生态环境学报 ›› 2022, Vol. 31 ›› Issue (3): 460-469.DOI: 10.16258/j.cnki.1674-5906.2022.03.004
夏开(), 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛*(
)
收稿日期:
2021-10-16
出版日期:
2022-03-18
发布日期:
2022-05-25
通讯作者:
*徐小牛(1961年生),男,教授,主要从事森林培育、森林生物地球化学循环及其相关领域。E-mail: xnxu2007@ahau.edu.cn作者简介:
夏开(1991年生),男,硕士研究生,研究方向为森林培育。E-mail: 836058374@qq.com
基金资助:
XIA Kai(), DENG Pengfei, MA Ruihao, WANG Fei, WEN Zhengyu, XU Xiaoniu*(
)
Received:
2021-10-16
Online:
2022-03-18
Published:
2022-05-25
摘要:
探究不同林型转换对土壤微生物群落结构和多样性的影响,为森林土壤生态系统的恢复和维持提供科学依据。基于16S rRNA的高通量测序技术比较分析了皖南山区马尾松(Pinus massoniana)次生林(PM)以及由马尾松次生林转换的湿地松(Pinus elliottii)(PE)和杉木(Cunninghamia lanceolata)人工林(CL)土壤细菌群落结构和多样性差异,探讨了细菌群落结构和多样性与土壤环境因子的相关性。结果表明,(1)PM转换成PE后,土壤pH、铵态氮NH4+-N含量显著增加,土壤电导率EC和硝态氮NO3--N含量显著降低;PM转换CL后,土壤含水率SWC显著增加,土壤有机碳SOC含量和EC显著降低。(2)林型转换显著改变了土壤细菌多样性,其中PE的土壤细菌α多样性显著高于PM。主坐标分析表明3种林型组间差异显著大于组内差异。(3)林型转换显著改变了土壤的细菌群落结构。在门水平上,3种林型优势菌群(平均相对丰度>10%)为酸杆菌门(Acidobacteria)、变形菌门(Proteobacteria)和放线菌门(Actinobacteria),其中PE的酸杆菌门相对丰度最低,CL的变形菌门和放线菌门相对丰度均是最低;在属水平上,3种林型优势菌群(平均相对丰度>5%)为酸杆菌门Subgroup_2_unclassified、Acidobacteriales_unclassified,变形菌门Elsterales_unclassified,其中这3个优势属相对丰度均是PE最低。(4)土壤pH和EC是影响该地区土壤细菌群落结构和多样性的关键环境因子。综合分析表明林型转换显著影响土壤细菌群落结构和多样性,马尾松次生林转换为湿地松人工林有利于土壤细菌群落发育和土壤营养状况的维持。
中图分类号:
夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469.
XIA Kai, DENG Pengfei, MA Ruihao, WANG Fei, WEN Zhengyu, XU Xiaoniu. Changes of Soil Bacterial Community Structure and Diversity from Conversion of Masson Pine Secondary Forest to Slash Pine and Chinese Fir Plantations[J]. Ecology and Environment, 2022, 31(3): 460-469.
林分类型 Forest type | 林龄 Age/a | 坡度 Inclination/ (°) | 平均胸径 Average DBH/cm | 平均树高 Average height/m | 林分密度 Stand density/ (plants∙hm-2) |
---|---|---|---|---|---|
PM | 39 | 35.73±0.59 | 28.26±8.05 | 15.85±3.95 | 948±384 |
PE | 11 | 25.61±0.59 | 11.71±3.12 | 9.93±3.28 | 2104±397 |
CL | 10 | 26.43±9.13 | 15.06±1.97 | 11.41±1.49 | 4044±235 |
表1 调查林分样地基本概况
Table 1 Basic characteristics of the sampling stands
林分类型 Forest type | 林龄 Age/a | 坡度 Inclination/ (°) | 平均胸径 Average DBH/cm | 平均树高 Average height/m | 林分密度 Stand density/ (plants∙hm-2) |
---|---|---|---|---|---|
PM | 39 | 35.73±0.59 | 28.26±8.05 | 15.85±3.95 | 948±384 |
PE | 11 | 25.61±0.59 | 11.71±3.12 | 9.93±3.28 | 2104±397 |
CL | 10 | 26.43±9.13 | 15.06±1.97 | 11.41±1.49 | 4044±235 |
土壤性质指标 Soil property parameter | PM | PE | CL |
---|---|---|---|
pH | 4.27±0.11b | 4.82±0.15a | 4.44±0.22b |
w(EC)/(μS∙cm-1) | 60.47±8.76a | 29.38±7.89b | 37.1±10.14b |
w(SWC)/% | 15.36±1.96b | 17.65±4.63b | 23.49±3.52a |
w(SOC)/(g∙kg-1) | 33.37±5.35a | 30.6±3.45ab | 26.22±5.03b |
w(TN)/(g∙kg-1) | 2.67±0.34a | 2.64±0.49a | 2.37±0.46a |
w(C)/w(N) | 12.48±0.74a | 11.76±1.27a | 11.07±0.68a |
w(NH4+-N)/(mg∙kg-1) | 8.01±3.81b | 11.45±3.69a | 6.55±1.9b |
w(NO3--N)/(mg∙kg-1) | 3.98±1.11a | 1.48±0.99b | 3.32±2.24a |
表2 试验林分土壤理化性质
Table 2 Soil basic characteristics of the experimental stands
土壤性质指标 Soil property parameter | PM | PE | CL |
---|---|---|---|
pH | 4.27±0.11b | 4.82±0.15a | 4.44±0.22b |
w(EC)/(μS∙cm-1) | 60.47±8.76a | 29.38±7.89b | 37.1±10.14b |
w(SWC)/% | 15.36±1.96b | 17.65±4.63b | 23.49±3.52a |
w(SOC)/(g∙kg-1) | 33.37±5.35a | 30.6±3.45ab | 26.22±5.03b |
w(TN)/(g∙kg-1) | 2.67±0.34a | 2.64±0.49a | 2.37±0.46a |
w(C)/w(N) | 12.48±0.74a | 11.76±1.27a | 11.07±0.68a |
w(NH4+-N)/(mg∙kg-1) | 8.01±3.81b | 11.45±3.69a | 6.55±1.9b |
w(NO3--N)/(mg∙kg-1) | 3.98±1.11a | 1.48±0.99b | 3.32±2.24a |
林分类型 Forest type | 观测物种数 Observed_ species | Chao1 指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|
PM | 1550±324b | 1561±332b | 9.56±0.22b | 0.9976±0.0004b |
PE | 1984±224a | 1996±230a | 9.98±0.19a | 0.9983±0.0002a |
CL | 1861±376ab | 1876±388ab | 9.76±0.34ab | 0.9979±0.0006ab |
表3 土壤细菌α多样性指数
Table 3 Soil bacterial α-diversity indices
林分类型 Forest type | 观测物种数 Observed_ species | Chao1 指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|
PM | 1550±324b | 1561±332b | 9.56±0.22b | 0.9976±0.0004b |
PE | 1984±224a | 1996±230a | 9.98±0.19a | 0.9983±0.0002a |
CL | 1861±376ab | 1876±388ab | 9.76±0.34ab | 0.9979±0.0006ab |
细菌群落 Bacterial community | P值 P value | |
---|---|---|
PE-PM | CL-PM | |
酸杆菌门 Acidobacteria | 0.248 | 0.4622 |
变形菌门 Proteobacteria | 0.4622 | 0.0117 |
放线菌门 Actinobacteria | 0.9164 | 0.0063 |
绿弯菌门 Chloroflexi | 0.9164 | 0.0016 |
己科河菌门 Rokubacteria | 0.0033 | 0.0357 |
芽单胞菌门 Gemmatimonadetes | 0.0742 | 0.8336 |
疣微菌门 Verrucomicrobia | 0.0587 | 0.0087 |
浮霉菌门 Planctomycetes | 0.1152 | 0.9989 |
WPS-2 | 0.0046 | 0.1722 |
未识别门 Unclassified | 0.2936 | 0.0357 |
其他 Others | 0.4256 | 0.3167 |
表4 PE、CL分别和PM土壤细菌门水平的Wilcoxon两两比较检验结果
Table 4 Statistical results of Wilcoxon pair-to-pair comparison test at soil bacteriophyta levels among PE, CL and PM
细菌群落 Bacterial community | P值 P value | |
---|---|---|
PE-PM | CL-PM | |
酸杆菌门 Acidobacteria | 0.248 | 0.4622 |
变形菌门 Proteobacteria | 0.4622 | 0.0117 |
放线菌门 Actinobacteria | 0.9164 | 0.0063 |
绿弯菌门 Chloroflexi | 0.9164 | 0.0016 |
己科河菌门 Rokubacteria | 0.0033 | 0.0357 |
芽单胞菌门 Gemmatimonadetes | 0.0742 | 0.8336 |
疣微菌门 Verrucomicrobia | 0.0587 | 0.0087 |
浮霉菌门 Planctomycetes | 0.1152 | 0.9989 |
WPS-2 | 0.0046 | 0.1722 |
未识别门 Unclassified | 0.2936 | 0.0357 |
其他 Others | 0.4256 | 0.3167 |
林分比较类型 Types of stand comparison | 门 Phylum | 属 Genus | P值 P value |
---|---|---|---|
PE-PM | 酸杆菌门 Acidobacteria | Subgroup_6纲未定属 (Subgroup_6_unclassified) | 0.0016 |
酸杆菌门 Acidobacteria | Candidatus_Solibacter属 (Candidatus_Solibacter) | 0.0357 | |
酸杆菌门 Acidobacteria | Subgroup_2目未定属 (Subgroup_2_unclassified) | 0.046 | |
变形菌门 Proteobacteria | Elsterales目未定属 (Elsterales_unclassified) | 0.0011 | |
变形菌门 Proteobacteria | 黄色杆菌科未定属 (Xanthobacteraceae_unclassified) | 0.0011 | |
放线菌门 Actinobacteria | Gaiellales科未定属 (Gaiellales_unclassified) | 0.0087 | |
浮霉菌门 Planctomycetes | 出芽科未定属 (Gemmataceae_unclassified) | 0.0209 | |
疣微菌门 Verrucomicrobia | Candidatus_Udaeobacter属 (Candidatus_Udaeobacter) | 0.0087 | |
CL-PM | 酸杆菌门 Acidobacteria | Subgroup_6纲未定属 (Subgroup_6_unclassified) | 0.046 |
放线菌门 Actinobacteria | 热酸菌属 (Acidothermus) | 0.0016 | |
变形菌门 Proteobacteria | α-变形杆菌纲未定属 (Alphaproteobacteria_unclassified) | 0.046 | |
变形菌门 Proteobacteria | Elsterales目未定属 (Elsterales_unclassified) | 0.0023 | |
绿弯菌门 Chloroflexi | JG30-KF-AS9科未定属 (JG30-KF-AS9_unclassified) | 0.0046 | |
绿弯菌门 Chloroflexi | AD3纲未定属 (AD3_unclassified) | 0.0087 | |
疣微菌门 Verrucomicrobia | Candidatus_Udaeobacter属 (Candidatus_Udaeobacter) | 0.0033 | |
疣微菌门 Verrucomicrobia | ADurb.Bin063-1属 (ADurb.Bin063-1) | 0.0063 |
表5 PE、CL和PM土壤细菌属水平的Wilcoxon两两比较检验结果
Table 5 Statistical results of Wilcoxon pair-to-pair comparison test at soil bacterial genera levels among PE, CL and PM
林分比较类型 Types of stand comparison | 门 Phylum | 属 Genus | P值 P value |
---|---|---|---|
PE-PM | 酸杆菌门 Acidobacteria | Subgroup_6纲未定属 (Subgroup_6_unclassified) | 0.0016 |
酸杆菌门 Acidobacteria | Candidatus_Solibacter属 (Candidatus_Solibacter) | 0.0357 | |
酸杆菌门 Acidobacteria | Subgroup_2目未定属 (Subgroup_2_unclassified) | 0.046 | |
变形菌门 Proteobacteria | Elsterales目未定属 (Elsterales_unclassified) | 0.0011 | |
变形菌门 Proteobacteria | 黄色杆菌科未定属 (Xanthobacteraceae_unclassified) | 0.0011 | |
放线菌门 Actinobacteria | Gaiellales科未定属 (Gaiellales_unclassified) | 0.0087 | |
浮霉菌门 Planctomycetes | 出芽科未定属 (Gemmataceae_unclassified) | 0.0209 | |
疣微菌门 Verrucomicrobia | Candidatus_Udaeobacter属 (Candidatus_Udaeobacter) | 0.0087 | |
CL-PM | 酸杆菌门 Acidobacteria | Subgroup_6纲未定属 (Subgroup_6_unclassified) | 0.046 |
放线菌门 Actinobacteria | 热酸菌属 (Acidothermus) | 0.0016 | |
变形菌门 Proteobacteria | α-变形杆菌纲未定属 (Alphaproteobacteria_unclassified) | 0.046 | |
变形菌门 Proteobacteria | Elsterales目未定属 (Elsterales_unclassified) | 0.0023 | |
绿弯菌门 Chloroflexi | JG30-KF-AS9科未定属 (JG30-KF-AS9_unclassified) | 0.0046 | |
绿弯菌门 Chloroflexi | AD3纲未定属 (AD3_unclassified) | 0.0087 | |
疣微菌门 Verrucomicrobia | Candidatus_Udaeobacter属 (Candidatus_Udaeobacter) | 0.0033 | |
疣微菌门 Verrucomicrobia | ADurb.Bin063-1属 (ADurb.Bin063-1) | 0.0063 |
土壤理化性质 Physicochemical properties | 细菌群落结构 Bacterial community structure | |
---|---|---|
r | P | |
pH | 0.4993 | 0.001 |
EC | 0.3297 | 0.002 |
SWC | 0.0849 | 0.173 |
SOC | -0.0329 | 0.601 |
TN | -0.038 | 0.609 |
NH4+-N | -0.0289 | 0.54 |
NO3--N | 0.0648 | 0.189 |
C/N | 0.0017 | 0.463 |
表6 Mantel检验细菌群落结构与土壤环境因子的相关性
Table 6 Correlation between bacterial community structure and soil environmental factors tested by Mantel
土壤理化性质 Physicochemical properties | 细菌群落结构 Bacterial community structure | |
---|---|---|
r | P | |
pH | 0.4993 | 0.001 |
EC | 0.3297 | 0.002 |
SWC | 0.0849 | 0.173 |
SOC | -0.0329 | 0.601 |
TN | -0.038 | 0.609 |
NH4+-N | -0.0289 | 0.54 |
NO3--N | 0.0648 | 0.189 |
C/N | 0.0017 | 0.463 |
图4 优势门菌群相对丰度(a)、有差异的优势属菌群相对丰度(b)和土壤理化性质相关性热图* P<0.05;** P<0.01
Figure 4 Heat map of correlation between relative abundance of dominant phylum (a), relative abundance of dominant genera with differences (b) and soil physical and chemical properties
[1] |
AVERILL C, HAWKES C V, 2016. Ectomycorrhizal fungi slow soil carbon cycling[J]. Ecology Letters, 19(8): 937-947.
DOI URL |
[2] |
BÁRCENAS-MORENO G, BÅÅTH E, ROUSK J, 2016. Functional implications of the pH-trait distribution of the microbial community in a re-inoculation experiment across a pH gradient[J]. Soil Biology and Biochemistry, 93:69-78.
DOI URL |
[3] |
BELL T, NEWMAN J A, SILVERMAN B W, et al., 2005. The contribution of species richness and composition to bacterial services[J]. Nature, 436(7054): 1157-1160.
DOI URL |
[4] |
BENJAMIN C J, MCMURDIE P J, ROSEN M J, et al., 2016. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 13(7): 581-583.
DOI URL |
[5] |
BRUUN T B, ELBERLING B, NEERGAARD A, et al., 2015. Organic carbon dynamics in different soil types after conversion of forest to agriculture[J]. Land Degradation & Development, 26(3): 272-283.
DOI URL |
[6] |
CHEN Y P, CHEN G S, ROBINSON D, et al., 2016. Large amounts of easily decomposable carbon stored in subtropical forest subsoil are associated with r-strategy-dominated soil microbes[J]. Soil Biology and Biochemistry, 95: 233-242.
DOI URL |
[7] |
DE ROCHELI S, AMBROSINI A, PASSAGLIA-LUCIANE M P, 2015. Plant growth-promoting bacteria as inoculants in agricultural soils[J]. Genetics and Molecular Biology, 38(4): 401-19.
DOI URL |
[8] |
DENNIS P G, NEWSHAM K K, Rushton S P, et al., 2013. Warming constrains bacterial community responses to nutrient inputs in a southern, but not northern, maritime Antarctic soil[J]. Soil Biology and Biochemistry, 57: 248-255.
DOI URL |
[9] |
FAZI S, AMALFITANO S, PERNTHALER J, et al., 2005. Bacterial communities associated with benthic organic matter in headwater stream microhabitats[J]. Environmental Microbiology, 7(10): 1633-1640.
DOI URL |
[10] |
FELSKE A, WOLTERINK A, VAN L R, et al., 2000. Response of a soil bacterial community to grassland succession as monitored by 16S rRNA levels of the predominant ribotypes[J]. Applied and Environmental Microbiology, 66(9): 3998-4003.
DOI URL |
[11] |
FENG Y Z, GROGAN P J, CAPORASO G, et al., 2014. pH is a good predictor of the distribution of anoxygenic purple phototrophic bacteria in Arctic soils[J]. Soil Biology and Biochemistry, 74: 193-200.
DOI URL |
[12] |
FIERER N, BRADFORD M A, JACKSON R B, 2007. Toward an ecological classification of soil bacteria[J]. Ecology, 88(6): 1354-1364.
DOI URL |
[13] | HARTMAN W H, RICHARDSON C J, VILGALYS R, et al., 2008. Environmental and Anthropogenic Controls over Bacterial Communities in Wetland Soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(46): 17842-17847. |
[14] |
LAUBER C L, MICAH H, KNIGHT R, et al., 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 75(15): 5111-5120.
DOI URL |
[15] |
LI X, SUN M L, ZHANG H H, et al., 2016. Use of mulberry-soybean intercropping in salt-alkali soil impacts the diversity of the soil bacterial community[J]. Microbial Biotechnology, 9(3): 293-304.
DOI URL |
[16] |
LIU T, WU X H, LI H W, et al., 2020. Soil organic matter, nitrogen and pH driven change in bacterial community following forest conversion[J]. Forest Ecology and Management, DOI: 10.1016/j.foreco.2020.118473.
DOI |
[17] |
LIU X, ZHANG B, ZHAO W R, et al., 2017. Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region[J]. Science of the Total Environment, 601-602: 669-678.
DOI URL |
[18] | MARK B, JENNA M, CHAPMAN T, et al., 2005. Defining operational taxonomic units using DNA barcode data[J]. Philosophical Transactions of the Royal Society, 360(1462): 1935-1943. |
[19] |
MENG M J, LIN J, GUO X P, et al., 2019. Impacts of forest conversion on soil bacterial community composition and diversity in subtropical forests[J]. Catena, 175: 167-173.
DOI URL |
[20] |
NAKAYAMA M, IMAMURA S, TANIGUCHI T, et al., 2019. Does conversion from natural forest to plantation affect fungal and bacterial biodiversity, community structure, and co-occurrence networks in the organic horizon and mineral soil?[J]. Forest Ecology and Management, 446: 238-250.
DOI URL |
[21] |
NAVARRETE I A, TSUTSUKI K, 2008. Land-use impact on soil carbon, nitrogen, neutral sugar composition and related chemical properties in a degraded Ultisol in Leyte, Philippines[J]. Soil Science and Plant Nutrition, 54(3): 321-331.
DOI URL |
[22] |
RHOADES J D, SHOUSE P J, ALVES W J, et al. 1990. Determining soil salinity from soil electrical conductivity using different models and estimates[J]. Soil Science Society of America Journal, 54(1): 46-54.
DOI URL |
[23] |
SHEN C C, XIONG J B, ZHANG H Y, et al., 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry, 57: 204-211.
DOI URL |
[24] | SHEREMET A, JONES G M, JARETT J, et al., 2020. Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil[J]. Environmental Microbiology, 22(8): 1462-2920. |
[25] |
SUN H, TERHONEN E, KOSKINEN K, et al., 2014. Bacterial diversity and community structure along different peat soils in boreal forest[J]. Applied Soil Ecology, 74: 37-45.
DOI URL |
[26] |
SUN Y T, LUO C L, JIANG L F, et al., 2020. Land-use changes alter soil bacterial composition and diversity in tropical forest soil in China[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2020.136526.
DOI |
[27] |
ZHANG C, LIU G B, XUE S, et al., 2016. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau[J]. Soil Biology and Biochemistry, 97: 40-49.
DOI URL |
[28] |
ZHANG X F, XU S J, LI C M, et al., 2014. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan Plateau[J]. Research in Microbiology, 165(2): 128-139.
DOI URL |
[29] |
ZHAO J, WAN S Z, LI Z A, et al., 2012. Dicranopteris-dominated understory as major driver of intensive forest ecosystem in humid subtropical and tropical region[J]. Soil Biology and Biochemistry, 49: 78-87.
DOI URL |
[30] |
ZHOU Z H, WANG C K, LUO Y Q, 2020. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[J]. Nature communications, 11(1): 3072.
DOI URL |
[31] | 邓娇娇, 周永斌, 殷有, 等, 2019. 辽东山区典型人工针叶林土壤细菌群落多样性特征[J]. 生态学报, 39(3): 997-1008. |
DENG J J, ZHOU Y B, YIN Y, et al., 2019. Soil bacterial community structure characteristics in coniferous forests of Montane Regions of eastern Liaoning Province, China[J]. Acta Ecologica Sinica, 39(3): 997-1008. | |
[32] | 韩芳, 包媛媛, 刘项宇, 等, 2021. 不同轮作方式对马铃薯根际土壤真菌群落结构的影响[J]. 生态环境学报, 30(7): 1412-1419. |
HAN F, BAO Y Y, LIU X Y, et al., 2021. Effects of different potato rotation patterns on fungal community structure in rhizosphere soil[J]. Ecology and Environmental Sciences, 30(7): 1412-1419. | |
[33] | 黄庆阳, 杨帆, 谢立红, 等, 2021. 五大连池火山土壤细菌多样性及其群落结构[J]. 生态学报, 41(20): 8276-8284. |
HUANG Q Y, YANG F, XIE L H, et al., 2021. Diversity and community structure of soil bacteria in different volcanoes, Wudalianchi[J]. Acta Ecologica Sinica, 41(20): 8276-8284. | |
[34] | 何斌, 梁伟克, 陈文军, 等, 2002. 湿地松、杉木林取代马尾松林后土壤肥力的差异[J]. 东北林业大学学报, 30(6): 11-13. |
HE B, LIANG W K, CHEN W J, et al., 2002. Difference of Soil Fertilities Following Replacement of Pinus massoniana Plantation by Pinus elliottii Plantation and Cunninghamia lanceolata Plantation[J]. Journal of Northeast Forestry University, 30(6): 11-13. | |
[35] | 姜雪薇, 马大龙, 臧淑英, 等, 2021. 高通量测序分析大兴安岭典型森林土壤细菌和真菌群落特征[J]. 微生物学通报, 48(4): 1093-1105. |
JIANG X W, MA D L, ZANG S Y, et al., 2021. Characteristics of soil bacterial and fungal community of typical forest in the Greater Khingan Mountains based on high-throughput sequencing[J]. Microbiology China, 48(4): 1093-1105. | |
[36] | 李明, 毕江涛, 王静, 等, 2020. 宁夏不同地区盐碱化土壤细菌群落多样性分布特征及其影响因子[J]. 生态学报, 40(4): 1316-1330. |
LI M, BI J T, WANG J, et al., 2020. Bacterial community structure and key influence factors in saline soil of different sites in Ningxia[J]. Acta Ecologica Sinica, 40(4): 1316-1330. | |
[37] | 梁国华, 吴建平, 熊鑫, 等, 2015. 鼎湖山不同演替阶段森林土壤pH值和土壤微生物量碳氮对模拟酸雨的响应[J]. 生态环境学报, 24(6): 911-918. |
LIANG G H, WU J P, XIONG X, WU X, et al., 2015. Responses of Soil pH Value and Soil Microbial Biomass Carbon and Nitrogen to Simulated Acid Rain in Three Successional Subtropical Forests at Dinghushan Nature Reserve[J]. Ecology and Environmental Sciences, 24(6): 911-918 | |
[38] | 刘海洋, 张仁福, 王伟, 等, 2021. 新疆黄萎病发病程度不同棉田土壤细菌群落结构差异分析[J]. 生态环境学报, 30(1): 72-80. |
LIU H Y, ZHANG R F, WANG W, et al., 2021. Characteristics of soil bacterial community structure in cotton fields with different incidence of Verticillium wilt in Xinjiang[J]. Ecology and Environmental Sciences, 30(1): 72-80. | |
[39] | 潭洪治, 1988. 微生物学[M]. 北京: 高等教育出版社: 1-8. |
TAN H Z, 1988. Microbiology[M]. Beijing: Higher Education Press: 1-8. | |
[40] | 万春红, 陶楚, 杨小波, 等, 2015. 森林群落物种组成对凋落物组成的影响[J]. 生态学报, 35(22): 7435-7443. |
WANG C H, TAO C, YANG X B, et al., 2015. Impact of forest community species composition on litter species composition[J]. Acta Ecologica Sinica, 35(22): 7435-7443. | |
[41] | 王鹏, 陈波, 张华, 2017. 基于高通量测序的鄱阳湖典型湿地土壤细菌群落特征分析[J]. 生态学报, 37(5): 1650-1658. |
WANG P, CHEN B, ZHANG H, 2017. High throughput sequencing analysis of bacterial communities in soils of a typical Poyang Lake wetland[J]. Acta Ecologica Sinica, 37(5): 1650-1658. | |
[42] |
吴林坤, 林向民, 林文雄, 2014. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 38(3): 298-310.
DOI |
WU L K, LING X M, LIN W X, 2014. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 38(3): 298-310.
DOI URL |
|
[43] | 于少鹏, 史传奇, 胡宝忠, 等, 2020. 古大湖湿地盐碱土壤微生物群落结构及多样性分析[J]. 生态学报, 40(11): 3764-3775. |
YU S P, SHI C Q, HU B Z, et al., 2020. Analysis of microbial community structure and diversity of saline soil in Gudahu Wetland[J]. Acta Ecologica Sinica, 40(11): 3764-3775. | |
[44] | 赵凤艳, 张勇勇, 张玥琦, 等, 2019. 有机物料对设施番茄长期连作土壤细菌群落结构的影响[J]. 生态学杂志, 38(6): 1732-1740. |
ZHAO F Y, ZHANG Y Y, ZHANG Y Q, et al., 2019. Effects of organic amendments on soil bacterial community structure with long-term tomato planting in greenhouse[J]. Chinese Journal of Ecology, 38(6): 1732-1740. | |
[45] | 张红霞, 张舒雅, 张玉涛, 等, 2019. 山药根际土壤微生物16S rRNA多样性及影响因素[J]. 土壤学报, 56(5): 1235-1246. |
ZHANG H X, ZHANG S Y, ZHANG Y T, et al., 2019. Genetic 16S rRNA Diversity of Soil Microbes in Rhizosphere of Chinese Yam and Its Influencing Factors[J]. Acta Pedologica Sinica, 56(5): 1235-1246. | |
[46] | 张坤, 包维楷, 杨兵, 等, 2017. 林下植被对土壤微生物群落组成与结构的影响[J]. 应用与环境生物学报, 23(6): 1178-1184. |
ZHANG K, BAO W K, YANG B, et al., 2017. The effects of understory vegetation on soil microbial community composition and structure[J]. Chinese Journal of Applied & Environmental Biology, 23(6): 1178-1184. | |
[47] | 曾婷婷, 张玲玲, 李意德, 等, 2016. 林型转化对土壤pH、有机碳组分和交换性矿质元素的影响[J]. 生态环境学报, 25(4): 576-582. |
ZENG T T, ZHANG L L, LI Y D, et al., 2015. Effect of Forest Conversion on Soil pH, Organic Carbon Fractions and Exchangeable Mineral Nutrients[J]. Ecology and Environmental Sciences, 25(4): 576-582. | |
[48] | 朱教君, 2002. 次生林经营基础研究进展[J]. 应用生态学报, 13(12): 1689-1694. |
ZHU J J, 2002. A review on fundamental studies of secondary forest management[J]. Chinese Journal of Applied Ecology, 13(12): 1689-1694. |
[1] | 李海鹏, 黄月华, 孙晓东, 曹启民, 符芳兴, 孙楚涵. 海南农田不同质地砖红壤及其细菌群落与番茄青枯病发生的关联分析[J]. 生态环境学报, 2023, 32(6): 1062-1069. |
[2] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[3] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[4] | 王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349. |
[5] | 杨冲, 王春燕, 王文颖, 毛旭峰, 周华坤, 陈哲, 索南吉, 靳磊, 马华清. 青藏高原黄河源区高寒草地土壤营养特征变化及质量评价[J]. 生态环境学报, 2022, 31(5): 896-908. |
[6] | 朱奕豪, 李青梅, 刘晓丽, 李娜, 宋凤玲, 陈为峰. 不同土地整治类型新增耕地土壤微生物群落特征研究[J]. 生态环境学报, 2022, 31(5): 909-917. |
[7] | 王英成, 姚世庭, 金鑫, 俞文政, 芦光新, 王军邦. 三江源区高寒退化草甸土壤细菌多样性的对比研究[J]. 生态环境学报, 2022, 31(4): 695-703. |
[8] | 刘志君, 崔丽娟, 李伟, 李晶, 雷茵茹, 朱怡诺, 王汝苗, 窦志国. 互花米草入侵对盐城滨海湿地nirS型反硝化细菌多样性及群落结构的影响[J]. 生态环境学报, 2022, 31(4): 704-714. |
[9] | 刘红梅, 海香, 安克锐, 张海芳, 王慧, 张艳军, 王丽丽, 张贵龙, 杨殿林. 不同施肥措施对华北潮土区玉米田土壤固碳细菌群落结构多样性的影响[J]. 生态环境学报, 2022, 31(4): 715-722. |
[10] | 杨贤房, 陈朝, 郑林, 万智巍, 陈永林, 王远东. 稀土矿区不同土地利用类型土壤细菌群落特征及网络分析[J]. 生态环境学报, 2022, 31(4): 793-801. |
[11] | 宋秀丽, 黄瑞龙, 柯彩杰, 黄蔚, 章武, 陶波. 不同种植方式对连作土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 487-496. |
[12] | 杨虎, 王佩瑶, 李小伟, 王继飞, 杨君珑. 贺兰山东坡不同植被类型的土壤真菌多样性及其群落结构[J]. 生态环境学报, 2022, 31(2): 239-247. |
[13] | 张晓丽, 王国丽, 常芳弟, 张宏媛, 逄焕成, 张建丽, 王婧, 冀宏杰, 李玉义. 生物菌剂对根际盐碱土壤理化性质和微生物区系的影响[J]. 生态环境学报, 2022, 31(10): 1984-1992. |
[14] | 刘佩伶, 刘效东, 冯英杰, 苏宇乔, 甘先华, 张卫强. 新丰江水库库区水源涵养林土壤饱和导水率特征[J]. 生态环境学报, 2022, 31(10): 1993-2001. |
[15] | 王瑞, 宋祥云, 柳新伟. 黄河三角洲不同植被类型土壤酶活性的季节变化[J]. 生态环境学报, 2022, 31(1): 62-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||