生态环境学报 ›› 2025, Vol. 34 ›› Issue (4): 653-664.DOI: 10.16258/j.cnki.1674-5906.2025.04.014
• 综述 •
上一篇
王龙飞1,2(), 张皎皎1,2, 王子怡1,2, 陈玉东3, 李轶1,2,*(
)
收稿日期:
2024-09-30
出版日期:
2025-04-18
发布日期:
2025-04-24
通讯作者:
*李轶。E-mail: envly@hhu.edu.cn作者简介:
王龙飞(1988年生),男,副教授,博士,主要从事水污染控制和水生态修复方面的研究。E-mail: lfwang@hhu.edu.cn
基金资助:
WANG Longfei1,2(), ZHANG Jiaojiao1,2, WANG Ziyi1,2, CHEN Yudong3, LI Yi1,2,*(
)
Received:
2024-09-30
Online:
2025-04-18
Published:
2025-04-24
摘要:
河湖生态修复是当前生态环境保护的关键议题。在河湖复苏的大背景下,基于生物膜技术的系列修复措施展现出显著优势与巨大潜力。该文深入探讨了其在该领域的最新进展与实践成果。其中,生物膜载体的研发与改良至关重要,新型载体材料不断推陈出新,为微生物提供了更优的生长环境;生物膜反应器操作条件的优化同样不容忽视,借由对温度、水流速度等参数的精准调控,生物膜的净化效能可被充分激发;菌藻生物膜技术的优化带来了新机遇,菌藻共生体系能够协同作用,提高对污染物的去除效率;生物膜技术与其他工艺的耦合应用也备受关注,与物理、化学方法相结合,可实现优势互补,全面改善水体质量。在实际应用中,生物膜技术有力促进了河湖生态系统的恢复,显著提升了水体的整体质量和生态健康水平。生物膜技术未来的研究,需深入探究适宜河湖生态修复的生物膜的技术机理,洞悉其净化微观机制,优化载体材料设计和反应器构建,提高生物膜的性能和效率,扩展其在不同环境条件下的应用范畴,为河湖生态修复工作提供更加科学、高效的技术支撑。
中图分类号:
王龙飞, 张皎皎, 王子怡, 陈玉东, 李轶. 生物膜技术在河湖生态修复中的创新与实践[J]. 生态环境学报, 2025, 34(4): 653-664.
WANG Longfei, ZHANG Jiaojiao, WANG Ziyi, CHEN Yudong, LI Yi. Innovation and Practice of Biofilm-based Technology in the Ecological Restoration of Aquatic Systems[J]. Ecology and Environment, 2025, 34(4): 653-664.
水环境类型 | 适用技术 | 处理方式 | 重点关注污染物 | 修复机理 | 存在问题 | 文献 | |
---|---|---|---|---|---|---|---|
不同 水质条件水体 | 富营养化水体 | 生态水草,如阿科蔓生态基 | 原位处理 | BOD、TSS、氮磷 | 比表面积大有利于大量微生物附着,纤维孔状结构使得它能够创造较理想的好氧、兼性和厌氧环境 | 成本较高,只适合微污染水体,优势微生物菌群不明显 | Tang et al., |
污染程度较高、自净能力不足的河道 | 人工填料接触氧化法 | 原位处理 | 氨氮、铁、锰和有机物 | 以人工合成材料为填料,通过填料上生物膜中微生物生化过程实现污染水体净化 | 填料及支架成本较高、负荷过高时会导致生物膜过厚引起填料堵塞 | 杨林, | |
微污染水体 | 砾间接触氧化法 | 原位处理 | BOD、SS | 以填充砾石作为载体,砾石表面带电吸附有机物从而被生物膜上的微生物分解 | 需要预处理大的悬浮物,对TN、TP去除率不高 | 李应辉, | |
污染较轻、对人工干预较为敏感的水体 | 伏流净化法 | 原位处理 | 有机污染物、悬浮颗粒物 | 利用河床向地下的渗透作用和伏流水的稀释作用来净化河流 | 考虑采用伏流净化法时,需要对必要取水量、河床伏流量充分调查和论证 | 郭芳等, | |
低碳氮比水体 | 菌藻生物膜 | 原位处理 | 氮磷、矿物质、脂质 | 通过微生物与藻类之间的协同作用实现污染物的去除 | 菌藻生物量易流失、污染物降解速率低、微藻光能利用率低 | Wei et al., | |
不同水动力条件水体 | 完全截污河湖的水质净化、不完全截污黑臭水体修复 | 膜曝气生物膜反应器(MABR) | 流速缓慢时适合于原位处理;流速过快时可采用旁路处理 | 氮磷、COD | 以中空纤维曝气膜作为载体并同步曝气,污染物在浓差驱动和微生物吸附等作用下被生物膜上微生物利用 | 实验条件要求严苛;对气相压力、液相流速要求很高 | Zhong et al., |
富营养化缓流水体 | 太阳能悬浮曝气生物膜反应器 | 原位处理 | COD、氨氮、TN、TP | 依靠填料的吸附、拦截、生物膜表面净化作用,辅以强化曝气及人工推流净化水体,太阳能供能 | 对溶解氧的提高作用效果不显著、夏季净化效果好但冬季净化效果一般 | Zhang et al., |
表1 代表性河湖水体中适用的生物膜技术概述
Table 1 Overview of applicable biofilm-based techniques in representative river and lake water bodies
水环境类型 | 适用技术 | 处理方式 | 重点关注污染物 | 修复机理 | 存在问题 | 文献 | |
---|---|---|---|---|---|---|---|
不同 水质条件水体 | 富营养化水体 | 生态水草,如阿科蔓生态基 | 原位处理 | BOD、TSS、氮磷 | 比表面积大有利于大量微生物附着,纤维孔状结构使得它能够创造较理想的好氧、兼性和厌氧环境 | 成本较高,只适合微污染水体,优势微生物菌群不明显 | Tang et al., |
污染程度较高、自净能力不足的河道 | 人工填料接触氧化法 | 原位处理 | 氨氮、铁、锰和有机物 | 以人工合成材料为填料,通过填料上生物膜中微生物生化过程实现污染水体净化 | 填料及支架成本较高、负荷过高时会导致生物膜过厚引起填料堵塞 | 杨林, | |
微污染水体 | 砾间接触氧化法 | 原位处理 | BOD、SS | 以填充砾石作为载体,砾石表面带电吸附有机物从而被生物膜上的微生物分解 | 需要预处理大的悬浮物,对TN、TP去除率不高 | 李应辉, | |
污染较轻、对人工干预较为敏感的水体 | 伏流净化法 | 原位处理 | 有机污染物、悬浮颗粒物 | 利用河床向地下的渗透作用和伏流水的稀释作用来净化河流 | 考虑采用伏流净化法时,需要对必要取水量、河床伏流量充分调查和论证 | 郭芳等, | |
低碳氮比水体 | 菌藻生物膜 | 原位处理 | 氮磷、矿物质、脂质 | 通过微生物与藻类之间的协同作用实现污染物的去除 | 菌藻生物量易流失、污染物降解速率低、微藻光能利用率低 | Wei et al., | |
不同水动力条件水体 | 完全截污河湖的水质净化、不完全截污黑臭水体修复 | 膜曝气生物膜反应器(MABR) | 流速缓慢时适合于原位处理;流速过快时可采用旁路处理 | 氮磷、COD | 以中空纤维曝气膜作为载体并同步曝气,污染物在浓差驱动和微生物吸附等作用下被生物膜上微生物利用 | 实验条件要求严苛;对气相压力、液相流速要求很高 | Zhong et al., |
富营养化缓流水体 | 太阳能悬浮曝气生物膜反应器 | 原位处理 | COD、氨氮、TN、TP | 依靠填料的吸附、拦截、生物膜表面净化作用,辅以强化曝气及人工推流净化水体,太阳能供能 | 对溶解氧的提高作用效果不显著、夏季净化效果好但冬季净化效果一般 | Zhang et al., |
时间 | 治理对象 | 治理方法 | 治理成果 | 文献 |
---|---|---|---|---|
2002 | 上海苏州河支流 木渎港河段 | 原位悬浮填料移动床生物膜反应器 | 经过1个月治理,CODCr、BOD5的去除率分别达到52.3%和58.3% | 王学江等, |
2005 | 宁波月湖 | 基于人工水草的菌藻生物膜技术 | 经6个月治理,水体透明度提高,CODMn、TP、TN和NH4+-N的削减率分别达到93%、49%、95%和70% | 吴永红等, |
2006 | 太湖入湖河道宜兴市 大浦镇林庄港 | 基于轮藻仿生填料的生物接触氧化法 | 经过6个月治理,进水水质均在地表水环境质量标准中的Ⅲ类以内,氨氮净去除率的范围在5%-40%之间 | 田伟君等, |
2015 | 南宁市朝阳溪 黑臭河水 | 基于碳素纤维载体的生态基技术 | 24 h内,浊度由原来的47.32 NTU降低为13.78 NTU;10 d后无曝气情况下,COD、TP、NH3-N和TN去除率分别达到76%、54%、91%和55% | 梁益聪等, |
2020 | 合肥市匡河 | 原位强化耦合生物膜反应器EHBR | 经过1个月治理,出水水质基本达到Ⅳ类水体指标,出水COD、氨氮平均去除率分别为15%、46% | 李曼等, |
2022 | 天津马厂减河 | 原位膜曝气生物反应器(Membrane -Aerated Biofilm Reactor,简称MABR)与微纳米曝气技术组合技术 | 24周后,COD、NH3-N、TP的去除率分别达到47%、44%、14%,DO增加32%;水质达到地表水环境质量Ⅴ类标准 | 梁静波等, |
2023 | 苏州科技大学石湖 校区九曲桥 | 原位生物蜡技术 | COD、氨氮、TN、TP、叶绿素a均值分别降低24%、42%、47%、23%、18%,透明度提高24% | 吕凌霄等, |
表2 中国应用生物膜-生态技术进行河湖治理修复的案例简介
Table 2 A brief introduction to the application of biofilm-based technology in river-lake restoration in China
时间 | 治理对象 | 治理方法 | 治理成果 | 文献 |
---|---|---|---|---|
2002 | 上海苏州河支流 木渎港河段 | 原位悬浮填料移动床生物膜反应器 | 经过1个月治理,CODCr、BOD5的去除率分别达到52.3%和58.3% | 王学江等, |
2005 | 宁波月湖 | 基于人工水草的菌藻生物膜技术 | 经6个月治理,水体透明度提高,CODMn、TP、TN和NH4+-N的削减率分别达到93%、49%、95%和70% | 吴永红等, |
2006 | 太湖入湖河道宜兴市 大浦镇林庄港 | 基于轮藻仿生填料的生物接触氧化法 | 经过6个月治理,进水水质均在地表水环境质量标准中的Ⅲ类以内,氨氮净去除率的范围在5%-40%之间 | 田伟君等, |
2015 | 南宁市朝阳溪 黑臭河水 | 基于碳素纤维载体的生态基技术 | 24 h内,浊度由原来的47.32 NTU降低为13.78 NTU;10 d后无曝气情况下,COD、TP、NH3-N和TN去除率分别达到76%、54%、91%和55% | 梁益聪等, |
2020 | 合肥市匡河 | 原位强化耦合生物膜反应器EHBR | 经过1个月治理,出水水质基本达到Ⅳ类水体指标,出水COD、氨氮平均去除率分别为15%、46% | 李曼等, |
2022 | 天津马厂减河 | 原位膜曝气生物反应器(Membrane -Aerated Biofilm Reactor,简称MABR)与微纳米曝气技术组合技术 | 24周后,COD、NH3-N、TP的去除率分别达到47%、44%、14%,DO增加32%;水质达到地表水环境质量Ⅴ类标准 | 梁静波等, |
2023 | 苏州科技大学石湖 校区九曲桥 | 原位生物蜡技术 | COD、氨氮、TN、TP、叶绿素a均值分别降低24%、42%、47%、23%、18%,透明度提高24% | 吕凌霄等, |
[1] | BASSIN J P, KLEEREBEZEM R, ROSADO A S, et al., 2012. Effect of different operational conditions on biofilm development, nitrification, and nitrifying microbial population in moving-bed biofilm reactors[J]. Environmental Science & Technology, 46(3): 1546-1555. |
[2] | BOTTACIN-BUSOLIN A, SINGER G, ZARAMELLA M, et al., 2009. Effects of streambed morphology and biofilm growth on the transient storage of solutes[J]. Environmental Science & Technology, 43(19): 7337-7342. |
[3] |
CELMER D, OLESZKIEWICZ J A, CICEK N, 2008. Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater[J]. Water Research, 42(12): 3057-3065.
DOI PMID |
[4] | CHENG H Z, MA S J, LIAO K W, et al., 2023. Effect of external carbon source type on effluent dissolved organic nitrogen characteristics in post denitrifying moving bed biofilm reactors: Chemical molecular and microbial insights[J]. Chemical Engineering Journal, 466: 143338. |
[5] | CHANG G W, YANG J J, LI X, et al., 2024. Iron-modified carriers accelerate biofilm formation and resist anammox bacteria loss in biofilm reactors for partial denitrification-anammox[J]. Bioresource Technology, 394: 130223. |
[6] | CHEN L, QUAN X C, GAO Z Q, et al., 2022. A composite Fe-C/layered double oxides (Fe-C/LDO) carrier fabrication and application for enhanced removal of nitrate and phosphate from polluted water with a low carbon/nitrogen ratio[J]. Journal of Cleaner Production, 352(15): 131628. |
[7] |
CHENG W, DASTGHEIB S A, KARANFIL T, 2005. Adsorption of dissolved natural organic matter by modified activated carbons[J]. Water Research, 39(11): 2281-2290.
PMID |
[8] | CHENG Y L, JUANG Y C, LIAO G Y, et al., 2011. Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation[J]. Bioresource Technology, 102(1): 82-87. |
[9] | GAO F Y, ZHOU X T, MA Y T, et al., 2021. Calcium modified basalt fiber bio-carrier for wastewater treatment: Investigation on bacterial community and nitrogen removal enhancement of bio-nest[J]. Bioresource Technology, 335(1): 125259. |
[10] | HU B, WANG Y L, QUAN J N, et al., 2020a. Effects of static magnetic field on the performances of anoxic/oxic sequencing batch reactor[J]. Bioresource Technology, 309: 123299. |
[11] |
HUSER B J, PILIGRIM K M, 2014. A simple model for predicting aluminum bound phosphorus formation and internal loading reduction in lakes after aluminum addition to lake sediment[J]. Water Research, 53: 378-385.
DOI PMID |
[12] | HU Z F, LI D S, GUAN D T, 2020b. Water quality retrieval and algae inhibition from eutrophic freshwaters with iron-rich substrate based ecological floating beds treatment[J]. Science of The Total Environment, 712: 135584. |
[13] |
HWANG J H, CICEK N, OLESZKIEWICZ J A, 2010. Achieving biofilm control in a membrane biofilm reactor removing total nitrogen[J]. Water Research, 44(7): 2283-2291.
DOI PMID |
[14] | MAHATO S, PUKHRAMBAM G, JOSHI P K, 2023. Damming effects on hydrological abundance and eco-hydrological alteration in upstream wetlands of Eastern Himalaya[J]. Journal of Cleaner Production, 418(2): 138089. |
[15] |
MARTIN K J, NERENBERG R, 2012. The membrane biofilm reactor (MBfR) for water and wastewater treatment: Principles, applications, and recent developments[J]. Bioresource Technology, 122: 83-94.
DOI PMID |
[16] | MARTIN K J, PICIOREANU C, NERENBERG R, 2013. Multidimensional modeling of biofilm development and fluid dynamics in a hydrogen- based, membrane biofilm reactor (MBfR)[J]. Water Research, 47(13): 4739-4751. |
[17] | MASSOOMPOUR A R, BORGHEI S M, RAIE M, 2020. Enhancement of biological nitrogen removal performance using novel carriers based on the recycling of waste materials[J]. Water Research, 170(10): 115340. |
[18] |
NOGUEIRA B L, PEREZ J, VAN LOOSDRECHT M C M, et al., 2015. Determination of the external mass transfer coefficient and influence of mixing intensity in moving bed biofilm reactors for wastewater treatment[J]. Water Research, 80: 90-98.
DOI PMID |
[19] |
RAJA R, HEMAISWARYA S, KUMAR N A, et al., 2008. A perspective on the biotechnological potential of microalgae[J]. Critical Reviews in Microbiology, 34(2): 77-88.
DOI PMID |
[20] | REYES-ALVARADO L C, CAMARILLO-GAMBOA Á, RUSTRIAN E, et al., 2018. Lignocellulosic biowastes as carrier material and slow release electron donor for sulphidogenesis of wastewater in an inverse fluidized bed bioreactor[J]. Environmental Science and Pollution Research, 25(6): 5115-5128. |
[21] | SANCHEZ-HUERTA C, FORTUNATO L, LEIKNES T, et al., 2022. Influence of biofilm thickness on the removal of thirteen different organic micropollutants via a Membrane Aerated Biofilm Reactor (MABR)[J]. Journal of Hazardous Materials, 432: 128698. |
[22] | TANG S Q, GONG J, SONG B, et al., 2023. Remediation of biochar-supported effective microorganisms and microplastics on multiple forms of heavy metals in eutrophic lake[J]. Journal of Hazardous Materials, 465(1): 133098. |
[23] |
TYAGI M, DA FONSECA M M R, DE CARVALHO C C C R, 2011. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes[J]. Biodegradation, 22(2): 231-241.
DOI PMID |
[24] | WAHIDIN S, IDRIS A, SHALEH S R M, 2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp[J]. Bioresource Technology, 129C: 7-11. |
[25] | WANG K W, LIU W Z, KANG D, et al., 2023a. Hybrid bioreactor built-in with fixed bio-carriers for denitrification with low C/N ratio: Hydrodynamic optimization and microbial divergence[J]. Environmental Research, 224: 115510. |
[26] | WANG S M, JIN Z Y, CHEN Z H, et al., 2023b. Effect of light wavelengths on algal-bacterial symbiotic particles (ABSP): Nitrogen removal, physicochemical properties, community structure[J]. Journal of Cleaner Production, 429: 139465. |
[27] | YANG Y, ZHENG M M, QIAO S, et al., 2022. Electro-Fenton improving fouling mitigation and microalgae harvesting performance in a novel membrane photobioreactor[J]. Water Research, 210(2): 117955. |
[28] | WEI X, LI B A, ZHAO S, et al., 2012. COD and nitrogen removal in facilitated transfer membrane-aerated biofilm reactor (FT-MABR)[J]. Journal of Membrane Science, 389: 257-264. |
[29] | YANG X L, JIANG Q, SONG H L, et al., 2015. Selection and application of agricultural wastes as solid carbon sources and biofilm carriers in MBR[J]. Journal of Hazardous Materials, 283C: 186-192. |
[30] | YOU G X, WANG C, WANG P F, et al., 2020. Insights into spatial effects of ceria nanoparticles on oxygen mass transfer in wastewater biofilms: Interfacial microstructure, in-situ microbial activity and metabolism regulation mechanism[J]. Water Research, 176: 115731. |
[31] | ZENG Y X, XU L, SU J F, et al., 2024. Assembling fixed-biofilm reactor with modified basalt fiber and modified wild jujube seed biochar for concurrent removal of nitrate, tetracycline and cadmium: Performance and microflora response[J]. Journal of Cleaner Production, 434: 140190. |
[32] | ZHANG Q Q, CHANG Y L, LIU B B, et al., 2021. Field assessment of full-scale solar-powered floating biofilm reactors for improving water quality in a micro-polluted river near Lake Taihu[J]. Journal of Cleaner Production, 312: 127762. |
[33] | ZHANG S, ALI A, SU J F, et al., 2022. Performance and enhancement mechanism of redox mediator for nitrate removal in immobilized bioreactor with preponderant microbes[J]. Water Research, 209: 117899. |
[34] | ZHONG Z, FENG K, CHEN Y, et al., 2024. Intensified partial nitrification and microbiome response in a membrane pulsing-aerated biofilm reactor[J]. Chemical Engineering Journal, 497: 154510. |
[35] | 常清一, 成小英, 2019. 生物膜-磁分离集成装置处理污染河水工艺参数优化[J]. 环境工程学报, 13(9): 2152-2163. |
CHANG Q Y, CHENG X Y, 2019. Process parameter optimization of intergrated biofilm-magnetic separation device for polluted river water treatment[J]. Chinese Journal of Environmental Engineering, 13(9): 2152-2163. | |
[36] | 陈雷, 王艺, 2007. 传质填料反应器去除污水中有机物的试验研究[J]. 长春工业大学学报(自然科学版), 28(Z1): 128-132. |
CHEN L, WANG Y, 2007. Experiments in transfer media filling reactor to remove the organism in sewage[J]. Journal of Changchun University of Technology, 28(Z1): 128-132. | |
[37] | 陈宪宏, 2022. 天然沸石改性及其去除氮磷性能研究[D]. 广州: 广州大学:88. |
CHEN X H, 2022. Study on modification of natural zeolite and its nitrogen and phosphorus removal performance[D]. Guangzhou: Guangzhou University:88. | |
[38] | 陈亚男, 2012. 几种填料生物膜特性与挂膜参数优化研究[D]. 杭州: 浙江大学:71. |
CHEN Y N, 2012. Research on the characteristics of biofilm on several packings and the optimization of biofilm parameter[D]. Hangzhou: Zhejiang University:71. | |
[39] | 邓铭江, 2022. 干旱内陆河流域河湖生态环境复苏关键技术[J]. 中国水利 (7): 21-27. |
DENG M J, 2022. Key Technologies of rivers and lakes eco- environment recovery in arid inland river basin[J]. China Water Resources (7): 21-27. | |
[40] | 邓宇, 杨东海, 陈慧珍, 等, 2022. 生物载体在污水处理中的研究进展[J]. 环境科学与管理, 47(4): 107-112. |
DENG Y, YANG D H, CHEN H Z, et al., 2022. Research progress of biological fillers in wastewater treatment[J]. Environmental Science and Management, 47(4): 107-112. | |
[41] | 丁灿, 2020. 复合药剂联合生物膜原位修复黑臭水体[D]. 合肥: 合肥工业大学:69. |
DING C, 2020. In situ remediation of black and odorous water by composite medicament combined with biofilm[D]. Hefei: Hefei University of Technology:69. | |
[42] | 郭芳, 王文科, 姜光辉, 等, 2014. 岩溶地下河污染物运移特征及自净能力——以广西里湖地下河为例[J]. 水科学进展, 25(3): 414-419. |
GUO F, WANG W K, JIANG G H, et al., 2014. Contaminant transport behavior in a karst subterranean river and its capacity of self- purification: A case study of Lihu, Guangxi[J]. Advances in Water Science, 25(3): 414-419. | |
[43] | 韩杰, 2014. 稳恒梯度磁场对大豆玉米的生物学效应及其对酶的影响[D]. 哈尔滨: 东北林业大学:61. |
HAN J, 2014. Steady gradient magnetic field on biological effect and its effect on the enzyme of the soybean and corn[D]. Harbin:Northeast Forestry University: 61. | |
[44] | 郝晓地, 闫颖颖, 吴道琦, 等, 2024. 介质生物膜技术的历史、现状与未来[J]. 中国给水排水, 40(10): 9-14. |
HAO X D, YAN Y Y, WU D Q, et al., 2024. History, Current Situation and Future of Biofilm Technology on Media[J]. China Water & Wastewater, 40(10): 9-14. | |
[45] | 孔领锐, 李心珏, 郑茹, 等, 2024. 水滑石复合生物膜载体提高短程硝化-厌氧氨氧化工艺性能研究[J]. 环境工程, 42(1): 16-23. |
KONG L R, LI X J, ZHENG R, et al., 2024. Enhancing the performance of partial nitrification-anammox by using hydrotalcite composite biofilm carriers[J]. Environmental Engineering, 42(1): 16-23. | |
[46] |
梁静波, 岳会发, 杨振奇, 等, 2022. MABR+微纳米曝气技术在马厂减河治理中的应用[J]. 工业水处理, 42(12): 160-164.
DOI |
LIANG J B, YUE H F, YANG Z Q, et al., 2022. Application of MABR and micro-nano aeration technology in Machangjian river regulation[J]. Industrial Water Treatment, 42(12): 160-164.
DOI |
|
[47] | 梁益聪, 胡湛波, 涂玮灵, 等, 2015. 碳素纤维生态基技术对城市黑臭水体的修复效果[J]. 环境工程学报, 9(2): 603-608. |
LIANG Y C, HU Z B, TU W L, et al., 2015. Effectiveness of carbon fiber based biofilm carrier remediation technology on urban black- odorous water[J]. Chinese Journal of Environmental Engineering, 9(2): 603-608. | |
[48] | 廖怀玉, 2023. 膜曝气-菌藻共生耦合体系的构建及污染物去除效能研究[D]. 广州: 广东工业大学:85. |
LIAO H Y, 2023. Construction of membrane aerated-algal bacterial consortium system and Study on pollutant removal efficiency[D]. Guangzhou: Guangdong University of Technology:85. | |
[49] | 李国英, 2022. 推动新阶段水利高质量发展全面提升国家水安全保障能力——写在2022年 “世界水日” 和 “中国水周” 之际[J]. 中国水利 (6): 2, 1. |
LI G Y, 2022. Promote high-quality development of water conservancy in1the new stage and comprehensively enhance China’s capacity to ensure water security-written on the occasion of World Water Day and China Water Week in 2022[J]. China Water Resources (6): 2, 1. | |
[50] | 李曼, 邓柏松, 杨大新, 等, 2020. EHBR膜处理系统技术在长江流域城市河湖治理的实践和思考[C]// 中国科协. 青岛市人民政府. 中国水利企业协会. 2020青岛水大会. 青岛. |
LI M, DENG B S, YANG D X, et al., 2020. Practice and thinking of EHBR enhanced hybrid biofilm reactor technology in the treatment of urban rivers and lakes in the Yangtze River basin[C]// China Association for Science and Technology. Qingdao Municipal People’s Government. China Water Enterprise Confederation. Qingdao water congress in 2020. Qingdao. | |
[51] | 刘超, 李奇, 宋子洋, 等, 2023. 低温下磁性载体MBBR系统微生物群落特征和功能预测分析[J]. 环境科学, 44(2): 889-899. |
LIU C, LI Q, SONG Z Y, et al., 2023. Analysis of microbial community characteristic and function prediction of MBBR with magnetic biocarriers at low temperature[J]. Environmental Science, 44(2): 889-899. | |
[52] | 刘佳, 沈志强, 周岳溪, 等, 2014. 聚丁二酸丁二醇酯 (PBS) 为反硝化固体碳源的脱氮特性研究[J]. 环境科学, 35(7): 2639-2644. |
LIU J, SHEN Z Q, ZHOU Y X, et al., 2014. Denitrification performance of PBS as a solid carbon source of denitrification[J]. Environmental Science, 35(7): 2639-2644. | |
[53] | 刘建林, 2020. 微纳米曝气结合生物膜技术在黑臭河涌底泥原位消减中的应用[J]. 河南科技 (5): 149-154. |
LIU J L, 2020. Application of micro-nano aeration combined with biofilm technology in in-situ sludge reduction of black adorous riverbed[J]. Henan Science and Technology (5): 149-154. | |
[54] | 刘亚雯, 贾方旭, 贾非睿, 等, 2023. 新型生物膜载体在污水处理中的研究现状[J]. 化工进展, 1-18 [2024-05-27]. |
LIU Y W, JIA F X, JIA F R, et al., 2023. Current research status of novel biofilm carriers in wastewater treatment[J]. Chemical Industry and Engineering Progress, 1-18 [2024-05-27]. | |
[55] | 李星雨, 李广, 余运湧, 等, 2023. 生物膜载体填料在废水处理中的应用研究进展[J]. 煤炭与化工, 46(8): 156-160. |
LI X Y, LI G, YU Y Y, et al., 2023. Research progress on the application of biofilm carrier fillers in wastewater treatment[J]. Coal and Chemical Industry, 46(8): 156-160. | |
[56] | 李应辉, 2022. 砾间接触氧化工艺用于微污染水体净化的设计案例分析[J]. 净水技术, 41(S2):185-190. |
LI Y H, 2022. Design case studies on application of gravel contact oxidation process (GCOP) in low-polluted water purification[J]. Water Purification Technology, 41(S2): 185-190. | |
[57] | 吕凌霄, 张明阳, 钱飞跃, 等, 2023. 生物蜡技术用于江南园林水体水质净化的微生物反应机制[J]. 环境工程学报, 17(12): 4107-4115. |
LÜ L X, ZHANG M Y, QIAN F Y, et al., 2023. Study on the microbial reaction mechanism of bio-wax technology in purifying water bodies in Jiangnan gardens[J]. Chinese Journal of Environmental Engineering, 17(12): 4107-4115. | |
[58] | 陆娴, 2024. 上海市生态清洁小流域建设中水治理技术集成与应用研究[J]. 水利技术监督 (1): 99-101, 130. |
LU X, 2024. Study on intergration and application of water treatment technology in constrution of ecological clean small watershed in Shanghai[J]. Technical Supervision in Water Resources (1): 99-101, 130. | |
[59] | 裴菲, 2021. 城市污染河道生物生态修复研究进展[J]. 绿色科技, 23(8): 85-87. |
PEI F, 2021. A summary of studies on bioecological restoration of urban polluted river[J]. Journal of Green Science and Technology, 23(8): 85-87. | |
[60] | 齐兵强, 王占生, 2000. 曝气生物滤池在污水处理中的应用[J]. 给水排水 (10): 4-8, 2. |
QI B Q, WANG Z S, 2000. Application of biological aerated filter in wastewater treatment[J]. Water & Wastewater Engineering (10): 4-8, 2. | |
[61] | 任香萤, 2019. 基于加热预处理的气浮法采收微藻的试验研究[D]. 西安: 长安大学:77. |
REN X Y, 2019. The study on heat-aided flotation for harvesting microalgae[D]. Xi’an: Chang’an University:77. | |
[62] | 任芝军, 杨桐飒, 白莹, 等, 2022. 受污染河湖的物理化学及生物修复技术研究进展[J]. 河北工业大学学报, 51(2): 47-55. |
REN Z J, YANG T S, BAI Y, et al., 2022. Research progress on physical, chemical and biological restoration technologies for polluted rivers and lakes[J]. Journal of Hebei University of Technology, 51(2): 47-55. | |
[63] | 邵国毅, 2022. 水动力调控对生物膜微生物群落多样性、网络互作及代谢功能的影响[D]. 南京: 河海大学:75. |
SHAO G Y, 2022. Effects of hydrodynamic regulation on biofilm microbial community diversity, network interactions and metabolic functions[D]. Nanjing: Hohai University:75. | |
[64] | 史思捷, 陈珏竹, 尹冰如, 等, 2022. 底栖动物-曝气生物膜耦合处理受损水体内源氮污染的研究[C]// 中国环境科学学会. 中国环境科学学会2022年科学技术年会. 南昌: 3. |
SHI S J, CHEN J Z, YIN B R, et al., 2022. The study of benthic animals-aeration biofilm coupling treatment of endogenous nitrogen pollution in impaired water[C]// Chinese Society for Environmental Sciences. 2022 annual conference on science and technology of Chinese Society for Environmental Sciences. Nanchang: 3. | |
[65] | 孙刚, 盛连喜, 千贺裕太郎, 2006. 生物扰动在水层-底栖界面耦合中的作用[J]. 生态环境, 15(5): 1106-1110. |
SUN G, SHENG L X, QIAN H, 2006. Advance in bioturbation effect in benthic-pelagic interface[J]. Ecology and Environmental Sciences, 15(5): 1106-1110. | |
[66] | 孙亚楠, 2018. 缓滞水体生物膜曝气-生态浮床组合净化效果研究[D]. 天津: 天津大学:74. |
SUN Y N, 2018. Study on the purification efficiency of membrane aeration biofilm reactor-ecological floating beds integrated device for highly stagnater water[D]. Tianjin:Tianjin University: 74. | |
[67] | 田伟君, 郝芳华, 王超, 等, 2006. 太湖典型入湖河道中氨氮去除研究[J]. 生态环境, 15(6): 1138-1141. |
TIAN W J, HAO F H, WANG C, et al., 2006. Ammonia-nitrogen degradation in the typical streams entering Taihu Lake[J]. Ecology and Environmental Sciences, 15(6): 1138-1141. | |
[68] | 田伟君, 翟金波, 2003. 生物膜技术在污染河道治理中的应用[J]. 环境保护 (8): 19-21. |
TIAN W J, ZHAI J B, 2003. Biomembrane technology application in regulation of river course polluted[J]. Environmental Protection (8): 19-21. | |
[69] | 汪坤, 2024. 澳洲坚果壳生物载体及附着生物膜特性研究[D]. 马鞍山: 安徽工业大学:86. |
WANG K, 2024. Study on Characterization of Biocarrier Made of Macadamia Nut Husk and its attached biofilm[D]. Ma’anshan: Anhui University of Technology:86. | |
[70] | 王柳鹏, 2021. 发光填料固定化菌藻共生系统脱氮除磷的效能研究[D]. 南昌: 南昌大学:75. |
WANG L P, 2021. Study on the efficiency of nitrogen and phosphorus removal by immobilized algae-bacteria symbiosis system on luminescent filler[D]. Nanchang: Nanchang University:75. | |
[71] | 王荣昌, 赵悦, 马翠香, 等, 2020. 混合单体对等离子体法改性PTFE膜微生物亲和性能的影响[J]. 环境科学研究, 33(2): 465-470. |
WANG R C, ZHAO Y, MA C X, et al., 2020. Effect of mixed monomer on microbial affinity of PTFE membrane with plasma surface modification[J]. Research of Environmental Sciences, 33(2): 465-470. | |
[72] | 王晓杰, 董文艺, 王宏杰, 等, 2018. 磁絮凝工艺处理受污染河水研究[J]. 水处理技术, 44(5): 75-78, 83. |
WANG X J, DONG W Y, WANG H J, et al., 2018. Study on treatment of polluted river by magnetic flocculation process[J]. Technology of Water Treatment, 44(5): 75-78, 83. | |
[73] | 王学江, 夏四清, 张全兴, 等, 2002. 悬浮填料移动床处理苏州河支流河水试验研究[J]. 环境污染治理技术与设备, 3(1): 27-29, 22. |
WANG X J, XIA S Q, ZHANG Q X, et al., 2002. Treatment of the branch water of Suzhou river by using suspended filler moving-bed[J]. Chinese Journal of Environmental Engineering, 3(1): 27-29, 22. | |
[74] | 魏海娟, 2005. 三相轻质生物陶粒流化床处理废水的初步研究[D]. 长春: 吉林大学:71. |
WEI H J, 2005. Primary study on treatment of wastewater by three-phase light biological haydite fluidize bed[D]. Changchun: Jilin University:71. | |
[75] | 吴永红, 方涛, 丘昌强, 等, 2005. 藻-菌生物膜法改善富营养化水体水质的效果[J]. 环境科学, 26(1): 84-89. |
WU Y H, FANG T, QIU C Q, et al., 2005. Methods of algae-bacterium biofilm to improve the water quality in eutrophic waters[J]. Environmental Science, 26(1): 84-89. | |
[76] | 徐天勇, 2020. 砾间接触氧化+河道人工湿地工艺在中小河流治理中的应用[J]. 安徽农业科学, 48(15): 75-77. |
XU T Y, 2020. Application of gravel contact oxidation+river constructed wetland process in small and medium-sized river management[J]. Journal of Anhui Agricultural Sciences, 48(15): 75-77. | |
[77] | 杨碧印, 李文龙, 许仕荣, 等, 2015. 不同外加碳源反硝化滤池的挂膜与启动特性研究[J]. 水处理技术, 41(4): 104-107. |
YANG B Y, LI W L, XU S R, et al., 2015. Biofilm culturing and start-up properties of denitrafication biological filter with different external carbon sources[J]. Technology of Water Treatment, 41(4): 104-107. | |
[78] | 杨垒, 李坤, 刘如, 2023. 强化耦合生物膜技术在河道污水中的应用[J]. 资源节约与环保 (1): 71-74. |
YANG L, LI K, LIU R, 2023. The application of reinforced coupling biomembrane technology in river wastewater treatment[J]. Resources Economization & Environmental Protection (1): 71-74. | |
[79] | 杨林, 2021. 序批式潮汐生物接触氧化法处理分散式生活污水强化脱氮试验研究[D]. 兰州: 兰州交通大学:86. |
YANG L, 2021. Experimental study on enhanced nitrogen removal bysequencing batch tidal biological contact oxidation processfor the treatment of decentralized sewage[D]. Lanzhou: Lanzhou Jiaotong University:86. | |
[80] | 章楚卓, 2024. 固定化菌藻共生系统去除氮磷的效能研究及EPS在其过程的作用机制[D]. 南昌: 南昌大学:72. |
ZHANG C Z, 2024. Study on nitrogen and phosphorus removal efficiency ofimmobilized bacteria-algal symbiosis system and the mechanism of EPS in its process[D]. Nanchang: Nanchang University:72. | |
[81] | 张磊, 刘平, 马锦, 等, 2013. 基于微气泡曝气的生物膜反应器处理废水研究[J]. 环境科学, 34(6): 2277-2282. |
ZHANG L, LIU P, MA J, et al., 2013. Wastewater treatment using a microbubble aerated biofilm reactor[J]. Environmental Science, 34(6): 2277-2282. | |
[82] | 张林军, 2006. 曝气生物滤池处理城市生活污水的试验研究[J]. 徐州工程学院学报, 21(12): 64-66, 69. |
ZHANG L J, 2006. Experiment of domestic sewage treatment by biological aerated filter[J]. Journal of Xuzhou Institute of Technology, 21(12): 64-66, 69. | |
[83] | 张振雷, 2019. 锁磷剂与藻类生物膜联用处理喻家湖湖水的实验研究[D]. 武汉: 华中科技大学:69. |
ZHANG Z L, 2019. Study on treatment of Yujia lake water by combined phoslock and algae biofilm[D]. Wuhan: Huazhong University of Science and Technology:69. |
[1] | 张淑娟, 陈昕龙, 亓静凡, 董月晓, 于佳正, 尤朝阳. 基于丛枝菌根的钒污染土壤修复[J]. 生态环境学报, 2025, 34(4): 631-641. |
[2] | 岳航宇, 郭成久, 苏芳莉, 魏超. 辽河口湿地不同植被类型根际土壤微生物群落结构及多样性分析[J]. 生态环境学报, 2025, 34(2): 222-232. |
[3] | 许铭宇, 俞龙生. 农林废弃有机材料对离子型稀土矿尾砂的土壤改良效应[J]. 生态环境学报, 2025, 34(1): 126-134. |
[4] | 王艺霓, 蔡仪威, 孙彤, 李桂英, Wonyong Choi, 安太成. 海产养殖水体中复杂组分致光催化剂杀菌失活的机理研究[J]. 生态环境学报, 2025, 34(1): 89-98. |
[5] | 叶俊宏, 刘珍环, 刘子瑜. 珠江三角洲城市群国土空间生态修复分区情景模拟[J]. 生态环境学报, 2025, 34(1): 4-12. |
[6] | 方吉, 吴啸, 宫清华, 韦泽棉, 王颖佳. 南方滨海农业县国土空间生态修复规划策略——以广东省徐闻县为例[J]. 生态环境学报, 2024, 33(7): 1019-1026. |
[7] | 李璇, 王路茗, 闫春妮, 黄娟. 金属氧化物与非金属氧化物纳米颗粒暴露下人工湿地微生物群落的响应差异[J]. 生态环境学报, 2024, 33(7): 1089-1095. |
[8] | 张京磊, 王国良, 吴波, 贾春林, 张进红, 周圆, 马冰. 滨海盐碱地苜蓿-小黑麦轮作对土壤细菌和真菌群落多样性与网络结构的影响[J]. 生态环境学报, 2024, 33(7): 1048-1062. |
[9] | 孙明, 陈燕丽, 谢敏, 莫伟华, 潘良浩. 广西典型沙生红树林总初级生产力变化特征及其对气象因子的响应[J]. 生态环境学报, 2024, 33(5): 665-678. |
[10] | 刘菁华, 张玉平, 陈雪婷. 一株红霉素降解菌Penicillium sp. ERY-1的筛选、降解特性及其应用研究[J]. 生态环境学报, 2024, 33(4): 607-616. |
[11] | 何杰, 李宗明, 杨正宇, 沈健林, 刘国平, 吴金水. 牛粪化肥配施对双季稻田CH4和N2O排放的影响[J]. 生态环境学报, 2024, 33(4): 573-584. |
[12] | 马志伟, 张丛志, 赵占辉, 吴其聪, 赵金花, 陈卓, 李敬王, 张楠, 薛雅, 王娅茹, 陆芸萱, 张佳宝. 基于木本泥炭的土壤健康培育研究进展[J]. 生态环境学报, 2024, 33(12): 1964-1977. |
[13] | 官国庆, 黄紫琳, 江龙飞, 罗春玲. 伴矿景天对重金属-多环芳烃复合污染土壤有机污染物消减及微生物的影响[J]. 生态环境学报, 2024, 33(12): 1931-1943. |
[14] | 宋江琴, 尹亚丽, 赵文, 刘燕, 随奇奇, 火久艳, 郑文贤, 李世雄. 青海高原黑土滩退化草地土壤微生物群落空间分异特征[J]. 生态环境学报, 2024, 33(11): 1696-1707. |
[15] | 李文章, 胡亚茹, 李法云, 王玮, 张继宁, 郭琴. 铁改性生物炭-凹凸棒石载体固定化菌剂制备及其对氯苯污染土壤修复作用[J]. 生态环境学报, 2024, 33(11): 1782-1791. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||