology in soils[J]. Biotechnology Bulletin, 32(2): 14-20. | |
[35] | 吴昊, 邹梦茹, 王思芊, 等, 2019. 秦岭松栎林土壤生态化学计量特征及其对海拔梯度的响应[J]. 生态环境学报, 28(12): 2323-2331. |
WU H, ZOU M R, WANG S Q, et al., 2019. Eco-stoichiometry characteristics of soil within Pine and Oak mixed forest and theirs responses to elevation gradient in Qinling Mountains[J]. Ecology and Environmental Sciences, 28(12): 2323-2331. | |
[36] |
吴梦瑶, 陈林, 庞丹波, 等, 2021. 贺兰山不同海拔土壤团聚体碳氮磷含量及其化学计量特征变化[J]. 应用生态学报, 32(4): 1241-1249.
DOI |
WU M Y, CHEN L, PANG D B, et al., 2021. Changes of the concentrations and stoichiometry of carbon, nitrogen and phosphorus in soil aggregates along different altitudes of Helan Mountains, Northwest China[J]. Chinese Journal of Applied Ecology, 32(4): 1241-1249. | |
[37] | 严令斌, 2020. 土壤微生物群落与植物功能性状对喀斯特小生境水热的响应机制[D]. 贵阳: 贵州大学. |
YAN L B, 2020. Response mechanism of soil microbial community and plant functional traits to ecological factors of water and heat in Karst Micro-Habitats[D]. Guiyang: Guizhou University. | |
[38] | 杨宇明, 田昆, 和世钧, 等, 2008. 中国文山国家级自然保护区科学考察研究(3-9)[M]. 北京: 科学出版社. |
YANG Y M, TIAN K, HE S J, et al., 2008. Study on the scientific survey of Wen Shan National Nature Reserve in China (3-9)[M]. Beijing: Science Press. | |
[39] | 姚兰, 胡立煌, 张焕朝, 等, 2019. 黄山土壤细菌群落和酶活性海拔分布特征[J]. 环境科学, 40(2): 859-868. |
YAO L, HU L H, ZHANG H C, et al., 2019. Elevational distribution characteristics of soil bacterial community and enzyme activities in Mount Huangshan[J]. Environmental Science, 40(2): 859-868. | |
[40] | 张地, 张育新, 曲来叶, 等, 2012. 海拔对辽东栎林地土壤微生物群落的影响[J]. 应用生态学报, 23(8): 2041-2048. |
ZHANG D, ZHANG Y X, QU L Y, et al., 2012. Effects of altitude on soil microbial community in Quercus liaotungensis forest[J]. Chinese Journal of Applied Ecology, 23(8): 2041-2048. | |
[41] | 张丹丹, 张丽梅, 沈菊培, 等, 2018. 珠穆朗玛峰不同海拔梯度上土壤细菌和真菌群落变化特征[J]. 生态学报, 38(7): 2247-2261. |
ZHANG D D, ZHANG L M, SHEN J P, et al., 2018. Soil bacterial and fungal community succession along an altitude gradient on Mount Everest[J]. Acta Ecologica Sinica, 38(7): 2247-2261. | |
[42] | 张腾升, 2019. 亚热带不同植被恢复阶段植物与土壤微生物多样性特征及其相关关系[D]. 南昌: 南昌工程学院. |
ZHANG T S, 2019. Plant and soil microbial diversity in different vegetation restoration stages in subtropical region and their correlation[D]. Nanchang: Nanchang Institute of Technology. | |
[43] | 章英才, 王俊, 2007. 植物学实验[M]. 银川: 宁夏人民出版社: 263-265. |
ZHANG Y C, WANG J, 2007. Experiment of Botany[M]. Yinchuan: Ningxia People’s Publishing House: 263-265. | |
[44] | 赵茂强, 2020. 土壤微生物多样性海拔分布格局研究现状分析[J]. 绿色科技 (2): 23-25. |
ZHAO M Q, 2020. Analysis on the research status of altitude distribution pattern of soil microbial diversity[J]. Journal of Green Science and Technology (2): 23-25. | |
[45] |
郑勇, 贺纪正, 2020. 森林土壤微生物对干旱和氮沉降的响应[J]. 应用生态学报, 31(7): 2464-2472.
DOI |
ZHENG Y, HE J Z, 2020. Responses of forest soil microbial communities to drought and nitrogen deposition: A review[J]. Chinese Journal of Applied Ecology, 31(7): 2464-2472.
DOI |
|
[46] | 朱平, 陈仁升, 宋耀选, 等, 2015. 祁连山不同植被类型土壤微生物群落多样性差异[J]. 草业学报, 24(6): 75-84. |
ZHU P, CHEN R S, SONG Y X, et al., 2015. Soil microbial community diversity under four vegetation types in the Qilian Mountains, China[J]. Acta Prataculturae Sinica, 24(6): 75-84. |
[1] | 李海鹏, 黄月华, 孙晓东, 曹启民, 符芳兴, 孙楚涵. 海南农田不同质地砖红壤及其细菌群落与番茄青枯病发生的关联分析[J]. 生态环境学报, 2023, 32(6): 1062-1069. |
[2] | 侯晖, 颜培轩, 谢沁宓, 赵宏亮, 庞丹波, 陈林, 李学斌, 胡杨, 梁咏亮, 倪细炉. 贺兰山蒙古扁桃灌丛根际土壤AM真菌群落多样性特征研究[J]. 生态环境学报, 2023, 32(5): 857-865. |
[3] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[4] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[5] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[6] | 寇祝, 卿纯, 袁昌果, 李平. 西藏东北部热泉水中硫氧化菌的多样性及分布特征[J]. 生态环境学报, 2023, 32(5): 989-1000. |
[7] | 李阳, 侯志勇, 陈薇, 于晓英, 谢永宏, 黄鑫, 谭佩阳, 李继承, 黎尚林, 杨辉. 大围山高山湿地植物多样性与区系组成研究[J]. 生态环境学报, 2023, 32(4): 643-650. |
[8] | 胡芳, 刘聚涛, 温春云, 韩柳, 文慧. 抚河流域浮游植物群落结构特征及其水生态状况评价[J]. 生态环境学报, 2023, 32(4): 744-755. |
[9] | 于菲, 曾海龙, 房怀阳, 付玲芳, 林澍, 董家豪. 典型感潮河网浮游藻类功能群时空变化特征及水质评价[J]. 生态环境学报, 2023, 32(4): 756-765. |
[10] | 李善家, 王兴敏, 刘海锋, 孙梦格, 雷雨昕. 河西走廊荒漠植物多样性及其对环境因子的响应[J]. 生态环境学报, 2023, 32(3): 429-438. |
[11] | 秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468. |
[12] | 宋志斌, 周佳诚, 谭路, 唐涛. 高原河流着生藻类群落沿海拔梯度的变化特征--以西藏黑曲、雪曲为例[J]. 生态环境学报, 2023, 32(2): 274-282. |
[13] | 张立进, 杜虎, 曾馥平, 黄国勤, 宋敏, 宋同清. 喀斯特峰丛洼地植被恢复过程中生产力与多样性关系探讨[J]. 生态环境学报, 2023, 32(1): 26-35. |
[14] | 向兴, 满百膺, 张俊忠, 罗洋, 毛小涛, 张超, 孙丙华, 王希. 黄山土壤细菌群落及氮循环功能群的垂向分布格局[J]. 生态环境学报, 2023, 32(1): 56-69. |
[15] | 李萍, 白小明, 陈鑫, 李娟霞, 冉福, 陈辉, 杨小妮, 康瑞卿. 白三叶入侵对禾本科草坪土壤特性和植物群落的影响[J]. 生态环境学报, 2023, 32(1): 70-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||