生态环境学报 ›› 2025, Vol. 34 ›› Issue (4): 631-641.DOI: 10.16258/j.cnki.1674-5906.2025.04.012
张淑娟1(), 陈昕龙1,2, 亓静凡1,2, 董月晓1,2, 于佳正3, 尤朝阳1,*
收稿日期:
2024-09-29
出版日期:
2025-04-18
发布日期:
2025-04-24
通讯作者:
*作者简介:
张淑娟(1984年生),女,副教授,博士,主要研究方向为基于丛枝菌根的生态修复。E-mail: zhangshujuan525@sina.com
基金资助:
ZHANG Shujuan1(), CHEN Xinlong1,2, QI Jingfan1,2, DONG Yuexiao1,2, YU Jiazheng3, YOU Zhaoyang1,*
Received:
2024-09-29
Online:
2025-04-18
Published:
2025-04-24
摘要: 丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)作为一种广泛存在的微生物,已被用于其他重金属修复,但其对于钒污染土壤的修复效果及机理尚不清晰。为探究丛枝菌根修复钒污染土壤规律以及作用机制,以狗尾草(Setaria viridis)为供试植物,选取异形根孢囊霉(Rhizophagus irregularis)为供试AMF菌株,通过接种AMF(+AMF)与不接种AMF(−AMF)的方式形成处理和对照,在轻度(150 mg·kg−1)、中度(500 mg·kg−1)和重度(1000 mg·kg−1)钒污染条件下,进行盆栽试验。结果表明,轻度、中度和重度钒污染土壤中,+AMF组土壤钒质量分数显著低于−AMF组,菌根效应分别为12%、11%和32%;丛枝菌根显著降低了有效态钒质量分数,但菌根效应不同,菌根效应表现为中度(59%)≈重度(48%)>轻度(13%)。丛枝菌根显著提高植物生物量和钒含量,降低了植物钒质量分数。丛枝菌根改善了土壤物理化学结构,增大了土壤团聚体的平均质量直径和平均几何直径,同时提高了土壤总有机碳质量分数,降低了土壤pH;丛枝菌根增加了球囊霉素相关土壤蛋白(glomalin-related soil protein,GRSP)质量分数,其中易提取GRSP菌根效应最大,为150%。丛枝菌根增加了GRSP比表面积,提高了GRSP钒质量分数,最大可达1.2 mg·g−1(+AMF组重度钒污染条件下),为对应土壤钒质量分数的1.9倍,说明基质中的GRSP能够有效螯合土壤中的钒。该研究表明,丛枝菌根在修复钒污染土壤方面具有重要潜力,且GRSP在修复过程中发挥重要作用。
中图分类号:
张淑娟, 陈昕龙, 亓静凡, 董月晓, 于佳正, 尤朝阳. 基于丛枝菌根的钒污染土壤修复[J]. 生态环境学报, 2025, 34(4): 631-641.
ZHANG Shujuan, CHEN Xinlong, QI Jingfan, DONG Yuexiao, YU Jiazheng, YOU Zhaoyang. Remediation of Soil Polluted with Vanadium Via Arbuscular Mycorrhiza[J]. Ecology and Environment, 2025, 34(4): 631-641.
接菌处理 | 钒污染程度 | 侵染率/% |
---|---|---|
+AMF | 轻度 | 45.7 |
中度 | 38.7 | |
重度 | 28.8 | |
−AMF | 轻度、中度、重度 | 0 |
表1 狗尾草根系AMF侵染率
Table 1 Root AMF colonization frequency of Setaria viridis
接菌处理 | 钒污染程度 | 侵染率/% |
---|---|---|
+AMF | 轻度 | 45.7 |
中度 | 38.7 | |
重度 | 28.8 | |
−AMF | 轻度、中度、重度 | 0 |
图2 不同钒污染程度下丛枝菌根对土壤钒质量分数及土壤钒去除率的影响 p (V):钒污染程度影响的显著性。p (AM):丛枝菌根影响的显著性。p交互:钒污染程度和丛枝菌根交互影响的显著性。样品重复数n=5。下同
Figure 2 Effects of arbuscular mycorrhiza on soil V concentration and soil V removal efficiency under different soil V levels
图3 不同钒污染程度下丛枝菌根对土壤有效态钒质量分数及土壤有效态钒占比的影响
Figure 3 Effects of arbuscular mycorrhiza on soil available V concentration and soil available V proportion under different soil V levels
植物部位 | 钒污染程度 | 生物量/(g·pot−1) | 植物钒质量分数/(mg·kg−1) | 钒含量/(mg·pot−1) | |||||
---|---|---|---|---|---|---|---|---|---|
+AMF | −AMF | +AMF | −AMF | +AMF | −AMF | ||||
地上部分 | 轻度 | 4.5±0.1 | 2.5±0.1 | 4.7±0.6 | 6.7±0.6 | 0.021±0.003 | 0.017±0.001 | ||
中度 | 3.4±0.3 | 2.4±0.1 | 17.0±2.5 | 22.4±2.9 | 0.059±0.009 | 0.054±0.008 | |||
重度 | 2.9±0.2 | 1.9±0.2 | 23.9±2.3 | 28.4±3.7 | 0.068±0.004 | 0.054±0.007 | |||
地下部分 | 轻度 | 2.4±0.2 | 1.6±0.4 | 68.3±13.4 | 89.0±8.6 | 0.16±0.03 | 0.14±0.05 | ||
中度 | 1.8±0.1 | 1.1±0.1 | 127.7±11.9 | 150.3±13.9 | 0.23±0.03 | 0.17±0.01 | |||
重度 | 1.4±0.1 | 0.8±0.1 | 195.0±9.0 | 257.9±30.6 | 0.28±0.02 | 0.21±0.03 |
表2 不同钒污染程度下丛枝菌根对植物生物量、植物钒质量分数及钒含量的影响
Table 2 Effects of arbuscular mycorrhiza on biomass, V concentration and V content of plants under different soil V levels
植物部位 | 钒污染程度 | 生物量/(g·pot−1) | 植物钒质量分数/(mg·kg−1) | 钒含量/(mg·pot−1) | |||||
---|---|---|---|---|---|---|---|---|---|
+AMF | −AMF | +AMF | −AMF | +AMF | −AMF | ||||
地上部分 | 轻度 | 4.5±0.1 | 2.5±0.1 | 4.7±0.6 | 6.7±0.6 | 0.021±0.003 | 0.017±0.001 | ||
中度 | 3.4±0.3 | 2.4±0.1 | 17.0±2.5 | 22.4±2.9 | 0.059±0.009 | 0.054±0.008 | |||
重度 | 2.9±0.2 | 1.9±0.2 | 23.9±2.3 | 28.4±3.7 | 0.068±0.004 | 0.054±0.007 | |||
地下部分 | 轻度 | 2.4±0.2 | 1.6±0.4 | 68.3±13.4 | 89.0±8.6 | 0.16±0.03 | 0.14±0.05 | ||
中度 | 1.8±0.1 | 1.1±0.1 | 127.7±11.9 | 150.3±13.9 | 0.23±0.03 | 0.17±0.01 | |||
重度 | 1.4±0.1 | 0.8±0.1 | 195.0±9.0 | 257.9±30.6 | 0.28±0.02 | 0.21±0.03 |
植物部位 | 显著性检验 | 生物量 | 植物钒质量分数 | 钒含量 |
---|---|---|---|---|
地上部分 | p(AM) | * | * | * |
p(V) | * | * | * | |
p交互 | * | ns | ns | |
地下部分 | p(AM) | * | * | * |
p(V) | * | * | * | |
p交互 | ns | * | ns |
表3 不同钒污染程度下丛枝菌根对植物生物量、植物钒质量分数及钒含量影响的显著性检验
Table 3 Significance test on the effects of arbuscular mycorrhiza on biomass, V concentration and V content of plants under different soil V levels
植物部位 | 显著性检验 | 生物量 | 植物钒质量分数 | 钒含量 |
---|---|---|---|---|
地上部分 | p(AM) | * | * | * |
p(V) | * | * | * | |
p交互 | * | ns | ns | |
地下部分 | p(AM) | * | * | * |
p(V) | * | * | * | |
p交互 | ns | * | ns |
[1] | AI Y J, LI F P, YANG J Q, et al., 2022. Research progress and potential functions of AMF and GRSP in the ecological remediation of metal tailings[J]. Sustainability, 14(15): 9611. |
[2] | AIHEMAITI A, JIANG J G, LI D A, et al., 2017. Toxic metal tolerance in native plant species grown in a vanadium mining area[J]. Environmental Science and Pollution Research, 24(34): 26839-26850. |
[3] | BRONICK C J, LAL R, 2005. Soil structure and management: A review[J]. Geoderma, 124(1-2): 3-22. |
[4] | DONG Y B, LIN H, ZHAO Y M, et al., 2021. Remediation of vanadium-contaminated soils by the combination of natural clay mineral and humic acid[J]. Journal of Cleaner Production, 279: 123874. |
[5] |
EL-ALAM I, VERDIN A, FONTAINE J, et al., 2018. Ecotoxicity evaluation and human risk assessment of an agricultural polluted soil[J]. Environmental Monitoring and Assessment, 190(12): 738.
DOI PMID |
[6] | FENG Z W, LIU X D, QIN Y Q, et al., 2023. Cooperation of arbuscular mycorrhizal fungi and bacteria to facilitate the host plant growth dependent on soil pH[J]. Frontiers in Microbiology, 14: 1116943. |
[7] | FU Y X, LI M X, LI J P, et al., 2024. Soil microbial community variation in vanadium-enriched farmland surrounding vanadium titanomagnetite tailing in Southwest China[J]. Applied Soil Ecology, 198: 105318. |
[8] | GAN C D, CHEN T, YANG J Y, 2021. Growth responses and accumulation of vanadium in alfalfa, milkvetch root, and swamp morning glory and their potential in phytoremediation[J]. Bulletin of Environmental Contamination and Toxicology, 107(3): 559-564. |
[9] | GAN C D, CHEN T, YANG J Y, 2020. Remediation of vanadium contaminated soil by alfalfa (Medicago sativa L.) combined with vanadium-resistant bacterial strain[J]. Environmental Technology & Innovation, 20: 101090. |
[10] | GIOVANNETTI M, MOSSE B, 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots[J]. New Phytologist, 84(3): 489-500. |
[11] | GONZÁLEZ-CHÁVEZ M C, CARRILLO-GONZÁLEZ R, WRIGHT S F, et al., 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J]. Environmental Pollution, 130(3): 317-323. |
[12] | GUSTAFSSON J P, 2019. Vanadium geochemistry in the biogeosphere -speciation, solid-solution interactions, and ecotoxicity[J]. Applied Geochemistry, 102: 1-25. |
[13] |
HAAK M R, INDRARATNE S P, 2023. Soil amendments for vanadium remediation: A review of remediation of vanadium in soil through chemical stabilization and bioremediation[J]. Environmental Geochemistry and Health, 45(7): 4107-4125.
DOI PMID |
[14] |
HOU M, HUO Y, YANG X H, et al., 2020. Absorption, transport, content, and subcellular distribution of vanadium in the polysaccharide fraction of cell wall in corn seedlings[J]. Plant Physiology and Biochemistry, 149: 153-158.
DOI PMID |
[15] |
IMTIAZ M, RIZWAN M S, XIONG S L, et al., 2015. Vanadium, recent advancements and research prospects: A review[J]. Environment International, 80: 79-88.
DOI PMID |
[16] |
LARSSON M A, HADIALHEJAZI G, GUSTAFSSON J P, 2017. Vanadium sorption by mineral soils: Development of a predictive model[J]. Chemosphere, 168: 925-932.
DOI PMID |
[17] | LI J L, CHEN B D, ZHANG X, et al., 2021. Arsenic transformation and volatilization by arbuscular mycorrhizal symbiosis under axenic conditions[J]. Journal of Hazardous Materials, 413: 125390. |
[18] |
LI Y L, CHEN S H, DUAN W Y, et al., 2023. Research progress of vanadium pentoxide photocatalytic materials[J]. RSC Advances, 13(33): 22945-22957.
DOI PMID |
[19] | LI Y N, XU J Z, HU J, et al., 2022. Arbuscular mycorrhizal fungi and glomalin play a crucial role in soil aggregate stability in Pb-contaminated soil[J]. International Journal of Environmental Research and Public Health, 19(9): 5029. |
[20] | LI Y N, ZHANG B G, LIU Z Q, et al., 2020. Vanadium contamination and associated health risk of farmland soil near smelters throughout China[J]. Environmental Pollution, 263(Part A): 114540. |
[21] | LIU G C, DUAN X L, YAN G Y, et al., 2024. Changes in soil aggregates and glomalin-related soil protein stability during the successional process of boreal forests[J]. Journal of Soil Science and Plant Nutrition, 24(1): 1335-1348. |
[22] | MALEKZADEH E, ALIASGHARZAD N, MAJIDI J, et al., 2016. Cd-induced production of glomalin by arbuscular mycorrhizal fungus (Rhizophagus irregularis) as estimated by monoclonal antibody assay[J]. Environmental Science and Pollution Research, 23(20): 20711-20718. |
[23] | NASEER M, YANG Y M, ZHU Y, et al., 2024. Nano-iron and AM fungi inoculation in dryland wheat field: A sustainable alternative to plastic film mulching[J]. Field Crops Research, 306: 109208. |
[24] | QIU L, GAO W L, WANG Z G, et al., 2021. Citric acid and AMF inoculation combination-assisted phytoextraction of vanadium (V) by Medicago sativa in V mining contaminated soil[J]. Environmental Science and Pollution Research, 28(47): 67472-67486. |
[25] | QIU L, LIN H Z, SONG B R, et al., 2022. Glomalin-related soil protein (GRSP) in metal sequestration at Pb/Zn-contaminated sites[J]. Journal of Soils and Sediments, 22(2): 577-593. |
[26] | RIAZ M, KAMRAN M, FANG Y Z, et al., 2021. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review[J]. Journal of Hazardous Materials, 402: 123919. |
[27] | SELIM S, ABUELSOUD W, ALSHARARI S S, et al., 2021. Improved mineral acquisition, sugars metabolism and redox status after mycorrhizal inoculation are the basis for tolerance to vanadium stress in C3 and C4 grasses[J]. Journal of Fungi, 7(11): 915. |
[28] | SIANI N G, FALLAH S, POKHREL L R, et al., 2017. Natural amelioration of Zinc oxide nanoparticle toxicity in fenugreek (Trigonella foenum-gracum) by arbuscular mycorrhizal (Glomus intraradices) secretion of glomalin[J]. Plant Physiology and Biochemistry, 112: 227-238. |
[29] |
TENG Y G, YANG J, SUN Z J, et al., 2011. Environmental vanadium distribution, mobility and bioaccumulation in different land-use Districts in Panzhihua Region, SW China[J]. Environmental Monitoring and Assessment, 176(1-4): 605-620.
DOI PMID |
[30] | TENG Y, CHEN K X, JIANG H, et al., 2024. Utilization of phosphoric acid-modified biochar to reduce vanadium leaching potential and bioavailability in soil[J]. Environmental Pollution, 344: 123360. |
[31] | TOMMERUP I C, 1992. Methods for the study of the population biology of vesicular-arbuscular mycorrhizal fungi[J]. Methods in Microbiology, 24: 23-51. |
[32] | WANG L, LIAO X Y, DONG Y B, et al., 2023. Vanadium-resistant endophytes modulate multiple strategies to facilitate vanadium detoxification and phytoremediation in Pteris vittata[J]. Journal of Hazardous Materials, 443(Part B): 130388. |
[33] | WANG M N, ZHANG B G, GENG R Y, et al., 2024a. Ecological and Health Risks of Vanadium in the Biogeosphere[J]. Reviews of Environmental Contamination and Toxicology, 262(1): 1-24. |
[34] | WANG Q, LIU M M, WANG Z F, et al., 2024b. The role of arbuscular mycorrhizal symbiosis in plant abiotic stress[J]. Frontiers in Microbiology, 14: 1323881. |
[35] | WU S L, ZHANG XY, SUN Y Q, et al., 2015. Transformation and Immobilization of Chromium by Arbuscular Mycorrhizal Fungi as Revealed by SEM-EDS, TEM-EDS, and XAFS[J]. Environmental Science & Technology, 49(24): 14036-14047. |
[36] | XIAO X Y, YANG M, GUO Z H, et al., 2015. Soil vanadium pollution and microbial response characteristics from stone coal smelting district[J]. Transactions of Nonferrous Metals Society of China, 25(4): 1271-1278. |
[37] | YIN W W, ZHANG B G, ZHANG H, et al., 2022. Vertically co-distributed vanadium and microplastics drive distinct microbial community composition and assembly in soil[J]. Journal of Hazardous Materials, 440: 129700. |
[38] | YUAN B, LI H Y, HONG H L, et al., 2022b. Immobilization of lead(II) and zinc(II) onto glomalin-related soil protein (GRSP): Adsorption properties and interaction mechanisms[J]. Ecotoxicology and Environmental Safety, 236: 113489. |
[39] | YUAN Y, IMTIAZ M, RIZWAN M, et al., 2022a. The role and its transcriptome mechanisms of cell wall polysaccharides in vanadium detoxication of rice[J]. Journal of Hazardous Materials, 425: 127966. |
[40] |
ZOU Q, XIANG H L, JIANG J G, et al., 2019. Vanadium and chromium-contaminated soil remediation using VFAs derived from food waste as soil washing agents: A case study[J]. Journal of Environmental Management, 232: 895-901.
DOI PMID |
[47] | WANG L, WANG G, MA F, et al., 2021. Symbiosis between hyperaccumulators and arbuscular mycorrhizal fungi and their synergistic effect on the absorption and accumulation of heavy metals: A review[J]. Chinese Journal of Biotechnology, 37(10): 3604-3621. |
[48] | 云南省质量技术监督局, 2009. 食品中铅、砷、铁、钙、锌、铝、钠、镁、硼、锰、铜、钡、钛、锶、锡、镉、铬、钒含量的测定电感耦合等离子体原子发射光谱(ICP-AES): DB53/T 288—2009[S]. |
Yunnan Provincial Bureau of Quality and Technical Supervision, 2009. Determination of lead, arsenic, iron, calcium, zinc, aluminum, sodium, magnesium, boron, manganese, copper, barium, titanium, strontium, tin, cadmium, chromium, and vanadium content in food by inductively coupled plasma atomic emission spectroscopy (ICP-AES): DB53/T 288—2009[S]. | |
[49] | 张羽, 成杰民, 2014. PAN分光光度法测定潮土有效态钒的提取条件筛选[J]. 贵州农业科学, 42(5): 137-139. |
ZHANG Y, CHENG J M, 2014. Screening of extraction conditions of effective vanadium in moisture soil by PAN spectrophotometry[J]. Guizhou Agricultural Sciences, 42(5): 137-139. | |
[41] | 樊宇红, 凌宏文, 朴河春, 2014. 桑树 (Morus alba) 与丛枝菌根的共生对重金属元素吸收的影响[J]. 生态环境学报, 23(3): 477-484. |
FAN Y H, LING H W, PIAO H C, 2014. Effects of symbiosis of mulberry (Morus alba) with arbuscular mycorrhizae on absorption of heavy metals (Fe, Mn, Zn, Cu and Cd)[J]. Ecology and Environmental Sciences, 23(3): 477-484. | |
[42] | 甘佳伟, 韩晓增, 邹文秀, 2022. 球囊霉素及其在土壤生态系统中的作用[J]. 土壤与作物, 11(1): 41-53. |
GAN J W, HAN X Z, ZOU W X, 2022. Glomalin and its roles in soil ecosystem: A review[J]. Soils and Crops, 11(1): 41-53. | |
[43] | 国家市场监督管理总局, 国家标准化管理委员会, 2020. 肥料中总镍、总钴、总硒、总钒、总锑、总铊含量的测定电感耦合等离子体发射光谱法: GB/T 39356—2020[S]. 北京: 中国标准出版社. |
State Administration for Market Regulation, National Standardization Administration, 2020. Determination of total nickel, total cobalt, total selenium, total vanadium, total stibium, total thallium in fertilizers — Inductively coupled plasma optical emission spectroscopy: GB/T 39356—2020[S]. Beijing: Standards Press of China. | |
[44] |
侯明, 杨心瀚, 霍岩, 等, 2019. 钒在不同品种玉米幼苗中的亚细胞分布和动态变化[J]. 生态环境学报, 28(11): 2299-2306.
DOI |
HOU M, YANG X H, HUO Y, et al., 2019. Subcellular distribution and dynamic changes of vanadium in different maize varieties seedlings[J]. Ecology and Environmental Sciences, 28(11): 2299-2306. | |
[45] | 刘珏伶, 曹聪, 阮超越, 等, 2024. 武夷山杉木林丛枝菌根真菌沿海拔的变化特征及其影响因素[J]. 亚热带资源与环境学报, 19(2): 15-22. |
LIU J L, CAO C, RUAN C Y, et al., 2024. Changes of Arbuscular Mycorrhizal Fungi in Cunninghamia lanceolata Forests Along an Elevation Gradient in Wuyi Mountain[J]. Journal of Subtropical Resources and Environment, 19(2): 15-22. | |
[46] |
屈明华, 俞元春, 李生, 等, 2020. 喀斯特生境下AMF侵染对任豆生长的影响[J]. 生态环境学报, 29(2): 231-239.
DOI |
QU M H, YU Y C, LI S, et al., 2020. Effects of arbuscular mycorrhizal fungi (AMF) on the growth of Zenia insignis in Karst Habitats[J]. Ecology and Environmental Sciences, 29(2): 231-239. | |
[47] | 王立, 汪根, 马放, 等, 2021. 超积累植物与丛枝菌根真菌共生及其联合吸收积累重金属的效应[J]. 生物工程学报, 37(10): 3604-3621. |
[1] | 侯晖, 颜培轩, 谢沁宓, 赵宏亮, 庞丹波, 陈林, 李学斌, 胡杨, 梁咏亮, 倪细炉. 贺兰山蒙古扁桃灌丛根际土壤AM真菌群落多样性特征研究[J]. 生态环境学报, 2023, 32(5): 857-865. |
[2] | 刘宁, 刘洋, 续京平, 宋慧平, 冯政君, 程芳琴. 丛枝菌根真菌对人工湿地植物生长及水质净化的影响研究[J]. 生态环境学报, 2022, 31(7): 1434-1441. |
[3] | 张健, 徐明, 王阳, 文春玉, 杨云礼, 张姣, 聂坤. 黔中地区不同马尾松群丛土壤球囊霉素分布特征[J]. 生态环境学报, 2021, 30(12): 2303-2308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||