[1] |
ADELEYE A S, CONWAY J R, PEREZ T, et al., 2014. Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles[J]. Environmental Science & Technology, 48(21): 12561-12568.
|
[2] |
AHMED F, RODRIGUES D F, 2013. Investigation of acute effects of graphene oxide on wastewater microbial community: A case study[J]. Journal of Hazardous Materials, 256-257: 33-39.
DOI
PMID
|
[3] |
BERNARDES F S, HERRERA P G, CHIQUITO GM, et al., 2019. Relationship between microbial community and environmental conditions in a constructed wetland system treating greywater[J]. Ecological Engineering, 139: 105581.
|
[4] |
CERVANTES-AVILES P, DURAN VARGAS J B, AKIZUKI S, et al., 2021. Cumulative effects of titanium dioxide nanoparticles in UASB process during wastewater treatment[J]. Journal of Environmental Management, 277: 111428.
|
[5] |
COVARRUBIAS-Garcia I, QUIJANO G, AIZPURU A, et al., 2020. Reduced graphene oxide decorated with magnetite nanoparticles enhance biomethane enrichment[J]. Journal of Hazardous Materials, 397: 122760.
|
[6] |
CUI Y X, BISWAL B K, VAN-LOOSDRECHT M C M, et al., 2019. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor[J]. Water Research, 166: 115038.
|
[7] |
GAO Y, WU J C, REN X M, et al., 2017. Impact of graphene oxide on the antibacterial activity of antibiotics against bacteria[J]. Environmental Science: Nano, 4(5): 1016-1024.
|
[8] |
GOMES T, CHORA S, PEREIRA CG, et al., 2014. Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu2+: An exploratory biomarker discovery[J]. Aquatic Toxicology, 155: 327-336.
|
[9] |
GREEN E R, MECSAS J, 2016. Bacterial secretion systems: An overview[J]. Microbiology Spectrum, 4(1): Bacterial/1-Bacterial/19.
|
[10] |
HU X B, LIU X B, YANG X Y, et al., 2018. Acute and chronic responses of macrophyte and microorganisms in constructed wetlands to cerium dioxide nanoparticles: Implications for wastewater treatment[J]. Chemical Engineering Journal, 348: 35-45.
|
[11] |
HU Z T, LU X, SUN P, et al., 2017. Understanding the performance of microbial community induced by ZnO nanoparticles in enhanced biological phosphorus removal system and its recoverability[J]. Bioresource Technology, 225: 279-285.
DOI
PMID
|
[12] |
HUANG H N, CHEN Y G, YANG S Y, et al., 2019. CuO and ZnO nanoparticles drive the propagation of antibiotic resistance genes during sludge anaerobic digestion: Possible role of stimulated signal transduction[J]. Environmental Science: Nano, 6(2): 528-539.
|
[13] |
HUANG J, CAO M F, MA Y X, et al., 2022. Wastewater treatment effect and microbial community structure of constructed wetland under dual stress of low temperature and silver nanoparticles[J]. Journal of Southeast University (English Edition), 38(3): 291-299.
|
[14] |
KEEGSTRA J M, CARRARA F, STOCKER R, 2022. The ecological roles of bacterial chemotaxis[J]. Nature Reviews Microbiology, 20(8): 491-504.
DOI
PMID
|
[15] |
KELLER A A, LAZAREVA A, 2014. Predicted releases of engineered nanomaterials: from global to regional to local[J]. Environmental Science & Technology Letters, 1(1): 65-70.
|
[16] |
LIAN S Y, QU Y Y, LI S Z, et al., 2020. Interaction of graphene-family nanomaterials with microbial communities in sequential batch reactors revealed by high-throughput sequencing[J]. Environmental Research, 184: 109392.
|
[17] |
LU C H, YANG H H, ZHU C L, et al., 2009. A graphene platform for sensing biomolecules[J]. Angewandte Chemie International Edition, 48(26): 4785-4787.
|
[18] |
MAEDA T, WURGLER-MURPHY S M, SAITO H, 1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast[J]. Nature, 369(6477): 242-245.
|
[19] |
MALHOTRA N, GER T-R, UAPIPATANAKUL B, et al., 2020. Review of copper and copper nanoparticle toxicity in fish[J]. Nanomaterials, 10(6): 1126.
|
[20] |
NGUYEN H N, RODRIGUES DF, 2018. Chronic toxicity of graphene and graphene oxide in sequencing batch bioreactors: A comparative investigation[J]. Journal of Hazardous Materials, 343: 200-207.
DOI
PMID
|
[21] |
QU H J, MA C X, XING W L, et al., 2022. Effects of copper oxide nanoparticles on Salix growth, soil enzyme activity and microbial community composition in a wetland mesocosm[J]. Journal of Hazardous Materials, 424(Part D): 127676.
|
[22] |
SAMARAJEEWA A D, VELICOGNA J R, SCHWERTFEGER D M, et al., 2021. Ecotoxicological effects of copper oxide nanoparticles (nCuO) on the soil microbial community in a biosolids-amended soil[J]. Science of The Total Environment, 763: 143037.
|
[23] |
SEZER TUNCSOY B, TUNCSOY M, GOMES T, et al., 2019. Effects of copper oxide nanoparticles on tissue accumulation and antioxidant enzymes of Galleria mellonella L.[J]. Bulletin Environmental Contamination Toxicology, 102(3): 341-346.
|
[24] |
SHIRDASHTZADEH M, CHUA L H C, BRAU L, 2022. Microbial communities and nitrogen transformation in constructed wetlands treating stormwater runoff[J]. Frontiers in Water, 256-257(3): 33-39.
|
[25] |
TUNÇSOY M, DURAN S, AY Ö, et al., 2017. Effects of copper oxide nanoparticles on antioxidant enzyme activities and on tissue accumulation of Oreochromis niloticus[J]. Bulletin Environmental Contamination Toxicology, 99(3): 360-364.
|
[26] |
WANG K, MAO H L, WANG Z, et al., 2018b. Succession of organics metabolic function of bacterial community in swine manure composting[J]. Journal of Hazardous Materials, 360: 471-480.
|
[27] |
WANG P F, YOU G X, HOU J, et al., 2018a. Responses of wastewater biofilms to chronic CeO2 nanoparticles exposure: Structural, physicochemical and microbial properties and potential mechanism[J]. Water Research, 133: 208-217.
|
[28] |
WANG S, LI Z W, GAO M C, et al., 2017. Long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial community and enzymatic activity of activated sludge in a sequencing batch reactor[J]. Journal of Environmental Management, 187: 330-339.
DOI
PMID
|
[29] |
WU B, WU J L, LIU S, et al., 2019. Combined effects of graphene oxide and zinc oxide nanoparticle on human A549 cells: bioavailability, toxicity and mechanisms[J]. Environmental Science: Nano, 6(2): 635-645.
|
[30] |
WU F, JIAO S, HU J, et al., 2021. Stronger impacts of long-term relative to short-term exposure to carbon nanomaterials on soil bacterial communities[J]. Journal of Hazardous Materials, 410: 124550.
|
[31] |
YANG J L, PANG Y S, HUANG W X, et al., 2017. Functionalized graphene enables highly efficient solar thermal steam generation[J]. ACS Nano, 11(6): 5510-5518.
DOI
PMID
|
[32] |
YANG S T, CHANG Y L, WANG H F, et al., 2010. Folding/aggregation of graphene oxide and its application in Cu2+ removal[J]. Journal of Colloid and Interface Science, 351(1): 122-127.
|
[33] |
YANG X Y, CHEN Y, LIU X B, et al., 2018. Influence of titanium dioxide nanoparticles on functionalities of constructed wetlands for wastewater treatment[J]. Chemical Engineering Journal, 352: 655-663.
|
[34] |
ZHANG L M, XIA J G, ZHAO Q Q, et al., 2010. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs[J]. Small, 6(4): 537-544.
DOI
PMID
|
[35] |
ZHANG Y, JI Z H, PEI Y S, 2021. Nutrient removal and microbial community structure in an artificial-natural coupled wetland system[J]. Process Safety and Environmental Protection, 147: 1160-1170.
|
[36] |
ZHAO Y, LI X G, ZHOU X, et al., 2016. Review on the graphene based optical fiber chemical and biological sensors[J]. Sensors and Actuators B: Chemical, 231: 324-340.
|
[37] |
郭泓利, 李鑫玮, 任钦毅, 等, 2018. 全国典型城市污水处理厂进水水质特征分析[J]. 给水排水, 54(6): 12-15.
|
|
GUO H L, LI X W, REN Q Y, et al., 2018. Analysis of influent water quality characteristics of typical municipal sewage treatment plants in China[J]. Water Supply and Drainage, 54(6): 12-15.
|
[38] |
李嘉, 施素杰, 周志明, 等, 2022. 间歇曝气-反冲洗人工湿地净化性能及微生物作用[J]. 中国给水排水, 38(19): 8-15.
|
|
LI J, SHI S J, ZHOU Z M, et al., 2022. Purification performance and microbial effect of intermittent aeration and backwash constructed wetland[J]. Water Supply and Drainage in China, 38(19): 8-15.
|