生态环境学报 ›› 2022, Vol. 31 ›› Issue (12): 2331-2340.DOI: 10.16258/j.cnki.1674-5906.2022.12.007
收稿日期:
2022-05-31
出版日期:
2022-12-18
发布日期:
2023-02-15
通讯作者:
*郭小芳(1982年生),女,教授,硕士,主要从事高原微生态研究。E-mail: gxf005@hotmail.com作者简介:
薛文凯(1995年生),女,硕士研究生,主要从事高原微生物及环境关系的研究。E-mail: 1978558896@qq.com
基金资助:
XUE Wenkai(), ZHU Pan, DE Ji, GUO Xiaofang(
)
Received:
2022-05-31
Online:
2022-12-18
Published:
2023-02-15
摘要:
微生物作为湖泊生态系统中最易受周边环境影响的生物类群,其群落结构和多样性是决定物质循环、保持生态平衡的重要基础。以青藏高原纳木措湖为研究对象,用微生物形态学和分子生物学鉴定法,探究纳木措春、夏、秋3个季节的水体可培养丝状真菌优势种的时空演变特征;测定了8种水环境因子,采用差异性分析、相关性分析、时空异质性分析等方法,综合分析水环境因子对丝状真菌种群结构变化的影响。结果表明,纳木措春季共分离、纯化出水体丝状真菌921株,归为20属62种;夏季1412株,归为22属47种;秋季1026株,归为13属47种;优势种包括普通青霉Penicillium commune、酒色青霉Penicillium vinaceum、冻土毛霉Mucor hiemalis、壳青霉Penicillium crustosum以及灰玫瑰青霉Penicillium griseoroseum等23种。生态位数据显示,优势种的空间、时间以及时空生态位宽度值的区间分别为0.017—0.942、0.333—0.979、0.006—0.314,生态位重叠值以高度重叠为主。经计算,夏季与秋季的优势种更替率最高(95%),春季与夏季次之(84%),春季与秋季最低(77%),且不同季节间的部分环境因子存在显著差异(P<0.05),各季节的水环境因子对不同优势种的影响各异,优势种的群落结构受时间资源的影响大于空间资源。以上结果说明,纳木措水体可培养丝状真菌资源丰富,优势种季节更替率较高,种间竞争激烈,群落结构不稳定,丝状真菌在不同的环境中有着不同的优势度,因此环境因子的变化是塑造各季节丝状真菌多样性和组成差异的重要原因。相较于其他物种(原生动物),丝状真菌的优势类群对环境变化有着更敏感的响应;利用这种特性,可将其优势物种的动态组成特征作为水体理化因子变化的微生物指标,以期在未来应用于水质监测和气候变化中发挥作用。
中图分类号:
薛文凯, 朱攀, 德吉, 郭小芳. 纳木措水体可培养丝状真菌优势种的时空特征研究[J]. 生态环境学报, 2022, 31(12): 2331-2340.
XUE Wenkai, ZHU Pan, DE Ji, GUO Xiaofang. Study on the Temporal and Spatial Characteristics of the Dominant Species of Cultivable Filamentous Fungi in Nam Co Lake[J]. Ecology and Environment, 2022, 31(12): 2331-2340.
图1 纳木措不同季节水体环境因子差异
Figure 1 Differences of water environmental factors in different seasons in Nam Co Lake t: Temperature; TDS: Total dissolved solids; EC: Electrical conductivity; Salt: Salt concentration; NH4+-N: Ammonium nitrogen; TP: Total phosphorus; TN: Total nitrogen; n=20; **: P<0.01; *: P<0.05; ns: P>0.05
图2 纳木措不同季节水体丝状真菌多样性指数的比较
Figure 2 Comparison of diversity indices of filamentous fungi in different seasons in Nam Co Lake n=20, the same below; ****: P<0.001; ***: P<0.005; **: P<0.01; *: P<0.05; ns: P>0.05
优势种 Dominant species | 春 Spring | 夏 Summer | 秋 Autumn | |||||
---|---|---|---|---|---|---|---|---|
Y | fi/% | Y | fi/% | Y | fi/% | |||
普通青霉 Penicillium commune | 0.040 | 90 | 0.029 | 75 | 0.043 | 75 | ||
酒色青霉 Penicillium vinaceum | 0.040 | 90 | 0.024 | 75 | — | — | ||
壳青霉 Penicillium crustosum | 0.130 | 95 | — | — | 0.082 | 90 | ||
灰玫瑰青霉 Penicillium griseoroseum | 0.023 | 65 | — | — | 0.062 | 80 | ||
波兰青霉 Penicillium polonicum | 0.043 | 80 | — | — | — | — | ||
青霉菌 Penicillium goetzii | 0.030 | 85 | — | — | — | — | ||
冻土毛霉 Mucor hiemalis | 0.096 | 80 | 0.090 | 85 | — | — | ||
总状毛霉 Mucor racemosus | 0.049 | 90 | — | — | — | — | ||
格孢腔菌 Pleosporales sp.2 | 0.024 | 65 | — | — | — | — | ||
青霉菌 Penicillium sp. | — | — | 0.030 | 70 | — | — | ||
高山被孢霉 Mortierella alpina | — | — | 0.058 | 90 | — | — | ||
微糙枝孢 Cladosporium asperulatum | — | — | 0.027 | 75 | — | — | ||
芽枝状枝孢 Cladosporium pseudocladosporioides | — | — | 0.029 | 95 | — | — | ||
链格孢 Alternaria chlamydosporigena | — | — | 0.096 | 95 | — | — | ||
壳霉菌 Stagonosporopsis sp. | — | — | 0.027 | 80 | — | — | ||
Plectosphaerella plurivora | — | — | 0.036 | 80 | — | — | ||
两型蜡蚧菌 Lecanicillium dimorphum | — | — | 0.044 | 95 | — | — | ||
三线镰刀菌 Fusarium tricinctum | — | — | 0.068 | 95 | — | — | ||
微结节霉菌 Microdochium bolleyi | — | — | 0.054 | 85 | — | — | ||
比阿娄维扎青霉 Penicillium bialowiezense | — | — | — | — | 0.266 | 100 | ||
短密青霉 Penicillium brevicompactum | — | — | — | — | 0.111 | 90 | ||
枝状枝孢 Cladosporium cladosporioides | — | — | — | — | 0.035 | 70 | ||
密丛毛霉 Mucor plumbeus | — | — | — | — | 0.043 | 85 |
表1 纳木措水体丝状真菌优势种在不同季节的优势度(Y)与出现频率(f)
Table 1 Dominance (Y) and frequency (fi) of dominant species of filamentous fungi in different seasons in Nam Co Lake
优势种 Dominant species | 春 Spring | 夏 Summer | 秋 Autumn | |||||
---|---|---|---|---|---|---|---|---|
Y | fi/% | Y | fi/% | Y | fi/% | |||
普通青霉 Penicillium commune | 0.040 | 90 | 0.029 | 75 | 0.043 | 75 | ||
酒色青霉 Penicillium vinaceum | 0.040 | 90 | 0.024 | 75 | — | — | ||
壳青霉 Penicillium crustosum | 0.130 | 95 | — | — | 0.082 | 90 | ||
灰玫瑰青霉 Penicillium griseoroseum | 0.023 | 65 | — | — | 0.062 | 80 | ||
波兰青霉 Penicillium polonicum | 0.043 | 80 | — | — | — | — | ||
青霉菌 Penicillium goetzii | 0.030 | 85 | — | — | — | — | ||
冻土毛霉 Mucor hiemalis | 0.096 | 80 | 0.090 | 85 | — | — | ||
总状毛霉 Mucor racemosus | 0.049 | 90 | — | — | — | — | ||
格孢腔菌 Pleosporales sp.2 | 0.024 | 65 | — | — | — | — | ||
青霉菌 Penicillium sp. | — | — | 0.030 | 70 | — | — | ||
高山被孢霉 Mortierella alpina | — | — | 0.058 | 90 | — | — | ||
微糙枝孢 Cladosporium asperulatum | — | — | 0.027 | 75 | — | — | ||
芽枝状枝孢 Cladosporium pseudocladosporioides | — | — | 0.029 | 95 | — | — | ||
链格孢 Alternaria chlamydosporigena | — | — | 0.096 | 95 | — | — | ||
壳霉菌 Stagonosporopsis sp. | — | — | 0.027 | 80 | — | — | ||
Plectosphaerella plurivora | — | — | 0.036 | 80 | — | — | ||
两型蜡蚧菌 Lecanicillium dimorphum | — | — | 0.044 | 95 | — | — | ||
三线镰刀菌 Fusarium tricinctum | — | — | 0.068 | 95 | — | — | ||
微结节霉菌 Microdochium bolleyi | — | — | 0.054 | 85 | — | — | ||
比阿娄维扎青霉 Penicillium bialowiezense | — | — | — | — | 0.266 | 100 | ||
短密青霉 Penicillium brevicompactum | — | — | — | — | 0.111 | 90 | ||
枝状枝孢 Cladosporium cladosporioides | — | — | — | — | 0.035 | 70 | ||
密丛毛霉 Mucor plumbeus | — | — | — | — | 0.043 | 85 |
优势种 Dominant species | 空间生态位宽度 Spatial niche width | 时间生态位宽度 Temporal niche width | 时空生态位宽度 Spatial-temporal niche breadth | ||||
---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 春 Spring | 夏 Summer | 秋 Autumn | ||
普通青霉 Penicillium commune | 0.220 | 0.255 | 0.156 | 0.979 | 0.215 | 0.250 | 0.153 |
酒色青霉 Penicillium vinaceum | 0.154 | 0.254 | — | 0.665 | 0.103 | 0.169 | — |
壳青霉 Penicillium crustosum | 0.033 | — | 0.105 | 0.652 | 0.022 | — | 0.069 |
灰玫瑰青霉 Penicillium griseoroseum | 0.338 | — | 0.103 | 0.565 | 0.191 | — | 0.058 |
波兰青霉 Penicillium polonicum | 0.223 | — | — | 0.333 | 0.074 | — | — |
青霉菌 Penicillium goetzii | 0.355 | — | — | 0.333 | 0.118 | — | — |
冻土毛霉 Mucor hiemalis | 0.037 | 0.058 | — | 0.653 | 0.024 | — | — |
总状毛霉 Mucor racemosus | 0.160 | — | — | 0.333 | 0.053 | — | — |
格孢腔菌 Pleosporales sp.2 | 0.289 | — | — | 0.333 | 0.096 | — | — |
青霉菌 Penicillium sp. | — | 0.513 | — | 0.333 | — | 0.171 | — |
高山被孢霉 Mortierella alpina | — | 0.211 | — | 0.333 | — | 0.070 | — |
微糙枝孢 Cladosporium asperulatum | — | 0.398 | — | 0.333 | — | 0.133 | — |
芽枝状枝孢 Cladosporium pseudocladosporioides | — | 0.657 | — | 0.333 | — | 0.219 | — |
链格孢 Alternaria chlamydosporigena | — | 0.104 | — | 0.333 | — | 0.035 | — |
壳霉菌 Stagonosporopsis sp. | — | 0.942 | — | 0.333 | — | 0.314 | — |
小不整球壳菌 Plectosphaerella plurivora | — | 0.278 | — | 0.333 | — | 0.093 | — |
两型蜡蚧菌 Lecanicillium dimorphum | — | 0.383 | — | 0.333 | — | 0.128 | — |
三线镰刀菌 Fusarium tricinctum | — | 0.160 | — | 0.333 | — | 0.053 | — |
微结节霉属 Microdochium bolleyi | — | 0.237 | — | 0.333 | — | 0.079 | — |
比阿娄维扎青霉 Penicillium bialowiezense | — | — | 0.017 | 0.333 | — | — | 0.006 |
短密青霉 Penicillium brevicompactum | — | — | 0.077 | 0.333 | — | — | 0.026 |
枝状枝孢 Cladosporium cladosporioides | — | — | 0.105 | 0.333 | — | — | 0.035 |
密丛毛霉 Mucor plumbeus | — | — | 0.251 | 0.333 | — | — | 0.084 |
表2 纳木措水体丝状真菌优势种在不同季节的生态位宽度(Bi)
Table 2 Niche width of dominant species of filamentous fungi in different seasons in Nam Co Lake
优势种 Dominant species | 空间生态位宽度 Spatial niche width | 时间生态位宽度 Temporal niche width | 时空生态位宽度 Spatial-temporal niche breadth | ||||
---|---|---|---|---|---|---|---|
春 Spring | 夏 Summer | 秋 Autumn | 春 Spring | 夏 Summer | 秋 Autumn | ||
普通青霉 Penicillium commune | 0.220 | 0.255 | 0.156 | 0.979 | 0.215 | 0.250 | 0.153 |
酒色青霉 Penicillium vinaceum | 0.154 | 0.254 | — | 0.665 | 0.103 | 0.169 | — |
壳青霉 Penicillium crustosum | 0.033 | — | 0.105 | 0.652 | 0.022 | — | 0.069 |
灰玫瑰青霉 Penicillium griseoroseum | 0.338 | — | 0.103 | 0.565 | 0.191 | — | 0.058 |
波兰青霉 Penicillium polonicum | 0.223 | — | — | 0.333 | 0.074 | — | — |
青霉菌 Penicillium goetzii | 0.355 | — | — | 0.333 | 0.118 | — | — |
冻土毛霉 Mucor hiemalis | 0.037 | 0.058 | — | 0.653 | 0.024 | — | — |
总状毛霉 Mucor racemosus | 0.160 | — | — | 0.333 | 0.053 | — | — |
格孢腔菌 Pleosporales sp.2 | 0.289 | — | — | 0.333 | 0.096 | — | — |
青霉菌 Penicillium sp. | — | 0.513 | — | 0.333 | — | 0.171 | — |
高山被孢霉 Mortierella alpina | — | 0.211 | — | 0.333 | — | 0.070 | — |
微糙枝孢 Cladosporium asperulatum | — | 0.398 | — | 0.333 | — | 0.133 | — |
芽枝状枝孢 Cladosporium pseudocladosporioides | — | 0.657 | — | 0.333 | — | 0.219 | — |
链格孢 Alternaria chlamydosporigena | — | 0.104 | — | 0.333 | — | 0.035 | — |
壳霉菌 Stagonosporopsis sp. | — | 0.942 | — | 0.333 | — | 0.314 | — |
小不整球壳菌 Plectosphaerella plurivora | — | 0.278 | — | 0.333 | — | 0.093 | — |
两型蜡蚧菌 Lecanicillium dimorphum | — | 0.383 | — | 0.333 | — | 0.128 | — |
三线镰刀菌 Fusarium tricinctum | — | 0.160 | — | 0.333 | — | 0.053 | — |
微结节霉属 Microdochium bolleyi | — | 0.237 | — | 0.333 | — | 0.079 | — |
比阿娄维扎青霉 Penicillium bialowiezense | — | — | 0.017 | 0.333 | — | — | 0.006 |
短密青霉 Penicillium brevicompactum | — | — | 0.077 | 0.333 | — | — | 0.026 |
枝状枝孢 Cladosporium cladosporioides | — | — | 0.105 | 0.333 | — | — | 0.035 |
密丛毛霉 Mucor plumbeus | — | — | 0.251 | 0.333 | — | — | 0.084 |
样点Sites | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | — | |||||||||||||||||||
2 | 0.930 | — | ||||||||||||||||||
3 | 0.891 | 0.982 | — | |||||||||||||||||
4 | 0.868 | 0.974 | 0.928 | — | ||||||||||||||||
5 | 0.858 | 0.976 | 0.997 | 0.929 | — | |||||||||||||||
6 | 0.997 | 0.920 | 0.894 | 0.840 | 0.860 | — | ||||||||||||||
7 | 0.886 | 0.967 | 0.997 | 0.894 | 0.992 | 0.896 | — | |||||||||||||
8 | 0.842 | 0.981 | 0.970 | 0.982 | 0.977 | 0.826 | 0.947 | — | ||||||||||||
9 | 0.887 | 0.952 | 0.999 | 0.940 | 0.998 | 0.887 | 0.993 | 0.979 | — | |||||||||||
10 | 0.913 | 0.952 | 0.878 | 0.979 | 0.867 | 0.881 | 0.842 | 0.928 | 0.889 | — | ||||||||||
11 | 0.983 | 0.982 | 0.952 | 0.939 | 0.931 | 0.975 | 0.940 | 0.928 | 0.951 | 0.952 | — | |||||||||
12 | 0.930 | 0.971 | 0.990 | 0.893 | 0.977 | 0.940 | 0.994 | 0.931 | 0.984 | 0.862 | 0.966 | — | ||||||||
13 | 0.968 | 0.921 | 0.843 | 0.915 | 0.815 | 0.944 | 0.817 | 0.853 | 0.847 | 0.972 | 0.964 | 0.861 | — | |||||||
14 | 0.866 | 0.759 | 0.633 | 0.792 | 0.598 | 0.826 | 0.595 | 0.676 | 0.642 | 0.900 | 0.832 | 0.659 | 0.950 | — | ||||||
15 | 0.829 | 0.869 | 0.937 | 0.742 | 0.925 | 0.861 | 0.963 | 0.826 | 0.923 | 0.685 | 0.860 | 0.960 | 0.697 | 0.446 | — | |||||
16 | 0.875 | 0.895 | 0.948 | 0.772 | 0.931 | 0.903 | 0.970 | 0.841 | 0.935 | 0.732 | 0.897 | 0.975 | 0.754 | 0.521 | 0.996 | — | ||||
17 | 0.986 | 0.879 | 0.811 | 0.835 | 0.772 | 0.973 | 0.799 | 0.778 | 0.809 | 0.911 | 0.950 | 0.857 | 0.981 | 0.931 | 0.724 | 0.782 | — | |||
18 | 0.962 | 0.991 | 0.980 | 0.939 | 0.966 | 0.960 | 0.973 | 0.949 | 0.979 | 0.929 | 0.993 | 0.988 | 0.927 | 0.763 | 0.905 | 0.932 | 0.911 | — | ||
19 | 0.831 | 0.904 | 0.965 | 0.798 | 0.960 | 0.855 | 0.983 | 0.879 | 0.956 | 0.732 | 0.879 | 0.973 | 0.720 | 0.468 | 0.994 | 0.989 | 0.724 | 0.926 | — | |
20 | 0.906 | 0.918 | 0.958 | 0.805 | 0.941 | 0.929 | 0.976 | 0.862 | 0.947 | 0.775 | 0.925 | 0.986 | 0.798 | 0.580 | 0.988 | 0.998 | 0.822 | 0.954 | 0.984 | — |
表3 纳木措各样点水体丝状真菌群落的生态位重叠(Oik)
Table 3 Niche overlap of filamentous fungal communities at different sites in Nam Co Lake
样点Sites | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | — | |||||||||||||||||||
2 | 0.930 | — | ||||||||||||||||||
3 | 0.891 | 0.982 | — | |||||||||||||||||
4 | 0.868 | 0.974 | 0.928 | — | ||||||||||||||||
5 | 0.858 | 0.976 | 0.997 | 0.929 | — | |||||||||||||||
6 | 0.997 | 0.920 | 0.894 | 0.840 | 0.860 | — | ||||||||||||||
7 | 0.886 | 0.967 | 0.997 | 0.894 | 0.992 | 0.896 | — | |||||||||||||
8 | 0.842 | 0.981 | 0.970 | 0.982 | 0.977 | 0.826 | 0.947 | — | ||||||||||||
9 | 0.887 | 0.952 | 0.999 | 0.940 | 0.998 | 0.887 | 0.993 | 0.979 | — | |||||||||||
10 | 0.913 | 0.952 | 0.878 | 0.979 | 0.867 | 0.881 | 0.842 | 0.928 | 0.889 | — | ||||||||||
11 | 0.983 | 0.982 | 0.952 | 0.939 | 0.931 | 0.975 | 0.940 | 0.928 | 0.951 | 0.952 | — | |||||||||
12 | 0.930 | 0.971 | 0.990 | 0.893 | 0.977 | 0.940 | 0.994 | 0.931 | 0.984 | 0.862 | 0.966 | — | ||||||||
13 | 0.968 | 0.921 | 0.843 | 0.915 | 0.815 | 0.944 | 0.817 | 0.853 | 0.847 | 0.972 | 0.964 | 0.861 | — | |||||||
14 | 0.866 | 0.759 | 0.633 | 0.792 | 0.598 | 0.826 | 0.595 | 0.676 | 0.642 | 0.900 | 0.832 | 0.659 | 0.950 | — | ||||||
15 | 0.829 | 0.869 | 0.937 | 0.742 | 0.925 | 0.861 | 0.963 | 0.826 | 0.923 | 0.685 | 0.860 | 0.960 | 0.697 | 0.446 | — | |||||
16 | 0.875 | 0.895 | 0.948 | 0.772 | 0.931 | 0.903 | 0.970 | 0.841 | 0.935 | 0.732 | 0.897 | 0.975 | 0.754 | 0.521 | 0.996 | — | ||||
17 | 0.986 | 0.879 | 0.811 | 0.835 | 0.772 | 0.973 | 0.799 | 0.778 | 0.809 | 0.911 | 0.950 | 0.857 | 0.981 | 0.931 | 0.724 | 0.782 | — | |||
18 | 0.962 | 0.991 | 0.980 | 0.939 | 0.966 | 0.960 | 0.973 | 0.949 | 0.979 | 0.929 | 0.993 | 0.988 | 0.927 | 0.763 | 0.905 | 0.932 | 0.911 | — | ||
19 | 0.831 | 0.904 | 0.965 | 0.798 | 0.960 | 0.855 | 0.983 | 0.879 | 0.956 | 0.732 | 0.879 | 0.973 | 0.720 | 0.468 | 0.994 | 0.989 | 0.724 | 0.926 | — | |
20 | 0.906 | 0.918 | 0.958 | 0.805 | 0.941 | 0.929 | 0.976 | 0.862 | 0.947 | 0.775 | 0.925 | 0.986 | 0.798 | 0.580 | 0.988 | 0.998 | 0.822 | 0.954 | 0.984 | — |
季节 Seasons | 春 Spring | 夏 Summer | 秋 Autumn |
---|---|---|---|
春 Spring | — | ||
夏 Summer | 0.772 | — | |
秋 Autumn | 0.864 | 0.838 | — |
表4 纳木错各季节水体丝状真菌群落的生态位重叠(Oik)
Table 4 Niche overlap of filamentous fungal communities in different seasons in Nam Co Lake
季节 Seasons | 春 Spring | 夏 Summer | 秋 Autumn |
---|---|---|---|
春 Spring | — | ||
夏 Summer | 0.772 | — | |
秋 Autumn | 0.864 | 0.838 | — |
图4 纳木措不同季节水体环境因子与丝状真菌优势种丰度的相关性 图中条形图例的数值代表Spearman相关性系数。**: P<0.01; *: P<0.05
Figure 4 Correlation between water environmental factors and the abundance of dominant species of filamentous fungi in different seasons in Nam Co Lake
研究区域 Study areas | 物种类群 Species richness | 生态位宽度 Niche width | 生态位重叠 Niche overlap | 优势种更替率 Replacement rate of dominant species |
---|---|---|---|---|
纳木措 Nam Co Lake | 丝状真菌 | 空间0.017‒0.942 时间0.333‒0.979 时空0.006‒0.314 | 空间0.446‒0.999 时间0.772‒0.864 | 春季与夏季84% 夏季与秋季95% 春季与秋季77% |
北部湾北部 (郑挺等, Northern Beibu Gulf | 浮游动物 | 春季0.04‒0.62 夏季0.05‒0.67 秋季0.05‒0.61 冬季0.03‒0.60 | 年度0.02‒0.89 | — |
烟台近海海域 (侯朝伟等, Yantai offshore waters | 浮游动物 | 春季0.58‒0.97 夏季0.26‒0.91 | 春季0.31‒0.96 夏季0.26‒0.97 | 春季与夏季73.33% |
西藏拉萨河 (张鹏等, Lhasa River of Tibet | 原生动物 | 空间0.071‒0.354 时间0.378‒0.695 时空0.027‒0.246 | 空间0.123‒0.997 时间0.005‒0.412 时空0.001‒0.106 | 春季与夏季57.14% 夏季与秋季66.67% |
西藏麦地卡湿地 (安瑞志等, Mitika Wetland of Tibet | 原生动物 | 丰水期0.101‒0.445 枯水期0.141‒0.272 | 丰水期0.089‒0.456 枯水期0.141‒0.273 | — |
表5 纳木措微生物与其他区域微生物的生态位研究对比
Table 5 Comparison of niche studies of microorganisms in Nam Co Lake with those in other regions
研究区域 Study areas | 物种类群 Species richness | 生态位宽度 Niche width | 生态位重叠 Niche overlap | 优势种更替率 Replacement rate of dominant species |
---|---|---|---|---|
纳木措 Nam Co Lake | 丝状真菌 | 空间0.017‒0.942 时间0.333‒0.979 时空0.006‒0.314 | 空间0.446‒0.999 时间0.772‒0.864 | 春季与夏季84% 夏季与秋季95% 春季与秋季77% |
北部湾北部 (郑挺等, Northern Beibu Gulf | 浮游动物 | 春季0.04‒0.62 夏季0.05‒0.67 秋季0.05‒0.61 冬季0.03‒0.60 | 年度0.02‒0.89 | — |
烟台近海海域 (侯朝伟等, Yantai offshore waters | 浮游动物 | 春季0.58‒0.97 夏季0.26‒0.91 | 春季0.31‒0.96 夏季0.26‒0.97 | 春季与夏季73.33% |
西藏拉萨河 (张鹏等, Lhasa River of Tibet | 原生动物 | 空间0.071‒0.354 时间0.378‒0.695 时空0.027‒0.246 | 空间0.123‒0.997 时间0.005‒0.412 时空0.001‒0.106 | 春季与夏季57.14% 夏季与秋季66.67% |
西藏麦地卡湿地 (安瑞志等, Mitika Wetland of Tibet | 原生动物 | 丰水期0.101‒0.445 枯水期0.141‒0.272 | 丰水期0.089‒0.456 枯水期0.141‒0.273 | — |
[1] | AINSWORTH G C, 2008. Ainsworth & Bisby’s dictionary of the fungi[M]. Wallingford: CAB Iternational. |
[2] | ANTUNES J T, SOUSA A G G, AZEVEDO J, et al., 2022. Distinct temporal succession of bacterial communities in early marine biofilms in a Portuguese Atlantic Port[J]. Frontiers in Mcrobiology, 11: 1938. |
[3] |
CANTRELL S A, DIANESE J C, FELL J, et al., 2011. Unusual fungal niches[J]. Mycologia, 103(6): 1161-1174.
DOI PMID |
[4] |
COLWELL R K, FUTUYMA D J, 1971. On the measurement of niche breadth and overlap[J]. Ecology, 52(4): 567-576.
DOI PMID |
[5] |
CONG Z, KANG S, GAO S, et al., 2013. Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record[J]. Environmental Science & Technology, 47(6): 2579-2586.
DOI URL |
[6] | ESSER D S, LEVEAU J H J, MEYER K M, et al., 2015. Spatial scales of interactions among bacteria and between bacteria and the leaf surface[J]. FEMS Microbiology Ecology, 91(3): fiu034. |
[7] |
GRINNELL J, 1917. The niche-relationships of the California Thrasher[J]. The Auk, 34(4): 427-433.
DOI URL |
[8] |
GLASL B, WEBSTER N S, BOURNE D G, 2017. Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems[J]. Marine Biology, 164(4): 1-18.
DOI URL |
[9] |
HABIB O A, TIPPETT R, MURPHY K J, 1997. Seasonal changes in phytoplankton community structure in relation to physico-chemical factors in Loch Lomond, Scotland[J]. Hydrobiologia, 350(1): 63-79.
DOI URL |
[10] |
HASSANI M, DURAN P, HACQUARD S, 2018. Microbial interactions within the plant holobiont[J]. Microbiome, 6(1): 1-17.
DOI URL |
[11] |
HELAOUET P, BEAUGRAND G, PHYSIOLOGY, 2009. Ecological niches and species distribution[J]. Ecosystems, 12(8): 1235-1245.
DOI URL |
[12] |
JIAO C C, ZHAO D Y, ZENG J, et al., 2020. Disentangling the seasonal co-occurrence patterns and ecological stochasticity of planktonic and benthic bacterial communities within multiple lakes[J]. Science of the Total Environment, 740: 140010.
DOI URL |
[13] | KINSEY G, PATERSON R, KELLEY J, 2003. Filamentous fungi in water systems[J]. The Handbook of Water and Wastewater Microbiology, 77: 819. |
[14] |
KIS-PAPO T, OREN A, WASSER S P, et al., 2003. Survival of filamentous fungi in hypersaline Dead Sea water[J]. Microbial Ecology, 45(2): 183-190.
DOI URL |
[15] |
LANDEWEERT R, LEEFLANG P, KUYPER T W, et al., 2003. Molecular identification of ectomycorrhizal mycelium in soil horizons[J]. Applied and Environmental Microbiology, 69(1): 327-333.
DOI PMID |
[16] |
LI Y, HE Q K, MA X W, et al., 2019. Plant traits interacting with sediment properties regulate sediment microbial composition under different aquatic DIC levels caused by rising atmospheric CO2[J]. Plant and Soil, 445(1): 497-512.
DOI URL |
[17] |
LIN Q Q, XU L, HOU J Z, et al., 2017. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming[J]. Water Research, 124: 618-629.
DOI PMID |
[18] | LIU X D, CHEN B D, 2000. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(14): 1729-1742. |
[19] | MCNAUGHTON S J, 1967. Relationships among functional properties of Californian grassland[J]. Nature, 216(5111): 168-169. |
[20] | MILNER A M, BROWN L E, HANNAH D M, 2009. Hydroecological response of river systems to shrinking glaciers[J]. Hydrological Processes: An International Journal, 23(1): 62-77. |
[21] |
PIANKA E R, 1973. The structure of lizard communities[J]. Annual Review of Ecology and Systematics, 4(1): 53-74.
DOI URL |
[22] |
SPENCER R G M, GUO W D, RAYMOND P A, et al., 2014. Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 142: 64-74.
DOI URL |
[23] |
TANG W, ZHOU T C, SUN J, et al., 2017. Accelerated urban expansion in Lhasa city and the implications for sustainable development in a plateau city[J]. Sustainability, 9(9): 1499.
DOI URL |
[24] |
WAN W, XIAO P F, FENG X Z, et al., 2014. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data[J]. Chinese Science Bulletin, 59(10): 1021-1035.
DOI URL |
[25] |
WANG C, LIU S Y, ZHANG Y, et al., 2018. Bacterial communities and their predicted functions explain the sediment nitrogen changes along with submerged macrophyte restoration[J]. Microbial Ecology, 76(3): 625-636.
DOI PMID |
[26] |
WILLIAMS H T P, LENTON T M, 2008. Environmental regulation in a network of simulated microbial ecosystems[J]. Proceedings of the National Academy of Sciences, 105(30): 10432-10437.
DOI URL |
[27] |
XU B, CAO J, HANSEN J, et al., 2009. Black soot and the survival of Tibetan glaciers[J]. Proceedings of the National Academy of Sciences, 106(52): 22114-22118.
DOI URL |
[28] |
XIA P H, YAN D B, SUN R G, et al., 2020. Community composition and correlations between bacteria and algae within epiphytic biofilms on submerged macrophytes in a plateau lake, southwest China[J]. Science of the Total Environment, 727: 138398.
DOI URL |
[29] |
ZHANG G Q, LUO W, CHEN W F, et al., 2019. A robust but variable lake expansion on the Tibetan Plateau[J]. Science Bulletin, 64(18): 1306-1309.
DOI URL |
[30] |
ZHANG G, YAO T, XIE H, et al., 2020. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms[J]. Earth-Science Reviews, 208: 103269.
DOI URL |
[31] |
ZHANG L Y, DELGADO-BAQUERIZO M, SHI Y, et al., 2021. Co-existing water and sediment bacteria are driven by contrasting environmental factors across glacier-fed aquatic systems[J]. Water Research, 198: 117139.
DOI URL |
[32] |
ZHANG X, YAN Q Y, YU Y H, et al., 2014. Spatiotemporal pattern of bacterioplankton in Donghu Lake[J]. Chinese Journal of Oceanology and Limnology, 32(3): 554-564.
DOI URL |
[33] | 安瑞志, 张鹏, 达珍, 等, 2021. 西藏麦地卡湿地不同水文期原生动物优势种生态位及其种间联结性[J]. 林业科学, 57(2): 126-138. |
AN R Z, ZHANG P, DA Z, et al., 2021. Niche and interspecific association of dominant protozoan species under different hydrologic periods in the Mitika Wetland of Tibet, China[J]. Scientia Silvae Sinicae, 57(2): 126-138. | |
[34] | 何雄波, 李军, 沈忱, 等, 2018. 闽江口主要渔获鱼类的生态位宽度与重叠[J]. 应用生态学报, 29(9): 3085-3092. |
HE X B, LI J, SHEN C, et al., 2018. The breadth and overlap of ecological niche of major fish species in the Mingjiang River estuary, China[J]. Chinese Journal of Applied Ecology, 29(9): 3085-3092. | |
[35] | 侯朝伟, 孙西艳, 刘永亮, 等, 2020. 烟台近海浮游动物优势种空间生态位研究[J]. 生态学报, 40(16): 5822-5833. |
HOU Z W, SUN X Y, LIU Y L, et al., 2020. Spatial niches of dominant zooplankton species in the Yantai offshore waters[J]. Acta Ecologica Sinica, 40(16): 5822-5833. | |
[36] | 黄保宏, 邹运鼎, 毕守东, 等, 2005. 梅园昆虫群落特征、动态及优势种生态位[J]. 应用生态学报, 16(2): 307-312. |
HUANG B H, ZOU Y D, BI S D, et al., 2005. Characteristics, dynamics and niche of insect community in plum orchard[J]. Chinese Journal of Applied Ecology, 16(2): 307-312. | |
[37] | 李德志, 石强, 臧润国, 等, 2006. 物种或种群生态位宽度与生态位重叠的计测模型[J]. 林业科学, 42(7): 95-103. |
LI D Z, SHI Q, ZANG R G, et al., 2006. Models for niche breadth and niche overlap of species or populations[J]. Scientia Silvae Sinicae, 42(7): 95-103. | |
[38] | 梁淼, 姜倩, 孙丽艳, 等, 2018. 曹妃甸近岸海域大、中型浮游动物优势种空间生态位研究[J]. 生态环境学报, 27(7): 1241-1250. |
LIANG M, JIANG Q, SUN L Y, et al., 2018. Spatial niches of dominant macro-zooplankton and meso-zooplankton species in the coastal area of Caofeidian[J]. Ecology and Environmental Sciences, 27(7): 1241-1250. | |
[39] | 马玲, 顾伟, 王利东, 等, 2012. 扎龙湿地的昆虫群落生态位[J]. 林业科学, 48(5): 81-87. |
MA L, GU W, WANG L D, et al., 2012. Insect community niche in the Zhalong Wetland[J]. Scientia Silvae Sinicae, 48(5): 81-87. | |
[40] | 彭松耀, 李新正, 王洪法, 等, 2015. 南黄海春季大型底栖动物优势种生态位[J]. 生态学报, 35(6): 1917-1928. |
PENG S Y, LI X Z, WANG H F, et al., 2015. Niche analysis of dominant species of macrozoobenthic community in the southern Yellow Sea in spring[J]. Acta Ecologica Sinica, 35(6): 1917-1928. | |
[41] | 求锦津, 王咏雪, 李铁军, 等, 2018. 舟山长白海域主要游泳动物生态位及其分化研究[J]. 生态学报, 38(18): 6759-6767. |
QIU J J, WANG Y X, LI T J, et al., 2018. Study on the niche and differentiation of major nekton species in the Zhoushan Changbai sea area[J]. Acta Ecologica Sinica, 38(18): 6759-6767. | |
[42] | 孙立夫, 张艳华, 裴克全, 2009. 一种高效提取真菌总DNA的方法[J]. 菌物学报, 28(2): 299-302. |
SUN L F, ZHANG Y H, PEI K Q, 2009. A rapid extraction of genomic DNA from fungi[J]. Mycosystema, 28(2): 299-302. | |
[43] | 王艳红, 郝兆, 郭小芳, 等, 2021. 纳木错夏季酵母菌多样性及其影响因素[J]. 中国环境科学, 41(11): 5361-5371. |
WANG Y H, HAO Z, GUO X F, et al., 2021. Analysis on yeast diversity and the influencing factors during summertime in Nam Co Lake[J]. China Environmental Science, 41(11): 5361-5371. | |
[44] | 汪志聪, 吴卫菊, 左明, 等, 2010. 巢湖浮游植物群落生态位的研究[J]. 长江流域资源与环境, 19(6): 685-691. |
WANG Z C, WU W J, ZUO M, et al., 2010. Niche analysis of phytoplankton community Lake Chaohu[J]. Resources and Environment in the Yangtze Basin, 19(6): 685-691. | |
[45] | 邢殿楼, 霍堂斌, 吴会民, 等, 2016. 总磷, 总氮联合消化的测定方法[J]. 大连海洋大学学报, 21(3): 219-225. |
XING D L, HUO T B, WU H M, et al., 2016. Simultaneous digestion for determination of total phosphorus and total nitrogen in sea water[J]. Journal of DaLian Fisheries University, 21(3): 219-225. | |
[46] | 严亚萍, 李治滢, 董明华, 等, 2013. 云南阳宗海酵母菌种群结构及产胞外酶测试[J]. 微生物学报, 53(11): 1205-1212. |
YAN Y P, LI Z Y, DONG M H, et al., 2013. Yeasts from Yangzonghai Lake in Yunnan (China): Diversity and extracellular enzymes[J]. Acta Microbiologica Sinica, 53(11): 1205-1212. | |
[47] | 张皓, 宋昌民, 闫启仑, 等, 2016. 辽河口春、夏季浮游动物空间生态位的比较[J]. 海洋环境科学, 35(6): 920-925. |
ZHANG H, SONG C M, YAN Q L, et al., 2016. Comparative studies on the spatial niche of zooplankton in the Liaohe estuary in spring and summer[J]. Marine Environmental Science, 35(6): 920-925. | |
[48] | 张鹏, 刘洋, 安瑞志, 等, 2022. 西藏拉萨河中下游原生动物优势种时空生态位[J]. 林业科学, 58(1): 78-88. |
ZHANG P, LIU Y, AN R Z, et al., 2022. Spatio-temporal niche of dominant protozoa species in the midstream and downstream of Lhasa River, Tibet, China[J]. Scientia Silvae Sinicae, 58(1): 78-88. | |
[49] | 郑挺, 林元烧, 曹文清, 等, 2014. 北部湾北部生态系统结构与功能——浮游动物空间生态位及其分化[J]. 生态学报, 34(13): 3635-3649. |
ZHENG T, LIN Y S, CAO W Q, et al., 2014. Ecosystem structure and function in northern Beibu Gulf: zooplankton spatial niche and its differentiation[J]. Acta Ecologica Sinica, 34(13): 3635-3649. | |
[50] | 郑艳艳, 郭小芳, 郝兆, 等, 2022. 纳木措春季沿岸水体可培养细菌群落特征[J]. 干旱区资源与环境, 36(3): 178-186. |
ZHENG Y Y, GUO X F, HAO Z, et al., 2022. Characteristics of culturable bacterial community in coastal water of Lake Nam Co in spring[J]. Journal of Arid Land Resources and Environment, 36(3): 178-186. |
[1] | 巫晨煜, 许帆帆, 魏士博, 樊晶晶, 刘观鹏, 王坤. 渭河流域地表植被覆盖对气候变化的响应研究[J]. 生态环境学报, 2023, 32(5): 835-844. |
[2] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[3] | 寇祝, 卿纯, 袁昌果, 李平. 西藏东北部热泉水中硫氧化菌的多样性及分布特征[J]. 生态环境学报, 2023, 32(5): 989-1000. |
[4] | 胡芳, 刘聚涛, 温春云, 韩柳, 文慧. 抚河流域浮游植物群落结构特征及其水生态状况评价[J]. 生态环境学报, 2023, 32(4): 744-755. |
[5] | 李善家, 王兴敏, 刘海锋, 孙梦格, 雷雨昕. 河西走廊荒漠植物多样性及其对环境因子的响应[J]. 生态环境学报, 2023, 32(3): 429-438. |
[6] | 李晖, 李必龙, 葛黎黎, 韩琛惠, 杨倩, 张岳军. 2000-2021年汾河流域植被时空演变特征及地形效应[J]. 生态环境学报, 2023, 32(3): 439-449. |
[7] | 何艳虎, 龚镇杰, 吴海彬, 蔡宴朋, 杨志峰, 陈晓宏. 粤港澳大湾区城市生态效率时空演变及影响因素[J]. 生态环境学报, 2023, 32(3): 469-480. |
[8] | 王嘉丽, 冯婧珂, 杨元征, 俎佳星, 蔡文华, 杨健. 南宁市主城区不透水面与热环境效应的空间关系研究[J]. 生态环境学报, 2023, 32(3): 525-534. |
[9] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[10] | 周选博, 王晓丽, 马玉寿, 王彦龙, 罗少辉, 谢乐乐. 返青期休牧措施下高寒草甸主要植物种群的生态位变化特征[J]. 生态环境学报, 2022, 31(8): 1547-1555. |
[11] | 陈文裕, 夏丽华, 徐国良, 余世钦, 陈行, 陈金凤. 2000—2020年珠江流域NDVI动态变化及影响因素研究[J]. 生态环境学报, 2022, 31(7): 1306-1316. |
[12] | 姜倪皓, 张世浩, 张诗函. 哀牢山紫茎泽兰入侵群落主要物种种间联结及环境解释[J]. 生态环境学报, 2022, 31(7): 1370-1382. |
[13] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[14] | 龙靖, 黄耀, 刘占锋, 简曙光, 魏丽萍, 王俊. 西沙热带珊瑚岛典型乔木叶片性状和养分再吸收特征[J]. 生态环境学报, 2022, 31(2): 248-256. |
[15] | 赵安周, 田新乐. 基于GEE平台的1986-2021年黄土高原植被覆盖度时空演变及影响因素[J]. 生态环境学报, 2022, 31(11): 2124-2133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||