生态环境学报 ›› 2024, Vol. 33 ›› Issue (7): 1048-1062.DOI: 10.16258/j.cnki.1674-5906.2024.07.006
张京磊1,2(), 王国良1,*(
), 吴波1, 贾春林1, 张进红1, 周圆3, 马冰4
收稿日期:
2024-03-07
出版日期:
2024-07-18
发布日期:
2024-09-04
通讯作者:
*王国良。E-mail: wangguoliang@126.com作者简介:
张京磊(1991年生),男,助理研究员,博士,主要从事草地生态学研究。E-mail: zhangjinglei910524@163.com
基金资助:
ZHANG Jinglei1,2(), WANG Guoliang1,*(
), WU Bo1, JIA Chunlin1, ZHANG Jinhong1, ZHOU Yuan3, MA Bing4
Received:
2024-03-07
Online:
2024-07-18
Published:
2024-09-04
摘要:
把豆科植物纳入作物轮作体系,不仅促进农业生态系统的可持续发展,而且为提高作物产量提供了一条关键途径,尤其是应用在低投入和低多样性农业系统时。然而,土壤微生物群落对于豆科作物轮作的响应仍鲜有研究。以典型滨海盐碱地为研究对象,利用高通量测序技术深入探究了土壤微生物群落结构和共现网络模式对于冬小黑麦 (Triticosecale Wittmack)-夏玉米(Zea mays L.)和紫花苜蓿 (Medicago sativa L.)-冬小黑麦两种轮作模式的响应。结果显示,相对于小黑麦-玉米轮作,苜蓿-小黑麦轮作对细菌群落多样性影响较小,但降低了真菌群落丰富度,这可能与土壤氮和磷含量的变化有关。非度量多维尺度分析(NMDS)结果显示,苜蓿-小黑麦轮作对细菌群落结构的影响较小,但改变了真菌群落结构,这可能与土壤pH和土壤有机碳含量的变化有关。共现网络分析结果表明,苜蓿-小黑麦轮作增加了细菌群落共现网络的复杂性和稳定性,具体表现在网络节点数、连接数、平均连接度、关键节点以及负连接数的增加,平均路径长度的降低。然而,真菌群落共现网络的复杂性和稳定性却表现出了相反的趋势。该研究表明,细菌和真菌对苜蓿轮作具有不一致的响应,在探究豆科作物轮作对土壤微生物的影响时,应当充分考虑这种不一致响应。
中图分类号:
张京磊, 王国良, 吴波, 贾春林, 张进红, 周圆, 马冰. 滨海盐碱地苜蓿-小黑麦轮作对土壤细菌和真菌群落多样性与网络结构的影响[J]. 生态环境学报, 2024, 33(7): 1048-1062.
ZHANG Jinglei, WANG Guoliang, WU Bo, JIA Chunlin, ZHANG Jinhong, ZHOU Yuan, MA Bing. The Effects of Alfalfa-Triticale Rotation on Soil Bacterial and Fungal Community Diversity and Co-occurrence Network in Coastal Saline-Alkaline Soil[J]. Ecology and Environment, 2024, 33(7): 1048-1062.
图1 不同轮作模式对细菌和真菌群落多样性的影响 MT代表玉米-小黑麦轮作,AT代表苜蓿-小黑麦轮作;星号代表不同轮作模式之间的显著性差异(n=4)
Figure 1 The effects of different crop rotation systems on bacterial and fungal community diversity
图5 不同轮作模式对细菌和真菌网络结构的影响 节点大小与节点连接度成正比;节点用相对丰度>1%的细菌和真菌门着色,相对丰度<1%的则用灰色表示;红色和蓝色边分别表示正相关和负相关
Figure 5 The effects of different crop rotation systems on bacterial and fungal community network structure
图6 随机森林预测土壤细菌和真菌群落多样性的主要土壤驱动因子
Figure 6 Random forest (RF) predictor importance (percentage of increase of mean square error, MSE) of soil properties as drivers for bacterial and fungal diversity
图7 随机森林预测土壤细菌和真菌群落结构的主要土壤驱动因子
Figure 7 Random forest (RF) predictor importance (percentage of increase of mean square error, MSE) of soil properties as drivers for bacterial and fungal community structure
作物系统 | 施肥 | 灌溉 |
---|---|---|
MT | 玉米 (N-P2O5-K2O: 26-12-12, 525 kg∙hm−2), 小黑麦 (N-P2O5-K2O: 15-42-0, 225 kg∙hm−2) | 根据土壤实际情况统一灌溉 |
AT | 苜蓿 (N-P2O5-K2O: 15-42-0, 225 kg∙hm−2), 小黑麦 (N-P2O5-K2O: 15-42-0, 225 kg∙hm−2) | 根据土壤实际情况统一灌溉 |
表S1 不同轮作模式管理措施
Table S1 The management practices of different rotation systems
作物系统 | 施肥 | 灌溉 |
---|---|---|
MT | 玉米 (N-P2O5-K2O: 26-12-12, 525 kg∙hm−2), 小黑麦 (N-P2O5-K2O: 15-42-0, 225 kg∙hm−2) | 根据土壤实际情况统一灌溉 |
AT | 苜蓿 (N-P2O5-K2O: 15-42-0, 225 kg∙hm−2), 小黑麦 (N-P2O5-K2O: 15-42-0, 225 kg∙hm−2) | 根据土壤实际情况统一灌溉 |
处理 | pH | 电导率/(μS∙cm−1) | w(盐分)/(g∙kg−1) | w(土壤有机质)/(g∙kg−1) | w(全氮)/(g∙kg−1) | w(全磷)/(g∙kg−1) | w(有效氮)/(g∙kg−1) | w(有效磷)/(g∙kg−1) |
---|---|---|---|---|---|---|---|---|
MT_2022 | 8.69±0.03 | 200.63±15.64 | 1.34±0.21 | 10.37±0.22a | 1.07±0.02 | 1.03±0.04 | 113.06±5.17 | 33.59±4.89 |
AT_2022 | 8.67±0.07 | 151.82±12.52 | 1.46±0.26 | 9.16±0.15b | 1.02±0.01 | 0.94±0.03 | 98.99±7.55 | 30.42±2.64 |
MT_2023 | 8.70±0.04b | 163.23±8.86 | 0.86±0.11 | 8.47±0.56 | 1.81±0.06 | 0.81±0.05 | 216.78±25.52 | 21.28±2.27a |
AT_2023 | 8.82±0.04a | 182.18±10.10 | 0.79±0.14 | 8.22±0.34 | 1.83±0.06 | 0.82±0.04 | 244.57±11.4 | 13.98±1.77b |
表S2 不同轮作模式下土壤理化性质
Table S2 Soil properties under different rotation systems
处理 | pH | 电导率/(μS∙cm−1) | w(盐分)/(g∙kg−1) | w(土壤有机质)/(g∙kg−1) | w(全氮)/(g∙kg−1) | w(全磷)/(g∙kg−1) | w(有效氮)/(g∙kg−1) | w(有效磷)/(g∙kg−1) |
---|---|---|---|---|---|---|---|---|
MT_2022 | 8.69±0.03 | 200.63±15.64 | 1.34±0.21 | 10.37±0.22a | 1.07±0.02 | 1.03±0.04 | 113.06±5.17 | 33.59±4.89 |
AT_2022 | 8.67±0.07 | 151.82±12.52 | 1.46±0.26 | 9.16±0.15b | 1.02±0.01 | 0.94±0.03 | 98.99±7.55 | 30.42±2.64 |
MT_2023 | 8.70±0.04b | 163.23±8.86 | 0.86±0.11 | 8.47±0.56 | 1.81±0.06 | 0.81±0.05 | 216.78±25.52 | 21.28±2.27a |
AT_2023 | 8.82±0.04a | 182.18±10.10 | 0.79±0.14 | 8.22±0.34 | 1.83±0.06 | 0.82±0.04 | 244.57±11.4 | 13.98±1.77b |
图S2 不同轮作模式对细菌和真菌群落组成(门水平)的影响 Others代表相对丰度小于1%
Figure S2 The effects of different rotation systems on bacterial and fungal community taxonomic composition (phylum level)
网络特征 | 细菌群落 | 真菌群落 | ||||
---|---|---|---|---|---|---|
MT | AT | MT | AT | |||
经验网络 | 节点数 | 780 | 866 | 341 | 280 | |
连接数 (负连接数) | 2573(1107) | 3346(1631) | 1157(672) | 881(465) | ||
平均连接度 | 6.60b | 7.73a | 6.79b | 6.29a | ||
平均聚集系数 | 0.37 | 0.34 | 0.23 | 0.22 | ||
平均路径长度 | 6.72a | 5.99b | 4.22 | 4.19 | ||
模块性 | 0.64 | 0.59 | 0.50 | 0.52 | ||
随机网络 | 平均路径长度 | 3.61 | 3.52 | 4.22 | 4.19 | |
平均聚集系数 | 0.01 | 0.01 | 0.23 | 0.22 | ||
模块性 | 0.35 | 0.32 | 0.34 | 0.36 |
表S3 不同轮作模式下细菌和真菌网络拓扑性质
Table S3 Topological properties of the bacterial and fungal networks under different rotation systems
网络特征 | 细菌群落 | 真菌群落 | ||||
---|---|---|---|---|---|---|
MT | AT | MT | AT | |||
经验网络 | 节点数 | 780 | 866 | 341 | 280 | |
连接数 (负连接数) | 2573(1107) | 3346(1631) | 1157(672) | 881(465) | ||
平均连接度 | 6.60b | 7.73a | 6.79b | 6.29a | ||
平均聚集系数 | 0.37 | 0.34 | 0.23 | 0.22 | ||
平均路径长度 | 6.72a | 5.99b | 4.22 | 4.19 | ||
模块性 | 0.64 | 0.59 | 0.50 | 0.52 | ||
随机网络 | 平均路径长度 | 3.61 | 3.52 | 4.22 | 4.19 | |
平均聚集系数 | 0.01 | 0.01 | 0.23 | 0.22 | ||
模块性 | 0.35 | 0.32 | 0.34 | 0.36 |
[1] | ADAMS R I, MILETTO M, TAYLOR J W, et al., 2013. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances[J]. The International Society for Microbial Ecology Journal, 7(7): 1262-1273. |
[2] | AI C, ZHANG S Q, ZHANG X, et al., 2018. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation[J]. Geoderma, 319: 156-166. |
[3] | BARBERÁN A, BATES S T, CASAMAYOR E O, et al., 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. The International Society for Microbial Ecology Journal, 6(2): 343-351. |
[4] | CHEN S F, ZHOU Y Q, CHEN Y R, et al., 2018. Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 34(17): i884-i890. |
[5] |
COYTE K Z, SCHLUTER J, FOSTER K R, 2015. The ecology of the microbiome: Networks, competition, and stability[J]. Science, 350(6261): 663-666.
DOI PMID |
[6] | DE VRIES F T, GRIFFITHS R I, BAILEY M, et al., 2018. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications, 9(1): 3033. |
[7] | DENG Y, JIANG Y H, YANG Y F, et al., 2012. Molecular ecological network analyses[J]. BMC Bioinformatics, 13(1): 113. |
[8] |
EDGAR R C, 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10): 996-998.
DOI PMID |
[9] | ESSEL E, XIE J H, DENG C C, et al., 2019. Bacterial and fungal diversity in rhizosphere and bulk soil under different long-term tillage and cereal/legume rotation[J]. Soil and Tillage Research, 194: 104302. |
[10] |
EVANS S E, WALLENSTEIN M D, BURKE I C, 2014. Is bacterial moisture niche a good predictor of shifts in community composition under long-term drought?[J]. Ecology, 95(1): 110-122.
PMID |
[11] | FENG K, PENG X, ZHANG Z, et al., 2022. iNAP: An integrated Network Analysis Pipeline for microbiome studies[J]. iMeta, 1(2): e13. |
[12] | FINN D R, LEE S, LANZEN A, et al., 2021. Cropping systems impact changes in soil fungal, but not prokaryote, alpha-diversity and community composition stability over a growing season in a long-term field trial[J]. FEMS Microbiology Ecology, 97(10): fiab136-1-fiab1367. |
[13] |
GHOUL M, MITRI S, 2016. The ecology and evolution of microbial competition[J]. Trends in Microbiology, 24(10): 833-845.
DOI PMID |
[14] | JIANG Y J, LIANG Y T, LI C M, et al., 2016. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia[J]. Soil Biology and Biochemistry, 95: 250-261. |
[15] | JIAO S, CHEN W M, WANG J L, et al., 2018. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems[J]. Microbiome, 6(1): 1-13. |
[16] | LI G R, TANG X Q, HOU Q M, et al., 2023. Response of soil organic carbon fractions to legume incorporation into cropping system and the factors affecting it: A global meta-analysis[J]. Agriculture, Ecosystems & Environment, 342: 108231. |
[17] | LIU Q, ZHAO Y X, LI T, et al., 2023. Changes in soil microbial biomass, diversity, and activity with crop rotation in cropping systems: A global synthesis[J]. Applied Soil Ecology, 186: 104815. |
[18] |
MOUGI A, KONDOH M, 2012. Diversity of Interaction Types and Ecological Community Stability[J]. Science, 337(6092): 349-351.
DOI PMID |
[19] | NATH C P, HAZRA K K, KUNAR N, et al., 2019. Including grain legume in rice-wheat cropping system improves soil organic carbon pools over time[J]. Ecological Engineering, 129: 144-153. |
[20] | SAMADDAR S, SCHMIDT R, TAUTGES N E, et al., 2021. Adding alfalfa to an annual crop rotation shifts the composition and functional responses of tomato rhizosphere microbial communities[J]. Applied Soil Ecology, 167: 104102. |
[21] | SANDIPAN S, RADOMIR S, NICOLE E T, et al., 2021. Adding alfalfa to an annual crop rotation shifts the composition and functional responses of tomato rhizosphere microbial communities[J]. Applied Soil Ecology, 167: 104102. |
[22] | THOMPSON P L, ONZALEZ A, 2017. Dispersal governs the reorganization of ecological networks under environmental change[J]. Nature Ecology & Evolution, 1(6): 162. |
[23] |
TRIVEDI P, ANDERSON I C, SINGH B K, 2013. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction[J]. Trends in Microbiology, 21(12): 641-651.
DOI PMID |
[24] | VIRK A L, LIN B J, KAN Z R, et al., 2022. Simultaneous effects of legume cultivation on carbon and nitrogen accumulation in soil[J]. Advances in Agronomy, 171: 75-110. |
[25] | WANG H, LIU S R, ZHANG X, et al., 2018a. Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China[J]. Soil Biology and Biochemistry, 127: 22-30. |
[26] |
WANG Q, GARRITY G M, TIEDJE J M, et al., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 73(16): 5261-5267.
DOI PMID |
[27] | WANG S, WANG X B, HAN X G, et al., 2018b. Higher precipitation strengthens the microbial interactions in semi-arid grassland soils[J]. Global Ecology and Biogeography, 27(5): 570-580. |
[28] | XU N, TAN G C, WANG H Y, et al., 2016. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 74: 1-8. |
[29] | YU H, WANG F H, SHAO M M, et al., 2021. Effects of Rotations with legume on soil functional microbial communities involved in phosphorus transformation[J]. Frontiers in Microbiology, 12: 661100. |
[30] |
YU T B, NIE J W, ZANG H D, et al., 2023. Peanut-based rotation stabilized diazotrophic communities and increased subsequent wheat yield[J]. Microbial Ecology, 86(4): 2447-2460.
DOI PMID |
[31] | YUAN M M, GUO X, WU L W, et al., 2021. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change, 11(4): 343-348. |
[32] | ZHAO J, CHEN J, BEILLOUIN D, et al., 2022. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers[J]. Nature Communications, 13(1): 4926. |
[33] | ZHOU G P, FAN K K, GAO S J, et al., 2023. Green manuring relocates microbiomes in driving the soil functionality of nitrogen cycling to obtain preferable grain yields in thirty years[J]. Science China Life Sciences, 67: 596-610. |
[34] | ZOU J, YAO Q, LIU J, et al., 2020. Changes of diazotrophic communities in response to cropping systems in a Mollisol of Northeast China[J]. PeerJ, 8: e9550. |
[35] | 白春礼, 2020. 科技创新引领黄河三角洲农业高质量发展[J]. 中国科学院院刊, 35(2): 138-144. |
BAI C L, 2020. Scientific and technological innovation leads high-quality development of agriculture in the Yellow River Delta[J]. Bulletin of Chinese Academy of Sciences, 35(2): 138-144. | |
[36] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社. |
BAO S D, 2000. Soil agricultural chemistry analysis[M]. 3rd edition. Beijing: China Agriculture Press. | |
[37] |
曹莉, 秦舒浩, 张俊莲, 等, 2013. 轮作豆科牧草对连作马铃薯田土壤微生物菌群及酶活性的影响[J]. 草业学报, 22(3): 139-145.
DOI |
CAO L, QIN S H, ZHANG J L, et al., 2013. Effect of leguminous forage rotations on soil microbe consortiums and enzyme activity in continuously cropped potato fields[J]. Acta Prataculturae Sinica, 22(3): 139-145.
DOI |
|
[38] | 曾昭海, 2018. 豆科作物与禾本科作物轮作研究进展及前景[J]. 中国生态农业学报, 26(1): 57-61. |
ZENG Z H, 2018. Progress and perspective of legume-gramineae rotations[J]. Chinese Journal of Eco-Agriculture, 26(1):57-61. | |
[39] | 郭耀东, 程曼, 赵秀峰, 等, 2018. 轮作绿肥对盐碱地土壤性质、后作青贮玉米产量及品质的影响[J]. 中国生态农业学报, 26(6): 856-864. |
GUO Y D, CHENG M, ZHAO X F, et al., 2018. Effects of green manure rotation on soil properties and yield and quality of silage maize in saline-alkali soils[J]. Chinese Journal of Eco-Agriculture, 26(6): 856-864. | |
[40] | 侯喜庆, 禹桃兵, 王培欣, 等, 2023. 轮作模式对冬小麦根际和非根际土壤氨氧化微生物群落多样性和组成的影响[J]. 生态学报, 43(23): 9900-9911. |
HOU X Q, YU T B, WANG P X, et al., 2023. Diversity and composition of ammonia-oxidizing archaeal and bacterial communities in rhizosphere and bulk soils of winter wheat in crop rotations[J]. Acta Ecologica Sinica, 43(23): 9900-9911. | |
[41] |
靳海洋, 岳俊芹, 闫雅倩, 等, 2022. 不同轮作茬口土壤细菌群落及后茬小麦产量[J]. 应用生态学报, 33(11): 2954-2962.
DOI |
JIN H Y, YUE J Q, YAN Y Q, et al., 2022. Soil bacterial communities of different crop rotations and yield of succeeding wheat[J]. Chinese Journal of Applied Ecology, 33(11): 2954-2962.
DOI |
|
[42] |
刘蕾, 徐梦, 王凌, 等, 2021. 引入豆科作物的轮作模式对设施蔬菜土壤微生物群落组成的影响[J]. 华北农学报, 36(3): 203-215.
DOI |
LIU L, XU M, WANG L, et al., 2021. Effects of crop rotation with legumes on the composition of microbial community in greenhouse vegetable soils[J]. Acta Agriculturae Boreali-Sinica, 36(3): 203-215.
DOI |
|
[43] | 于淑婷, 2023. 华北轮作制度转换下土壤微生物群落及作物产量变化机制研究[D]. 武汉: 华中农业大学. |
YU S T, 2023. Soil microbial community and crop yield changes with cropping system conversions in North China Plain[D]. Wuhan: Huazhong Agricultural University. | |
[44] | 张进红, 王国良, 吴波, 等, 2018. 黄河三角洲盐碱地不同柳枝稷品种生长特性比较[J]. 中国农业大学学报, 23(12): 158-165. |
ZHANG J H, WANG G L, WU B, et al., 2018. Comparative study on the growth characteristics of different switchgrass varieties in saline-alkali soil of the Yellow River Delta[J]. Journal of China Agricultural University, 23(12): 158-165. | |
[45] | 张志强, 王晓宇, 王黎梅, 等, 2020. 不同牧草品种用作绿肥对盐碱地土壤养分的影响[J]. 畜牧与饲料科学, 41(3): 35-41. |
ZHANG Z Q, WANG X Y, WANG L M, et al., 2020. Effects of different forage varieties used as green manure on saline-alkali soil nutrients[J]. Animal Husbandry and Feed Science, 41(3): 35-41. | |
[46] |
朱瑞芬, 刘杰淋, 王建丽, 等, 2020. 基于分子生态学网络分析松嫩退化草地土壤微生物群落对施氮的响应[J]. 中国农业科学, 53(13): 2637-2646.
DOI |
ZHU R F, LIU J L, WANG J L, et al., 2020. Molecular ecological network analyses revealing the effects of nitrogen application on soil microbial community in the degraded grasslands[J]. Scientia Agricultura Sinica, 53(13): 2637-2646.
DOI |
[1] | 李成阳, 梁志辉, 李臻明, 蔡敏, 许瑞瑶, 陈秀宇, 丁佳音, 许秋云, 彭飞. 长江源区北麓河流域退化高寒草甸植物群落特征和土壤特性[J]. 生态环境学报, 2024, 33(7): 1063-1071. |
[2] | 王梓晗, 吕世杰, 王忠武, 刘红梅. 放牧强度对优势种群重要值和物种多样性及其二者典型关系的影响[J]. 生态环境学报, 2024, 33(6): 869-876. |
[3] | 关玉亮, 甘先华, 殷祚云, 黄钰辉, 陶玉柱, 李宽, 张卫强, 邓彩琼, 曾祥尧, 黄芳芳. 南岭自然保护区不同海拔梯度植物多样性分布格局[J]. 生态环境学报, 2024, 33(6): 877-887. |
[4] | 王俊伟, 陈永豪, 曾哲飞, 陈孟焱, 拉琼. 西藏拉萨市入侵植物曼陀罗群落物种多样性研究[J]. 生态环境学报, 2024, 33(6): 900-907. |
[5] | 蒋云峰, 严婷, 刘俊男, 马丙增, 王海萌, 窦笑萌. 黑土区农田中型土壤动物群落对免耕玉米秸秆覆盖频率的响应[J]. 生态环境学报, 2024, 33(5): 699-707. |
[6] | 卿彩霞, 陈圣宾, 邓杰文, 邓惺位, 李喆, 邱鹭. 生境数量和生境质量以及气象因子对成都市粪食性金龟物种多样性的影响[J]. 生态环境学报, 2024, 33(5): 708-719. |
[7] | 黄倩, 朱时应, 李天顺, 李明燕, 索南措, 普布. 西藏热振国家森林公园土壤原生动物群落沿海拔分布格局及其与环境因子的关联特征[J]. 生态环境学报, 2024, 33(4): 499-508. |
[8] | 卫玺玺, 晁鑫艳, 郑景明, 唐可欣, 万龙, 周金星. 贺兰山东、西侧典型植物群落物种多样性差异及其影响因子[J]. 生态环境学报, 2024, 33(4): 520-530. |
[9] | 陈弘杰, 廖洪凯, 龙健, 赵雨鑫, 湛凯翔, 冉泰山, 杨国梅. 强还原土壤灭菌对土壤原生生物群落的影响[J]. 生态环境学报, 2024, 33(4): 539-547. |
[10] | 何杰, 李宗明, 杨正宇, 沈健林, 刘国平, 吴金水. 牛粪化肥配施对双季稻田CH4和N2O排放的影响[J]. 生态环境学报, 2024, 33(4): 573-584. |
[11] | 丁昊, 李长鑫, 丁静, 兰昊. n-damo细菌在不同生态环境中的遗传多样性和潜在功能研究[J]. 生态环境学报, 2024, 33(2): 202-211. |
[12] | 李晴, 张梦悦, 于明乔, 李小璇, 常明, 陈立斌, 丁森. 东莞城市河流大型底栖动物群落结构及影响因子[J]. 生态环境学报, 2024, 33(1): 101-110. |
[13] | 马媛, 田路露, 吕杰, 柳沛, 张旭, 李二阳, 张清航. 天山北坡雪岭云杉森林土壤微生物群落及影响因素研究[J]. 生态环境学报, 2024, 33(1): 1-11. |
[14] | 宋思梦, 林冬梅, 周恒宇, 罗宗志, 张丽丽, 易超, 林辉, 林兴生, 刘斌, 苏德伟, 郑丹, 余世葵, 林占熺. 种植巨菌草对乌兰布和沙漠植物物种多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(9): 1595-1605. |
[15] | 刘晗, 王萍, 孙鲁沅, 秦文婧, 陈晓芬, 陈金, 周国朋, 梁婷, 刘佳, 李燕丽. 种植冬绿肥对红壤幼龄橘园土壤微生物量碳、氮和酶活的影响[J]. 生态环境学报, 2023, 32(9): 1623-1631. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||