生态环境学报 ›› 2023, Vol. 32 ›› Issue (5): 969-979.DOI: 10.16258/j.cnki.1674-5906.2023.05.014
姜永伟1,2(), 丁振军1, 袁俊斌1, 张峥1, 李杨1, 问青春1, 王业耀2,3,*(
), 金小伟3
收稿日期:
2023-03-10
出版日期:
2023-05-18
发布日期:
2023-08-09
通讯作者:
*王业耀(1965年生),男,研究员,博士研究生导师,研究方向为水体污染控制。E-mail: yeyaowang@163.com作者简介:
姜永伟(1984年生),男,高级工程师,博士研究生,主要研究方向为水生态监测与评价。E-mail: jyw435@126.com
基金资助:
JIANG Yongwei1,2(), DING Zhenjun1, YUAN Junbin1, ZHANG Zheng1, LI Yang1, WEN Qingchun1, WANG Yeyao2,3,*(
), JIN Xiaowei3
Received:
2023-03-10
Online:
2023-05-18
Published:
2023-08-09
摘要:
利用2021年辽宁省主要河流47个点位的底栖动物监测数据分析其群落结构的空间分布、群落结构与环境因子的关系、不同评价指数以及它们与环境因子的相关关系,为辽宁省水生态监测与评价方法的优化提供参考。结果表明,(1)辽宁省主要河流共检出底栖动物4门8纲22目57科98属120种,以水生昆虫为主,其种类数和生物密度均占据优势地位。上游点位以水生昆虫和甲壳动物为优势类群,33%的上游点位以蜉蝣目、襀翅目和毛翅目(EPT)为优势类群;中游点位以甲壳动物为优势类群,软体动物和环节动物明显增多;下游点位以甲壳动物和环节动物为优势类群,水生昆虫和软体动物的相对密度明显减少;从上游到下游整体呈现水生昆虫相对密度不断减少、环节动物相对密度不断增多、软体动物相对密度先增多后减少、甲壳动物基本稳定的趋势。(2)RDA分析结果表明,氟化物、化学需氧量、生化需氧量和总磷与底栖动物群落数显著负相关,溶解氧和锌与底栖动物群落数显著正相关。溶解氧与总分类单元数相关性最高(F=2.37,P=0.02),锌与环节动物相关性最高(F=3.30,P=0.01)。(3)构建了涵盖总分类单元数、EPT分类单元数、耐污种分类单元数和香农-维纳多样性指数的底栖动物完整性指数并建立了评价标准。Pearson相关性分析结果表明,底栖动物多样性指数和底栖动物分值指数的评价结果与底栖动物完整性指数的评价结果高度相关(r=0.86,P=0.00;r=0.84,P=0.00),二者计算方法较底栖动物完整性指数简单易行,可以作为辽宁省主要河流水质生物评价的重要指标。
中图分类号:
姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979.
JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province[J]. Ecology and Environment, 2023, 32(5): 969-979.
监测区域 | 辽河 | 浑河 | 太子河 | 大辽河 | 大凌河 | 鸭绿江 | 碧流河 |
---|---|---|---|---|---|---|---|
上游点位 | 辽河源、四双大桥、二道河子、福德店、三合屯、通江口、清辽、东大桥、黄河子、珠尔山 | 北杂木、古楼、台沟、阿及堡、戈布桥 | 老关砬子、 兴安、邱家 | 王家窝棚 | 坦甸子 | 茧场 | |
中游点位 | 马虎山、红庙子 | 东陵大桥、七台子、于家房、蒲河沿 | 参窝坝下、汤河桥、下王家、孟柳 | 南大桥、长宝渡口、章吉营 | 蒲石河大桥、 荒沟、爱河大桥 | ||
下游点位 | 盘锦兴安、曙光大桥 | 韭菜台子 | 牛庄、小姐庙 | 辽河公园 | 王家沟、高台子、张家堡 | 文安 |
表1 辽宁省主要河流底栖动物采样点位
Table 1 Sampling sites of benthic macroinvertebrates in main rivers of Liaoning province
监测区域 | 辽河 | 浑河 | 太子河 | 大辽河 | 大凌河 | 鸭绿江 | 碧流河 |
---|---|---|---|---|---|---|---|
上游点位 | 辽河源、四双大桥、二道河子、福德店、三合屯、通江口、清辽、东大桥、黄河子、珠尔山 | 北杂木、古楼、台沟、阿及堡、戈布桥 | 老关砬子、 兴安、邱家 | 王家窝棚 | 坦甸子 | 茧场 | |
中游点位 | 马虎山、红庙子 | 东陵大桥、七台子、于家房、蒲河沿 | 参窝坝下、汤河桥、下王家、孟柳 | 南大桥、长宝渡口、章吉营 | 蒲石河大桥、 荒沟、爱河大桥 | ||
下游点位 | 盘锦兴安、曙光大桥 | 韭菜台子 | 牛庄、小姐庙 | 辽河公园 | 王家沟、高台子、张家堡 | 文安 |
类型 | 候选参数 | 对干扰的反应 | 平均值 | 标准差 | 最小值 | 最大值 | 25%分位数 | 中位数 | 75%分位数 |
---|---|---|---|---|---|---|---|---|---|
丰富度参数 | M1 | 减小 | 13.6 | 5.27 | 9.0 | 25.0 | 9.5 | 11.5 | 16.3 |
M2 | 不确定 | 628.8 | 880.5 | 55.0 | 2790 | 108.8 | 283.5 | 521.5 | |
M3 | 减小 | 4.4 | 3.3 | 0.0 | 10.0 | 2.0 | 4.0 | 6.8 | |
M4 | 减小 | 324.6 | 743.3 | 0.0 | 2417.0 | 43.0 | 57.0 | 141.5 | |
M5 | 减小 | 0.4 | 0.5 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 | |
M6 | 增大 | 8.7 | 16.2 | 0.0 | 44.0 | 0.0 | 0.0 | 7.0 | |
M7 | 减小 | 6.4 | 3.4 | 1.0 | 13.0 | 5.0 | 5.5 | 8.3 | |
M8 | 减小 | 359.9 | 520.6 | 9.0 | 1600.0 | 50.3 | 156.5 | 281.5 | |
M9 | 增大 | 1.8 | 1.1 | 0.0 | 4.0 | 1.0 | 2.0 | 2.0 | |
M10 | 增大 | 44.5 | 94.9 | 0.0 | 310.0 | 1.5 | 7.0 | 40.0 | |
物种组成参数 | M11 | 增大 | 0.4 | 0.1 | 0.2 | 0.6 | 0.3 | 0.4 | 0.5 |
M12 | 减小 | 0.4 | 0.3 | 0.0 | 0.8 | 0.1 | 0.4 | 0.7 | |
M13 | 减小 | 0.5 | 0.2 | 0.1 | 0.7 | 0.4 | 0.5 | 0.6 | |
M14 | 减小 | 0.6 | 0.2 | 0.0 | 0.9 | 0.5 | 0.6 | 0.7 | |
M15 | 增大 | 0.1 | 0.1 | 0.0 | 0.2 | 0.1 | 0.1 | 0.2 | |
M16 | 增大 | 0.1 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 0.1 | |
M17 | 减小 | 2.8 | 0.6 | 2.0 | 3.5 | 2.3 | 2.8 | 3.1 | |
M18 | 减小 | 2.3 | 1.0 | 1.5 | 3.0 | 1.6 | 1.9 | 2.7 | |
耐受性/敏感性参数 | M19 | 增大 | 3.5 | 0.8 | 2.4 | 4.7 | 2.8 | 3.7 | 4.1 |
M20 | 增大 | 0.4 | 0.2 | 0.1 | 0.7 | 0.3 | 0.4 | 0.4 | |
M21 | 减小 | 70.5 | 31.3 | 31.0 | 124.0 | 51.0 | 61.5 | 97.3 |
表2 21个候选参数对干扰的反应及其在参照点位中的分布范围
Table 2 The responses of 21 candidate parameters to disturbance and their distribution ranges at reference sites
类型 | 候选参数 | 对干扰的反应 | 平均值 | 标准差 | 最小值 | 最大值 | 25%分位数 | 中位数 | 75%分位数 |
---|---|---|---|---|---|---|---|---|---|
丰富度参数 | M1 | 减小 | 13.6 | 5.27 | 9.0 | 25.0 | 9.5 | 11.5 | 16.3 |
M2 | 不确定 | 628.8 | 880.5 | 55.0 | 2790 | 108.8 | 283.5 | 521.5 | |
M3 | 减小 | 4.4 | 3.3 | 0.0 | 10.0 | 2.0 | 4.0 | 6.8 | |
M4 | 减小 | 324.6 | 743.3 | 0.0 | 2417.0 | 43.0 | 57.0 | 141.5 | |
M5 | 减小 | 0.4 | 0.5 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 | |
M6 | 增大 | 8.7 | 16.2 | 0.0 | 44.0 | 0.0 | 0.0 | 7.0 | |
M7 | 减小 | 6.4 | 3.4 | 1.0 | 13.0 | 5.0 | 5.5 | 8.3 | |
M8 | 减小 | 359.9 | 520.6 | 9.0 | 1600.0 | 50.3 | 156.5 | 281.5 | |
M9 | 增大 | 1.8 | 1.1 | 0.0 | 4.0 | 1.0 | 2.0 | 2.0 | |
M10 | 增大 | 44.5 | 94.9 | 0.0 | 310.0 | 1.5 | 7.0 | 40.0 | |
物种组成参数 | M11 | 增大 | 0.4 | 0.1 | 0.2 | 0.6 | 0.3 | 0.4 | 0.5 |
M12 | 减小 | 0.4 | 0.3 | 0.0 | 0.8 | 0.1 | 0.4 | 0.7 | |
M13 | 减小 | 0.5 | 0.2 | 0.1 | 0.7 | 0.4 | 0.5 | 0.6 | |
M14 | 减小 | 0.6 | 0.2 | 0.0 | 0.9 | 0.5 | 0.6 | 0.7 | |
M15 | 增大 | 0.1 | 0.1 | 0.0 | 0.2 | 0.1 | 0.1 | 0.2 | |
M16 | 增大 | 0.1 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 0.1 | |
M17 | 减小 | 2.8 | 0.6 | 2.0 | 3.5 | 2.3 | 2.8 | 3.1 | |
M18 | 减小 | 2.3 | 1.0 | 1.5 | 3.0 | 1.6 | 1.9 | 2.7 | |
耐受性/敏感性参数 | M19 | 增大 | 3.5 | 0.8 | 2.4 | 4.7 | 2.8 | 3.7 | 4.1 |
M20 | 增大 | 0.4 | 0.2 | 0.1 | 0.7 | 0.3 | 0.4 | 0.4 | |
M21 | 减小 | 70.5 | 31.3 | 31.0 | 124.0 | 51.0 | 61.5 | 97.3 |
候选参数 | 平均值 | 标准差 | 最小值 | 最大值 | 25%分位数 | 中位数 | 75%分位数 | IQ值 | 参数取舍 |
---|---|---|---|---|---|---|---|---|---|
M1 | 6.2 | 4.3 | 1.0 | 17.0 | 2.0 | 6.0 | 9.0 | 3 | 保留 |
M3 | 0.7 | 1.1 | 0.0 | 4.0 | 0.0 | 0.0 | 1.0 | 3 | 保留 |
M6 | 3.7 | 9.4 | 0.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0 | 删除 |
M7 | 1.9 | 1.3 | 0.0 | 5.0 | 1.0 | 2.0 | 3.0 | 3 | 保留 |
M9 | 0.5 | 0.8 | 0.0 | 4.0 | 0.0 | 0.0 | 1.0 | 2 | 保留 |
M11 | 0.6 | 0.2 | 0.3 | 1.0 | 0.5 | 0.6 | 0.9 | 2 | 保留 |
M12 | 0.1 | 0.2 | 0.0 | 0.9 | 0.0 | 0.0 | 0.2 | 2 | 保留 |
M13 | 0.4 | 0.2 | 0.0 | 1.0 | 0.3 | 0.3 | 0.5 | 1 | 删除 |
M14 | 0.5 | 0.3 | 0.0 | 1.0 | 0.2 | 0.5 | 0.8 | 1 | 删除 |
M15 | 0.1 | 0.1 | 0.0 | 0.7 | 0.0 | 0.0 | 0.1 | 1 | 删除 |
M16 | 0.1 | 0.2 | 0.0 | 0.9 | 0.0 | 0.0 | 0.1 | 1 | 删除 |
M17 | 1.5 | 0.9 | 0.0 | 2.9 | 1.0 | 1.6 | 2.2 | 3 | 保留 |
M18 | 1.4 | 1.2 | 0.0 | 5.1 | 0.6 | 1.0 | 2.3 | 1 | 删除 |
M19 | 4.2 | 1.3 | 2.5 | 8.0 | 3.3 | 3.8 | 4.8 | 0 | 删除 |
M20 | 0.3 | 0.3 | 0.1 | 1.3 | 0.2 | 0.2 | 0.5 | 1 | 删除 |
M21 | 16.3 | 12.0 | 0.0 | 52.0 | 7.0 | 12.0 | 24.0 | 3 | 保留 |
表3 16个参数在监测点位的分布范围、IQ值及取舍
Table 3 The distribution range, IQ value and choice of 16 parameters at monitoring sites
候选参数 | 平均值 | 标准差 | 最小值 | 最大值 | 25%分位数 | 中位数 | 75%分位数 | IQ值 | 参数取舍 |
---|---|---|---|---|---|---|---|---|---|
M1 | 6.2 | 4.3 | 1.0 | 17.0 | 2.0 | 6.0 | 9.0 | 3 | 保留 |
M3 | 0.7 | 1.1 | 0.0 | 4.0 | 0.0 | 0.0 | 1.0 | 3 | 保留 |
M6 | 3.7 | 9.4 | 0.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0 | 删除 |
M7 | 1.9 | 1.3 | 0.0 | 5.0 | 1.0 | 2.0 | 3.0 | 3 | 保留 |
M9 | 0.5 | 0.8 | 0.0 | 4.0 | 0.0 | 0.0 | 1.0 | 2 | 保留 |
M11 | 0.6 | 0.2 | 0.3 | 1.0 | 0.5 | 0.6 | 0.9 | 2 | 保留 |
M12 | 0.1 | 0.2 | 0.0 | 0.9 | 0.0 | 0.0 | 0.2 | 2 | 保留 |
M13 | 0.4 | 0.2 | 0.0 | 1.0 | 0.3 | 0.3 | 0.5 | 1 | 删除 |
M14 | 0.5 | 0.3 | 0.0 | 1.0 | 0.2 | 0.5 | 0.8 | 1 | 删除 |
M15 | 0.1 | 0.1 | 0.0 | 0.7 | 0.0 | 0.0 | 0.1 | 1 | 删除 |
M16 | 0.1 | 0.2 | 0.0 | 0.9 | 0.0 | 0.0 | 0.1 | 1 | 删除 |
M17 | 1.5 | 0.9 | 0.0 | 2.9 | 1.0 | 1.6 | 2.2 | 3 | 保留 |
M18 | 1.4 | 1.2 | 0.0 | 5.1 | 0.6 | 1.0 | 2.3 | 1 | 删除 |
M19 | 4.2 | 1.3 | 2.5 | 8.0 | 3.3 | 3.8 | 4.8 | 0 | 删除 |
M20 | 0.3 | 0.3 | 0.1 | 1.3 | 0.2 | 0.2 | 0.5 | 1 | 删除 |
M21 | 16.3 | 12.0 | 0.0 | 52.0 | 7.0 | 12.0 | 24.0 | 3 | 保留 |
参数 | M1 | M3 | M7 | M9 | M11 | M12 | M17 | M21 |
---|---|---|---|---|---|---|---|---|
M1 | 1 | |||||||
M3 | 0.68**1) | 1 | ||||||
M7 | 0.73** | 0.88** | 1 | |||||
M9 | 0.69** | 0.43** | 0.49** | 1 | ||||
M11 | 0.63** | -0.51** | 0.59** | -0.53** | 1 | |||
M12 | 0.49** | 0.80** | 0.60** | 0.32* 2) | -0.43** | 1 | ||
M17 | 0.73** | 0.62** | 0.71** | 0.56** | -0.87** | 0.44** | 1 | |
M21 | 0.79** | 0.89** | 0.91** | 0.65** | -0.62** | 0.62** | 0.76** | 1 |
表4 8个参数间的Pearson相关性系数
Table 4 Pearson correlation coefficient among 8 parameters
参数 | M1 | M3 | M7 | M9 | M11 | M12 | M17 | M21 |
---|---|---|---|---|---|---|---|---|
M1 | 1 | |||||||
M3 | 0.68**1) | 1 | ||||||
M7 | 0.73** | 0.88** | 1 | |||||
M9 | 0.69** | 0.43** | 0.49** | 1 | ||||
M11 | 0.63** | -0.51** | 0.59** | -0.53** | 1 | |||
M12 | 0.49** | 0.80** | 0.60** | 0.32* 2) | -0.43** | 1 | ||
M17 | 0.73** | 0.62** | 0.71** | 0.56** | -0.87** | 0.44** | 1 | |
M21 | 0.79** | 0.89** | 0.91** | 0.65** | -0.62** | 0.62** | 0.76** | 1 |
B-IBI组成参数 | 分值计算公式 |
---|---|
总分类单元数 | 指数值/17 |
EPT分类单元数 | 指数值/6.7 |
耐污种分类单元数 | (4-指数值)/4 |
香农-维纳多样性指数 | 指数值/3.08 |
表5 组成B-IBI的4个参数分值计算公式
Table 5 Score calculation formulas of the four parameters that constitute B-IBI
B-IBI组成参数 | 分值计算公式 |
---|---|
总分类单元数 | 指数值/17 |
EPT分类单元数 | 指数值/6.7 |
耐污种分类单元数 | (4-指数值)/4 |
香农-维纳多样性指数 | 指数值/3.08 |
优秀 | 良好 | 中等 | 较差 | 很差 |
---|---|---|---|---|
>2.36 | 1.77-2.36 | 1.18-1.77 | 0.59-1.18 | 0.00-0.59 |
表6 B-IBI评价标准
Table 6 B-IBI evaluation criteria
优秀 | 良好 | 中等 | 较差 | 很差 |
---|---|---|---|---|
>2.36 | 1.77-2.36 | 1.18-1.77 | 0.59-1.18 | 0.00-0.59 |
底栖动物 评价指数 | 计算方法 | 等级标准 | ||||
---|---|---|---|---|---|---|
优秀 | 良好 | 中等 | 较差 | 很差 | ||
B-IBI | (总分类单元数/17)+(EPT分类单元数/6.7)+[(4-耐污种分类单元数)/4]+(Shannon-Wiener多样性指数值/3.08) | >2.36 | (1.77, 2.36] | (1.18, 1.77] | (0.59, 1.18] | (0.00, 0.59] |
BI | <4.2 | (4.2, 5.6] | (5.6, 7.0] | (7.0, 8.4] | >8.4 | |
CMSI | ≥43 | (32, 43] | (22, 31] | (11, 21] | ≤10 | |
ACMSI | CMSI/n:CMSI指底栖动物分值指数,n指参加记分的科数 | ≥6.57 | (4.93, 6.56] | (3.28, 4.92] | (1.64, 3.27] | ≤1.63 |
BPI | <0.1 | (0.1, 0.5] | (0.5, 1.5] | (1.5, 5.0] | ≥5.0 | |
SDI | >3.0 | (2.0, 3.0] | (1.0, 2.0] | (0, 1.0] | 0 |
表7 底栖动物评价指数的计算方法和等级标准
Table 7 Calculation method and grade standard of the benthic macroinvertebrates evaluation index
底栖动物 评价指数 | 计算方法 | 等级标准 | ||||
---|---|---|---|---|---|---|
优秀 | 良好 | 中等 | 较差 | 很差 | ||
B-IBI | (总分类单元数/17)+(EPT分类单元数/6.7)+[(4-耐污种分类单元数)/4]+(Shannon-Wiener多样性指数值/3.08) | >2.36 | (1.77, 2.36] | (1.18, 1.77] | (0.59, 1.18] | (0.00, 0.59] |
BI | <4.2 | (4.2, 5.6] | (5.6, 7.0] | (7.0, 8.4] | >8.4 | |
CMSI | ≥43 | (32, 43] | (22, 31] | (11, 21] | ≤10 | |
ACMSI | CMSI/n:CMSI指底栖动物分值指数,n指参加记分的科数 | ≥6.57 | (4.93, 6.56] | (3.28, 4.92] | (1.64, 3.27] | ≤1.63 |
BPI | <0.1 | (0.1, 0.5] | (0.5, 1.5] | (1.5, 5.0] | ≥5.0 | |
SDI | >3.0 | (2.0, 3.0] | (1.0, 2.0] | (0, 1.0] | 0 |
[1] | BARBOUR M T, GERRITSEN J, GRIFFITH G E, et al., 1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates[J]. Journal of the North America Benthological Society, 15(2): 185-211. |
[2] |
CHESSMAN B, 2006. Prediction of riverine fish assemblages through the concept of environmental filter[J]. Marine and Freshwater Research, 57(6): 601-609.
DOI URL |
[3] |
GOVENOR H, KROMETIS L A, WILLIS L, et al., 2019. Macroinvertebrate sensitivity thresholds for sediment in Virginia streams[J]. Integrated Environmental Assessment and Management, 15(1): 77-92.
DOI PMID |
[4] |
HORAK C N, ASSEF Y A, GRECH M G, et al., 2020. Agricultural practices alter function and structure of macroinvertebrate communities in Patagonian piedmont streams[J]. Hydrobiologia, 847(1): 3659-3676.
DOI |
[5] |
KERANS B L, KARR J R, 1994. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley[J]. Ecological Applications, 4(4): 768-785.
DOI URL |
[6] |
LAURSEN S K, HAMERLIK L, MOLTESEN K, et al., 2015. Diversity and composition of macroinvertebrate assemblages in high-altitude Tibetan streams[J]. Inland Waters, 5(1): 263-274.
DOI URL |
[7] | MAXTED J R, BARBOUR M T, GERRITSEN J, et al., 2000. Assessment framework for mid-Atlantic coastal plain streams using benthic macroinvertebrates[J]. Journal of the North America Benthological Society, 19(1): 128-144. |
[8] |
MENG X L, JIANG X M, XIONG X, et al., 2016. Mediated spatio-temporal patterns of macroinvertebrate assemblage associated with key environmental factors in the Qinghai Lake area, China[J]. Limnologica, 56(1): 14-22.
DOI URL |
[9] |
SHEN Y, YANG Y L, ZHOU Y, et al., 2020. Unraveling the nexus of multi-environmental factors and benthic macroinvertebrates in typical inflow river of Taihu Lake in China[J]. Environ Monit Assess, 192(137): 1-12.
DOI |
[10] | XU X Y, ZHOU L Z, ZHU W Z, et al., 2011. Community structure characteristics of macrozoobenthos in Caizi Lake, Anhui Province, China[J]. Acta Ecologica Sinica, 31(4): 943-953. |
[11] | 陈丽, 王东波, 君珊, 2019. 拉萨河流域大型底栖动物群落结构及其与环境因子的关系[J]. 生态学报, 39(3): 757-769. |
CHEN L, WANG D B, JUN S, 2019. Macrobenthic community structure and its relationship with environmental factors in Lhasa River Basin[J]. Actaecologica Sinica, 39(3): 757-769. | |
[12] | 陈凯, 刘祥, 陈求稳, 等, 2016. 应用O/E模型评价淮河流域典型水体底栖动物完整性健康的研究[J]. 环境科学学报, 36(7): 2677-2686. |
CHEN K, LIU X, CHEN Q W, et al., 2016. A study about evaluation of benthic macroinvertebrates integrity of typical water bodies in Huaihe River Basin by O/E model[J]. Journal of Environmental Sciences, 36(7): 2677-2686. | |
[13] | 陈勇, 许人骥, 贾世琪, 等, 2022. 长江流域水生态评价指标初步研究[J]. 中国环境监测, 38(1): 45-57. |
CHEN Y, XU R J, JIA S Q, et al., 2022. Preliminary study on aquatic ecological assessment index of Yangtze River Basin[J]. Environmental Monitoring in China, 38(1): 45-57. | |
[14] | 国家环境保护总局, 2002. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国环境科学出版社. |
State Environmental Protection Administration, 2002. Environmental quality standards for surface water: GB 3838—2002 [S]. Beijing: China Environmental Science Press. | |
[15] | 黄玉瑶, 滕德兴, 1982. 利用大型底栖无脊椎动物种类多样性指数监测蓟运河污染[J]. 动物学集刊 (2): 133. |
HUANG Y Y, TENG D X, 1982. The macrobenthic invertebrate species diversity index was used to monitor pollution in Jihe[J]. Zoology Collection (2): 133. | |
[16] | 姜永伟, 2017. 浑河抚顺段底栖动物 (1987-2015) 群落结构及水质评价[J]. 环境科学与技术, 40(3): 167-171. |
JIANG Y W, 2017. Community structure and water quality evaluation of benthos in Fushun Section of Hunhe River (1987-2015)[J]. Environmental Science and Technology, 40(3): 167-171. | |
[17] | 姜永伟, 卢雁, 问青春, 等, 2020. 基于大型底栖动物完整性指数的辽河流域水生态健康评价[J]. 环境保护科学, 46(6): 103-109. |
JIANG Y W, LU Y, WEN Q C, et al., 2020. Evaluation of water ecological health in Liaohe River Basin based on benthic macroinvertebrates integrity index[J]. Environmental Protection Science, 46(6): 103-109. | |
[18] | 梁露巍, 惠秀娟, 徐成斌, 2015. 辽河流域水环境因子对大型底栖动物的影响研究[J]. 环境保护与循环经济, 51(3): 51-53. |
LIANG L W, HUI X J, XU C B, 2015. Effects of water environmental factors on macrobenthos in Liaohe River Basin[J]. Environmental Protection and Circular Economy, 51(3): 51-53. | |
[19] | 辽宁省市场监督管理局, 2018. 辽宁省河流水质评价底栖大型无脊椎动物BI指数法: DB21/T 3070—2018[S]. |
Market Supervision Administration of Liaoning Province, 2018. BI Index method of benthic macroinvertebrates for river water quality assessment in Liaoning Province: DB21/T 3070—2018[S]. | |
[20] | 辽宁省水利厅, 2014. 辽宁省水利普查成果[M]. 北京: 中国水利水电出版社. |
Liaoning Provincial Water Resources Department, 2014. Liaoning Provincial Water Resources Survey results[M]. Beijing: China Water and Hydropower Press. | |
[21] | 冷龙龙, 渠晓东, 张海萍, 等, 2016. 不同大型底栖动物快速生物评价指数对河流水质指示比较[J]. 环境科学研究, 29(6): 819-828. |
LENG L L, QU X D, ZHANG H P, et al., 2016. River water quality indicators of different benthic macroinvertebrates rapid bioassessment indices[J]. Research of Environmental Sciences, 29(6): 819-828. | |
[22] | 孟伟, 张远, 郑丙辉, 2007. 辽河流域水生态分区研究[J]. 环境科学学报, 27(6): 911-918. |
MENG W, ZHANG Y, ZHENG B H, 2007. Study on water ecological zoning in Liaohe River Basin[J]. Journal of Environmental Sciences, 27(6): 911-918. | |
[23] | 孟云飞, 崔恩慧, 鲁甲, 等, 2019. 辽河流域太子河大型底栖动物群落与水环境因子关联性的量化分析[J]. 湖泊科学, 31(6): 1637-1650. |
MENG Y F, CUI E H, LU J, et al., 2019. Quantitative analysis of the relationship between macrobenthic communities and water environmental factors in TaiziRiver, Liaohe River Basin[J]. Journal of Lake Sciences, 31(6): 1637-1650.
DOI URL |
|
[24] | 孟云飞, 李晨, 张吉, 等, 2018. 浑太河春季不同水生态功能区大型底栖动物群落结构及其与环境因子的关系[J]. 大连海洋大学学报, 33(1): 77-85. |
MENG Y F, LI C, ZHANG J, et al., 2018. Community structure of macrobenthos and its relationship with environmental factors in different aquatic ecological function zones of Huntai River in spring[J]. Journal of Dalian Ocean University, 33(1): 77-85. | |
[25] | 彭定华, 刘哲, 张彦峥, 等, 2023. 水生态环境质量评价方法及在黄河流域的应用进展[J]. 中国环境监测, 39(2): 41-54. |
PENG D H, LIU Z, ZHANG Y Z, et al., 2023. Evaluation methods of aquatic ecological environment quality and their application progress in the Yellow River Basin[J]. Environmental Monitoring in China, 39(2): 41-54. | |
[26] | 仇伟光, 王俊才, 张峥, 等, 2014. 辽河流域底栖动物监测图鉴[M]. 北京: 中国环境出版社. |
QIU W G, WANG J C, ZHANG Z, et al., 2014. Zoobenthosmonitoringatlas in Liaohe River Basin[M]. Beijing: China Environment Press. | |
[27] | 渠晓东, 张远, 马淑芹, 等, 2013. 太子河流域大型底栖动物群落结构空间分布特征[J]. 环境科学研究, 26(5): 509-515. |
QU X D, ZHANG Y, MA S Q, et al., 2013. Spatial distribution of macrobenthic community structure in Taizi River Basin[J]. Research of Environmental Sciences, 26(5): 509-515. | |
[28] | 王备新, 杨莲芳, 胡本进, 等, 2005. 应用底栖动物完整性指数B-IBI评价溪流健康[J]. 生态学报, 25(6): 1481-1489. |
WANG B X, YANG L F, HU B J, et al., 2005. Evaluation of stream health by using benthic macroinvertebrates index of biological integrity[J]. ActaEcologicaSinica, 25(6): 1481-1489. | |
[29] | 王齐, 张俊华, 李红涛, 等, 2023. 印江河底栖动物群落时空分布及其与环境因子的关系[J]. 贵州农业科学, 51(2): 55-65. |
WANG Q, ZHAN J H, LI H T, et al., 2023. Spatial and temporal distribution of macrobenthos community and its relationship with environmental factors in Yinjiang River[J]. Journal of Guizhou Agricultural Sciences, 51(2): 55-65. | |
[30] | 王艳杰, 梁红伟, 李法云, 等, 2016. 凡河流域大型底栖动物群落特征与环境因子响应关系分析[J]. 安全与环境学报, 16(5): 378-383. |
WANG Y J, LIANG H W, LI F Y, et al., 2016. Relationship between macrobenthic community characteristics and response to environmental factors in Fan River Basin, China[J]. Journal of Safety and Environment, 16(5): 378-383. | |
[31] | 王业耀, 滕恩江, 刘廷良, 等, 2017. 流域水生态环境质量监测与评价技术指南[M]. 北京: 中国环境出版社. |
WANG Y Y, TENG E J, LIU T L, et al., 2017. Technical Guide for monitoring and evaluation of River Basin water ecological environment quality[M]. Beijing: China Environment Press. | |
[32] | 邢树威, 王俊才, 丁振军, 等, 2013. 辽宁省大型底栖无脊椎动物耐污值及水质评价[J]. 环境保护科学, 39(3): 29-33. |
XING S W, WANG J C, DING Z J, et al., 2013. Pollution tolerance and water quality evaluation of benthic macroinvertebrates in Liaoning Province[J]. Environmental Protection Science, 39(3): 29-33. | |
[33] | 殷旭旺, 韩洁, 王博涵, 等, 2017. 太子河流域大型底栖动物群落结构及其与环境因子的关系[J]. 水产学杂志, 30(3): 40-44. |
YIN X W, HAN J, WANG B H, et al., 2017. Community structure of macrobenthos and its relationship with environmental factors in Taizi River Basin[J]. Chinese Journal of Fisheries, 30(3): 40-44. | |
[34] | 张琦, 王方鸣, 罗岳平, 等, 2018. 湘江流域大型底栖动物群落结构及其与环境因子的关系[J]. 水生态学杂志, 39(2): 48-57. |
ZHAN Q, WANG F M, LUO Y P, et al., 2018. Macrobenthic community structure and its relationship with environmental factors in Xiangjiang River Basin[J]. Journal of Water Ecology, 39(2): 48-57. | |
[35] | 张杰, 蔡德所, 曹艳霞, 等, 2011. 评价漓江健康的PIVPACS预测模型研究[J]. 湖泊科学, 23(1): 73-79. |
ZHANG J, CAI D S, CAO Y X, et al., 2011. Health assessment based on a PIVPACS-type predictive model in Li jiang River[J]. Journal of Lake Science, 23(1): 73-79. | |
[36] | 张汲伟, 蔡琨, 于海燕, 等, 2018. 中国底栖动物水质生物监测指数和水质等级构建[J]. 中国环境监测, 34(6): 10-18. |
ZHANG J W, CAI K, YU H Y, et al., 2018. Construction of benthic macroinvertebrates water quality biological monitoring index and water quality grade in China[J]. China Environmental Monitoring, 34(6): 10-18. | |
[37] | 张远, 徐成斌, 马溪平, 等, 2007. 辽河流域河流底栖动物完整性评价指标与标准[J]. 环境科学学报, 27(6): 919-927. |
ZHANG Y, XU C B, MA X P, et al., 2007. Evaluation indexes and criteria for the integrity of fluvial benthic macroinvertebrates in Liaohe River Basin[J]. Journal of Environmental Sciences, 27(6): 919-927. | |
[38] | 张宇航, 渠晓东, 王少明, 等, 2020. 浑河流域底栖动物生物完整性指数构建与健康评价[J]. 长江流域资源与环境, 29(6): 1374-1386. |
ZHANG Y H, QU X D, WANG S M, et al., 2019. Construction and health evaluation of benthic macroinvertebrates index of biological integrity in Hunhe River Basin[J]. Resources and Environment in the Yangtze Basin, 29(6): 1374-1386. | |
[39] | 郑丙辉, 张远, 李英博, 2015. 辽河流域河流栖息地评价指标与评价方法研究[J]. 环境科学学报, 27(6): 928-936. |
ZHENG B H, ZHANG Y, LI Y B, 2015. Study of indicators and methods for river habitat assessment of Liao River Basin[J]. Journal of Environmental Sciences, 27(6): 928-936. | |
[40] | 中华人民共和国生态环境部, 2023. 水生态监测技术指南河流水生生物监测与评价 (试行): HJ 1295—2023[S]. 北京: 中国环境出版集团. |
Ministry of Ecology and Environment of the People’s Republic of China, 2023. Technical guidelines for water ecological monitoring- aquatic organisms monitoring and evaluation of rivers (on trial): HJ 1295—2023[S]. Beijing: China Environmental Publishing Group. | |
[41] | 朱韩, 徐瑶, 尹子龙, 等, 2022. 固城湖底栖动物群落季节变化及与环境因子的关系[J]. 水产学杂志, 35(6): 82-88. |
ZHU H, XU Y, YIN Z L, et al., 2022. Seasonal variation of benthic community and its relationship with environmental factors in Gucheng Lake[J]. Journal of Aquatic Sciences, 35(6): 82-88. | |
[42] | 庄平, 王瑞芳, 石小涛, 等, 2009. 氟对西伯利亚鲤仔色的急性毒性及安全浓度评价[J]. 生态毒理学报, 4(3): 440-445. |
ZHUAN P, WANG R F, SHI X T, et al., 2009. Evaluation of acute toxicity and safe concentration of fluoride to the young color of Siberian carp[J]. Journal of Ecotoxicology, 4(3): 440-445. |
[1] | 侯晖, 颜培轩, 谢沁宓, 赵宏亮, 庞丹波, 陈林, 李学斌, 胡杨, 梁咏亮, 倪细炉. 贺兰山蒙古扁桃灌丛根际土壤AM真菌群落多样性特征研究[J]. 生态环境学报, 2023, 32(5): 857-865. |
[2] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[3] | 寇祝, 卿纯, 袁昌果, 李平. 西藏东北部热泉水中硫氧化菌的多样性及分布特征[J]. 生态环境学报, 2023, 32(5): 989-1000. |
[4] | 胡芳, 刘聚涛, 温春云, 韩柳, 文慧. 抚河流域浮游植物群落结构特征及其水生态状况评价[J]. 生态环境学报, 2023, 32(4): 744-755. |
[5] | 于菲, 曾海龙, 房怀阳, 付玲芳, 林澍, 董家豪. 典型感潮河网浮游藻类功能群时空变化特征及水质评价[J]. 生态环境学报, 2023, 32(4): 756-765. |
[6] | 李善家, 王兴敏, 刘海锋, 孙梦格, 雷雨昕. 河西走廊荒漠植物多样性及其对环境因子的响应[J]. 生态环境学报, 2023, 32(3): 429-438. |
[7] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[8] | 姜倪皓, 张世浩, 张诗函. 哀牢山紫茎泽兰入侵群落主要物种种间联结及环境解释[J]. 生态环境学报, 2022, 31(7): 1370-1382. |
[9] | 王英成, 姚世庭, 金鑫, 俞文政, 芦光新, 王军邦. 三江源区高寒退化草甸土壤细菌多样性的对比研究[J]. 生态环境学报, 2022, 31(4): 695-703. |
[10] | 刘红梅, 海香, 安克锐, 张海芳, 王慧, 张艳军, 王丽丽, 张贵龙, 杨殿林. 不同施肥措施对华北潮土区玉米田土壤固碳细菌群落结构多样性的影响[J]. 生态环境学报, 2022, 31(4): 715-722. |
[11] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[12] | 宋秀丽, 黄瑞龙, 柯彩杰, 黄蔚, 章武, 陶波. 不同种植方式对连作土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 487-496. |
[13] | 朱梦圆, 宋艳宇, 高思齐, 宫超, 刘桢迪, 马秀艳, 袁佳宝, 杨旭. 三江平原不同植被类型湿地土壤微生物碳源代谢多样性特征[J]. 生态环境学报, 2022, 31(12): 2310-2319. |
[14] | 薛文凯, 朱攀, 德吉, 郭小芳. 纳木措水体可培养丝状真菌优势种的时空特征研究[J]. 生态环境学报, 2022, 31(12): 2331-2340. |
[15] | 李聪, 吕晶花, 陆梅, 杨志东, 刘攀, 任玉连, 杜凡. 滇东南亚热带土壤细菌群落对植被垂直带变化的响应[J]. 生态环境学报, 2022, 31(10): 1971-1983. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||