生态环境学报 ›› 2024, Vol. 33 ›› Issue (11): 1696-1707.DOI: 10.16258/j.cnki.1674-5906.2024.11.004
宋江琴1(), 尹亚丽1,2, 赵文1, 刘燕1, 随奇奇1, 火久艳1, 郑文贤1, 李世雄1,2,3,*(
)
收稿日期:
2024-08-11
出版日期:
2024-11-18
发布日期:
2024-12-06
通讯作者:
*李世雄。E-mail: shixionglee@hotmail.com作者简介:
宋江琴(1995年生),女,博士研究生,研究方向为高寒草地适应性研究。E-mail: 2439675088@qq.com
基金资助:
SONG Jiangqin1(), YIN Yali1,2, ZHAO Wen1, LIU Yan1, SUI Qiqi1, HUO Jiuyan1, ZHENG Wenxian1, LI Shixiong1,2,3,*(
)
Received:
2024-08-11
Online:
2024-11-18
Published:
2024-12-06
摘要:
黑土滩退化草地作为青海高原典型的生态脆弱地带,植被退化、养分流失严重以及空间异质性高,了解不同区域尺度下黑土滩退化草地土壤微生物群落特征差异及影响因子,有助于制定草地恢复措施策略。通过分析青海省海北(YNG)、玉树(BT)和果洛藏族自治州(DW)黑土滩退化草地植被、土壤因子和微生物群落组成及构建过程,研究不同立地条件下环境因子对微生物群落的影响。结果表明:1)较未退化草地,黑土滩土壤中的致病菌如被孢霉门(Mortierellomycota)和浮游霉菌门(Planctomycetes)含量显著增加,共生菌如担子菌门(Basidiomycota)含量显著降低;2)BT区域的真菌物种数和多样性显著高于其他区域,表现为BT>DW>YNG;3)随机性过程主导了DW和BT区域黑土滩土壤细菌和真菌的群落构建,而YNG区域黑土滩土壤细菌和真菌由确定性过程主导;4)全钾和地下生物量主要影响了DW区域黑土滩土壤细菌的群落组成,pH是YNG区域细菌和真菌群落组成的主要影响因子,而BT区域细菌群落主要受硝态氮、含水量和全磷的影响。研究表明影响不同区域黑土滩土壤微生物群落组成和结构的土壤环境因子均有差异,在恢复和调整黑土滩土壤微生物多样性时,需因地制宜,根据相应的环境驱动因子制定恢复策略。
中图分类号:
宋江琴, 尹亚丽, 赵文, 刘燕, 随奇奇, 火久艳, 郑文贤, 李世雄. 青海高原黑土滩退化草地土壤微生物群落空间分异特征[J]. 生态环境学报, 2024, 33(11): 1696-1707.
SONG Jiangqin, YIN Yali, ZHAO Wen, LIU Yan, SUI Qiqi, HUO Jiuyan, ZHENG Wenxian, LI Shixiong. Characteristics of Spatial Differentiation of Soil Microbial Communities in Degraded Grassland on the “Black Soil Beaches” of Qinghai Plateau[J]. Ecology and Environment, 2024, 33(11): 1696-1707.
样点 | 海拔/m | 摄氏温度 (5‒9月)/℃ | 降水量 (5‒9月)/mm | 优势种 | 拉丁名 |
---|---|---|---|---|---|
YNG | 3714 | 8.40 | 92.4 | 细叶亚菊、直梗高山唐松草、裂叶独活 | Ajania tenuifolia、Thalictrum alpinum var. elatum、Heracleum millefolium |
DW | 3778 | 9.72 | 101.6 | 冷蒿、臭蒿、西藏忍冬 | Artemisia frigida、A. hedinii、 Lonicera rupicola |
BT | 3789 | 11.93 | 92.2 | 臭蒿、细叶亚菊、肉果草、白苞筋骨草 | A. frigida、A. tenuifolia、 Lancea tibetica、Ajuga lupulina |
表1 研究区域具体地理、气候和植被信息
Table 1 Specific geographical, climatic, and vegetation information for the three research sites
样点 | 海拔/m | 摄氏温度 (5‒9月)/℃ | 降水量 (5‒9月)/mm | 优势种 | 拉丁名 |
---|---|---|---|---|---|
YNG | 3714 | 8.40 | 92.4 | 细叶亚菊、直梗高山唐松草、裂叶独活 | Ajania tenuifolia、Thalictrum alpinum var. elatum、Heracleum millefolium |
DW | 3778 | 9.72 | 101.6 | 冷蒿、臭蒿、西藏忍冬 | Artemisia frigida、A. hedinii、 Lonicera rupicola |
BT | 3789 | 11.93 | 92.2 | 臭蒿、细叶亚菊、肉果草、白苞筋骨草 | A. frigida、A. tenuifolia、 Lancea tibetica、Ajuga lupulina |
指标 | 研究区域 | F | p | ||
---|---|---|---|---|---|
BT | DW | YNG | |||
S | 11.3±1.75b | 16.3±3.75a | 11.8±0.75b | 57.2 | 0.014* |
D | 0.812±0.09a | 0.847±0.03a | 0.814±0.03a | 1.67 | 0.67 |
H | 1.15±0.29a | 1.33±0.12a | 1.28±0.18a | 2.84 | 0.53 |
E | 0.472±0.09b | 0.493±0.04b | 0.636±0.07a | 42.1 | 0.03* |
地上生物量/(kg·m-2) | 0.170±0.03b | 0.263±0.03a | 0.062±0.008c | 8.27 | 0.04* |
总盖度/% | 82.4±4.44b | 105.3±8.31a | 44.6±5.19c | 176.3 | 0.001** |
平均高度/cm | 4.33±0.95a | 3.92±0.87b | 2.14±0.12c | 25.9 | 0.011* |
地下生物量/(kg·m-2) | 0.64±0.05b | 1.08±0.22a | 0.18±0.04c | 43.8 | 0.000** |
脲酶URE活性/(mg·g-1) | 0.91±0.10b | 1.06±0.07a | 0.34±0.04c | 108.3 | 0.002** |
磷酸酶SPP活性/(mg·g-1) | 2.16±0.07a | 1.68±0.18b | 0.60±0.05c | 197.3 | 0.000** |
蔗糖酶SSC活性/(mg·g-1) | 69.1±6.00b | 105.5±7.67a | 24.2±2.36c | 198.1 | 0.000** |
w(有机碳SOC)/(g·kg-1) | 53.0±4.20a | 40.1±4.55a | 11.5±1.58b | 132.9 | 0.000** |
w(全氮TN)/(g·kg-1) | 4.57±0.29a | 3.07±0.19a | 0.88±0.14b | 293 | 0.001** |
w(全磷TP)/(g·kg-1) | 0.773±0.01a | 0.602±0.01ab | 0.547±0.02b | 227.7 | 0.000** |
w(全钾TK)/(g·kg-1) | 21.9±0.50a | 23.0±0.10a | 22.5±0.41a | 3.62 | 0.46 |
pH | 6.50±0.01b | 7.74±0.28ab | 8.97±0.07a | 223.4 | 0.000** |
w(水分SWC)/% | 16.3±0.81a | 12.9±0.40b | 13.6±0.78b | 8.42 | 0.02* |
w(铵态氮NH4+-N)/(mg·kg-1) | 4.55±0.34a | 4.06±0.23a | 2.91±0.37b | 27.72 | 0.000** |
w(硝态氮NO3--N)/(mg·kg-1) | 13.67±1.06a | 7.17±1.02b | 9.37±0.66b | 50.55 | 0.000** |
w(速磷AP)/(mg·kg-1) | 3.08±0.49b | 6.28±1.43a | 1.13±0.28c | 34.26 | 0.000** |
w(速钾AK)/(mg·kg-1) | 114.6±9.08a | 115.7±7.00a | 41.2±2.70b | 157.7 | 0.000** |
w(微生物量氮SMN)/(mg·kg-1) | 92.4±5.47b | 115.3±7.01a | 28.3±5.74c | 218.2 | 0.000** |
w(微生物量磷SMP)/(mg·kg-1) | 7.59±0.82a | 8.98±0.64a | 5.27±1.03b | 11.88 | 0.001** |
w(微生物量碳SMC)/(mg·kg-1) | 393.1±52.66a | 404.5±44.85a | 107.5±24.07b | 63.4 | 0.000** |
表2 不同区域黑土滩植被和土壤理化性质特征
Table 2 Vegetation and physicochemical characteristics of black soil beaches at different locations
指标 | 研究区域 | F | p | ||
---|---|---|---|---|---|
BT | DW | YNG | |||
S | 11.3±1.75b | 16.3±3.75a | 11.8±0.75b | 57.2 | 0.014* |
D | 0.812±0.09a | 0.847±0.03a | 0.814±0.03a | 1.67 | 0.67 |
H | 1.15±0.29a | 1.33±0.12a | 1.28±0.18a | 2.84 | 0.53 |
E | 0.472±0.09b | 0.493±0.04b | 0.636±0.07a | 42.1 | 0.03* |
地上生物量/(kg·m-2) | 0.170±0.03b | 0.263±0.03a | 0.062±0.008c | 8.27 | 0.04* |
总盖度/% | 82.4±4.44b | 105.3±8.31a | 44.6±5.19c | 176.3 | 0.001** |
平均高度/cm | 4.33±0.95a | 3.92±0.87b | 2.14±0.12c | 25.9 | 0.011* |
地下生物量/(kg·m-2) | 0.64±0.05b | 1.08±0.22a | 0.18±0.04c | 43.8 | 0.000** |
脲酶URE活性/(mg·g-1) | 0.91±0.10b | 1.06±0.07a | 0.34±0.04c | 108.3 | 0.002** |
磷酸酶SPP活性/(mg·g-1) | 2.16±0.07a | 1.68±0.18b | 0.60±0.05c | 197.3 | 0.000** |
蔗糖酶SSC活性/(mg·g-1) | 69.1±6.00b | 105.5±7.67a | 24.2±2.36c | 198.1 | 0.000** |
w(有机碳SOC)/(g·kg-1) | 53.0±4.20a | 40.1±4.55a | 11.5±1.58b | 132.9 | 0.000** |
w(全氮TN)/(g·kg-1) | 4.57±0.29a | 3.07±0.19a | 0.88±0.14b | 293 | 0.001** |
w(全磷TP)/(g·kg-1) | 0.773±0.01a | 0.602±0.01ab | 0.547±0.02b | 227.7 | 0.000** |
w(全钾TK)/(g·kg-1) | 21.9±0.50a | 23.0±0.10a | 22.5±0.41a | 3.62 | 0.46 |
pH | 6.50±0.01b | 7.74±0.28ab | 8.97±0.07a | 223.4 | 0.000** |
w(水分SWC)/% | 16.3±0.81a | 12.9±0.40b | 13.6±0.78b | 8.42 | 0.02* |
w(铵态氮NH4+-N)/(mg·kg-1) | 4.55±0.34a | 4.06±0.23a | 2.91±0.37b | 27.72 | 0.000** |
w(硝态氮NO3--N)/(mg·kg-1) | 13.67±1.06a | 7.17±1.02b | 9.37±0.66b | 50.55 | 0.000** |
w(速磷AP)/(mg·kg-1) | 3.08±0.49b | 6.28±1.43a | 1.13±0.28c | 34.26 | 0.000** |
w(速钾AK)/(mg·kg-1) | 114.6±9.08a | 115.7±7.00a | 41.2±2.70b | 157.7 | 0.000** |
w(微生物量氮SMN)/(mg·kg-1) | 92.4±5.47b | 115.3±7.01a | 28.3±5.74c | 218.2 | 0.000** |
w(微生物量磷SMP)/(mg·kg-1) | 7.59±0.82a | 8.98±0.64a | 5.27±1.03b | 11.88 | 0.001** |
w(微生物量碳SMC)/(mg·kg-1) | 393.1±52.66a | 404.5±44.85a | 107.5±24.07b | 63.4 | 0.000** |
图2 不同区域黑土滩土壤微生物多样性特征 “ns”表示p>0.05;“*”表示0.01≤p <0.05;“**”表示0.001≤p <0.01;“***”表示p<0.001
Figure 2 Characteristics of microorganisms diversity in black soil beaches at different locations
图3 不同区域黑土滩与未退化草地土壤微生物在门水平上的差异 “ED”代表黑土滩;“ND”代表未退化草地
Figure 3 Differences in soil microorganisms at the phylum level between different regions of the black soil bank and non-degraded grassland
图4 不同区域黑土滩土壤细菌和真菌在目水平和属水平的LEfSe差异分析 Aci, Chth, Pro, Blast, Gam, Spar, RB41, Bla, Ver, Blasto, DA101分别代表细菌属Acidobacteria, Chthoniobacteraies, Proteobacteria, Blastocatellia, Gammaproteobacteria, Spartobacteria, RB41, Blastocatellales, Verrucomicrobia, Blastocatellaceae, DA101_soil_group;Eur, Cla, Aga, Hyp, Gib, Cha, Leo, Clav, Sor, Bas, Nec分别代表真菌属Eurotiomycetes, Clavulinopsis, Agaricales, Hypocreales, Gibberella, Chaetothyriales, Leotiomycetess, Clavariaceae, Sordariomycetes, Basidiomycota, Nectriaceae;p<0.05
Figure 4 LEfSe differential analysis of bacterial and fungal taxa at the class level and genus level in black soil beaches at different locations
图9 不同区域黑土滩土壤微生物群落结构与环境因子的RDA分析
Figure 9 RDA analysis of the relationship between soil microbial community structure in black soil beaches at different locations and environmental factors
[1] |
CLINE L C, ZAK D R, 2015. Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession[J]. Ecology, 96(12): 3374-3385.
PMID |
[2] | DE VRIES F T, GRIFFITHS R I, BAILEY M, et al., 2018. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communication, 9: 3033. |
[3] |
EDGAR R C, 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10: 996-998.
DOI PMID |
[4] | GSCHWEND F, HARTMANN M, MAYERHOFER J, et al., 2022. Site and land-use associations of soil bacteria and fungi define core and indicative taxa[J]. FEMS Microbiology Ecology, 97(12): 165. |
[5] | GUO N, DEGEN A A, DENG B, et al., 2019. Changes in vegetation parameters and soil nutrients along degradation and recovery successions on alpine grasslands of the Tibetan plateau[J]. Agriculture, Ecosystems & Environment, 284: 106593. |
[6] | HUANG X L, AN R, WANG H L, et al., 2023. Differential effects of climatic and non-climatic factors on the distribution of vegetation phenology trends on the Tibetan plateau[J]. Heliyon, 9(10): e21069. |
[7] | HUANG Y H, LIU Y, GENG J, et al., 2022. Maize root-associated niches determine the response variation in bacterial community assembly and function to phthalate pollution[J]. Journal of Hazardous Materials, 429: 128280. |
[8] |
JIAO S, LU Y H, 2020. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems[J]. Environmental Microbiology, 22(3): 1052-1065.
DOI PMID |
[9] | JOERGENSEN R G, WU J H, PHILIP C B, 2011. Measuring soil microbial biomass using an automated procedure[J]. Soil Biology and Biochemistry, 43(5): 873-876. |
[10] | LIN F F, LETUMA P, LI Z W, et al., 2021. Rhizospheric pathogen proliferation and ROS production are associated with premature senescence of the osvha-a1 rice mutant[J]. Journal of Experimental Botany, 72(20): 7247-7263. |
[11] | LIU J J, GUO Y P, GU H D, et al., 2023b. Conversion of steppe to cropland increases spatial heterogeneity of soil functional genes[J]. The ISME Journal, 17: 1872-1883. |
[12] | LIU L, ZHU K, KRAUSE S M B, et al., 2021. Changes in assembly processes of soil microbial communities during secondary succession in two subtropical forests[J]. Soil Biology and Biochemistry, 154: 108144. |
[13] | LIU X, ZHOU T, ZHAO X, et al., 2023a. Patterns and drivers of soil carbon change (1980s-2010s) in the northeastern Qinghai-Tibet Plateau[J]. Geoderma, 434: 116488. |
[14] | MERINO-MARTÍN L, HERNÁNDEZ-CÁCERES D, REVERCHON F, et al., 2023. Habitat partitioning of soil microbial communities along an elevation gradient: from plant root to landscape scale[J]. Oikos, 2023(1): e09034. |
[15] | NAUGHTON H R, TOLAR B B, DEWEY C, et al., 2023. Reactive iron, not fungal community, drives organic carbon oxidation potential in floodplain soils[J]. Soil Biology and Biochemistry, 178: 108962. |
[16] | SCHULZ S, BRANKATSCHK R, DÜMIG A, et al., 2013. The role of microorganisms at different stages of ecosystem development for soil formation[J]. Biogeosciences, 10(6): 3983-3996. |
[17] | VOYRON S, TONON C, GUGLIELMONE L, et al., 2022. Diversity and structure of soil fungal communities unveil the building history of a burial mound of ancient Japan (Tobiotsuka Kofun, Okayama Prefecture)[J]. Journal of Archaeological Science, 146: 105656. |
[18] |
WAGG C, BENDER S F, WIDMER F, et al., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(14): 5266-5270.
DOI PMID |
[19] | WU G L, FANG H, CUI Z, et al., 2023. Warming-driven indirect effects on alpine grasslands: Short-term gravel encroachment rapidly reshapes community structure and reduces community stability[J]. Oecologia, 202: 251-259. |
[20] | WU Y, CHEN W J, LI Q, et al., 2021. Ecoenzymatic stoichiometry and nutrient limitation under a natural secondary succession of vegetation on the Loess Plateau, China[J]. Land Degradation & Development, 32(1): 399-409. |
[21] | XU A A, LIU J, GUO Z Y, et al., 2021. Soil microbial community composition but not diversity is affected by land-use types in the agro-pastoral ecotone undergoing frequent conversions between cropland and grassland[J]. Geoderma, 406: 115-165. |
[22] | YANG N, LI X X, LIU D, et al., 2022. Diversity patterns and drivers of soil bacterial and fungal communities along elevational gradients in the Southern Himalayas, China[J]. Applied Soil Ecology, 178: 104563. |
[23] | YIN Y C, YAN Z Z, 2020. Variations of soil bacterial diversity and metabolic function with tidal flat elevation gradient in an artificial mangrove wetland[J]. Science of the Total Environment, 718: 137385. |
[24] | ZHANG H F, LUO G W, WANG Y Z, et al., 2023. Crop rotation-driven change in physicochemical properties regulates microbial diversity, dominant components, and community complexity in paddy soils[J]. Agriculture, Ecosystems & Environment, 343: 108278. |
[25] | ZHAO Z H, XIA L L, QIN Z R, et al., 2021. The environmental fate of phenanthrene in paddy field system and microbial responses in rhizosphere interface: Effect of water-saving patterns[J]. Chemosphere, 269: 128774. |
[26] | ZHOU S Y D, LIE Z Y, LIU X J, et al., 2023. Distinct patterns of soil bacterial and fungal community assemblages in subtropical forest ecosystems under warming[J]. Global Change Biology, 29(6): 1501-1513. |
[27] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 25-38. |
BAO S D, 2000. Soil agrochemical analysis[M]. Third edition. Beijing: China Agricultural Press: 25-38. | |
[28] | 陈倩, 2023. 祁连山国家公园植物和土壤微生物多样性及群落构建机制[D]. 榆林: 西北农林科技大学. |
CHEN Q, 2023. Plant and soil microbial diversity and community building mechanisms in Qilian Mountains National Park[D]. Yulin: North West Agriculture and Forestry University. | |
[29] | 杜志勇, 丛楠, 2024. 植被与土壤特征对青藏高原不同程度退化草地的响应研究[J]. 生态学报, 44(6): 2504-2516. |
DU Z Y, CONG N, 2024. Responses of vegetation and soil characterisitics to degraded grassland under different degrees on the Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 44(6): 2504-2516. | |
[30] |
樊丹丹, 刘艳娇, 曹慧丽, 等, 2022. 围栏工程对退化草地土壤理化性质和微生物群落的影响[J]. 科技导报, 40(3): 41-51.
DOI |
FAN D D, LIU Y J, CAO H L, et al., 2022. Effects of fencing on soil physico-chemical properties and microbial communities in degraded grassland[J]. Science and Technology Bulletin, 40(3): 41-51. | |
[31] | 霍兵兵, 孙哲明, 欧文慧, 等, 2023. 环境筛选和扩散限制对长江流域湖北段湿地植物群落构建的共同影响[J]. 生态学报, 43(5): 1804-1811. |
HUO B B, SUN Z M, OU W H, et al., 2023. Environmental filtering and dispersal limitation jointly affect wetland plant community assembly in Hubei section of the Yangtze River Basin[J]. Acta Ecologica Sinica, 43(5): 1804-1811. | |
[32] |
林慧龙, 王钊齐, 尚占环, 2010. 江河源区 “黑土滩” 退化草地秃斑与鼠洞的分形特征[J]. 草地学报, 18(4): 477-484.
DOI |
LIN H L, WANG Z Q, SHANG Z H, 2010. Features on fractal dimension of barren patch and mouse hole among different degenerated succession stages on alpine meadow in the source region of the Yangtze and Yellow river in Qinghai Tibetan Plateau, China[J]. Acta Agrestia Sinica, 18(4): 477-484. | |
[33] |
林思诺, 苏延桂, 吕坤, 等, 2023. 尖峰岭热带森林土壤真菌群落的海拔变化格局及驱动因素[J]. 应用生态学报, 34(2): 349-358.
DOI |
LIN S N, SU Y G, LÜ K, et al., 2023. Altitudinal pattern and driving factors of soil fungal community in the tropical forest of Jianfengling, Hainan, China[J]. Chinese Journal of Applied Ecology, 34(2): 349-358. | |
[34] | 刘娟, 朱志成, 陈俊芳, 2023. 土壤全磷和有效磷对土壤真菌功能类群的影响[J]. 福建林业科技, 50(1): 1-9, 35. |
LIU J, ZHU Z C, CHEN J F, 2023. Effects of soil total phosphorus and available phosphorus on soil fungal functional groups[J]. Journal of Fujian Forestry Science and Technology, 50(1): 1-9, 35. | |
[35] |
马媛, 田路露, 吕杰, 等, 2024. 天山北坡雪岭云杉森林土壤微生物群落及影响因素研究[J]. 生态环境学报, 33(1): 1-11.
DOI |
MA Y, TIAN L L, LÜ J, et al., 2024. Soil microbial communities and influencing factors of Picea schrenkiana forest on the northern slope of Tianshan Mountains[J]. Ecology and Environmental Sciences, 33(1): 1-11. | |
[36] | 马玉寿, 董全民, 施建军, 等, 2008. 三江源区 “黑土滩” 退化草地的分类分级及治理模式[J]. 青海畜牧兽医杂志, 38(3): 1-3. |
MA Y S, DONG Q M, SHI J J, et al., 2008. Classification gradation and control measure of “black-soil-beach” degraded grassland in three river headwater region[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 38(3): 1-3. | |
[37] | 邵微, 于会丽, 张培基, 等, 2020. 不同落叶果树根际微生物群落代谢与组成的差异性研究[J]. 果树学报, 37(9): 1371-1383. |
SHAO W, YU H L, ZHANG P J, et al., 2020. Differences in metabolism and composition of microbial communities in rhizosphere soils with different deciduous fruit trees[J]. Journal of Fruit Science, 37(9): 1371-1383. | |
[38] | 孙华方, 李希来, 金立群, 等, 2022. 黄河源区斑块化退化高寒草甸土壤细菌群落多样性变化[J]. 环境科学, 43(9): 4662-4673. |
SUN H F, LI X L, JIN L Q, et al., 2022. Changes in soil bacterial community diversity in degraded patches of alpine meadow in the source area of the Yellow River[J]. Environmental Science, 43(9): 4662-4673. | |
[39] | 许亚东, 2020. 黄土丘陵区退耕林地土壤微生物对凋落物添加响应机制的模拟研究[D]. 榆林: 西北农林科技大学. |
XU Y D, 2020. Simulation study on the response mechanism of soil microorganisms to apomictic additions in fallow forest land in loess hilly area[D]. Yulin: Northwest Agriculture and Forestry University. | |
[40] | 王竹, 2020. 基于不同水文分区的黑河上游区域土壤氮素及微生物分布特征研究[D]. 宜昌: 三峡大学. |
WANG Z, 2020. Characteristics of soil nitrogen and microbial distribution in the upper reaches of the Heihe River based on different hydrological zoning[D]. Yichang: Three Gorges University. | |
[41] | 向前胜, 张登山, 孙奎, 等, 2021. 高寒区域不同海拔梯度西北小檗生境土壤微生物群落结构及多样性分析[J]. 西北植物学报, 41(6): 1036-1050. |
XIANG Q S, ZHANG D S, SUN K, et al., 2021. Analysis of soil microbial community structure and diversity in Berberis vernae habitat at different altitudes in alpine region[J]. Acta Botanica Boreali-Occidentalia Sinica, 41(6): 1036-1050. | |
[42] | 谢沐希, 张俊伶, 贾吉玉, 等, 2023. 自然和农田生态系统中土壤微生物群落组装的研究进展[J]. 土壤通报, 54(6): 1503-1512. |
XIE M X, ZHANG J L, JIA J Y, et al., 2023. Advances in the assembly of soil microbial communities in natural and farmland ecosystems[J]. Chinese Journal of Soil Science, 54(6): 1503-1512. | |
[43] | 杨慧琴, 向涌旗, 吕倩, 等, 2024. 3种混交林造林初期土壤真菌群落结构研究[J]. 生态学报, 44(8): 1-12. |
YANG H Q, XIANG Y Q, LÜ Q, et al., 2024. Soil fungal community structure at the early stage of afforestation of three mixed forests[J]. Acta Ecologica Sinica, 44(8): 1-12. | |
[44] | 张路, 2022. 青藏高原高寒草地土壤微生物群落结构特征及影响因素[D]. 北京: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心). |
ZHANG L, 2022. Characteristics and influencing factors of soil microbial community structure in alpine grassland of Tibet Plateau[D]. Beijing: University of Chinese Academy of Sciences (Soil and Water Conservation and Ecological Environment Research Centre, Ministry of Education, Chinese Academy of Sciences). | |
[45] |
赵文, 尹亚丽, 李世雄, 等, 2021. 三江源区退化高寒草甸土壤真菌群落特征[J]. 应用生态学报, 32(3): 869-877.
DOI |
ZHAO W, YIN Y L, LI S X, et al., 2021. The characteristics of soil fungal community in degraded alpine meadow in the Three Rivers Source region, China[J]. Chinese Journal of Applied Ecology, 32(3): 869-877.
DOI |
[1] | 李彦林, 陈杨洋, 杨霜溶, 刘菊梅. 植物根系分泌的有机酸对土壤碳氮矿化的影响[J]. 生态环境学报, 2024, 33(9): 1362-1371. |
[2] | 吴东阳, 吴家欢, 李伟志, 黄志杰, 杨春亚, 陈火君. 蚓粪、猪粪配施化肥对土壤质量、辣椒生长及品质的影响[J]. 生态环境学报, 2024, 33(9): 1416-1425. |
[3] | 庞波, 海香, 张海芳, 张艳军, 王慧, 刘红梅, 杨殿林. 藜芦扩散对山地草甸草地植被特征和土壤理化性质的影响[J]. 生态环境学报, 2024, 33(8): 1174-1181. |
[4] | 李成阳, 梁志辉, 李臻明, 蔡敏, 许瑞瑶, 陈秀宇, 丁佳音, 许秋云, 彭飞. 长江源区北麓河流域退化高寒草甸植物群落特征和土壤特性[J]. 生态环境学报, 2024, 33(7): 1063-1071. |
[5] | 罗庆, 何清, 吴慧秋, 寇力月, 方旭, 张鑫雨, 李缘, 柴育廷, 张瑞生, 代文举. 辽河口湿地土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2024, 33(3): 333-340. |
[6] | 张腾云, 王静, 高健磊, 葛文静, 王宗耀, 韩龙. 碱性农田土壤冬小麦不同生育期镉的迁移转化研究[J]. 生态环境学报, 2024, 33(3): 450-459. |
[7] | 陈会玲, 勾蒙蒙, 刘常富, 雷蕾, 胡建文, 朱粟锋, 斛如媛, 肖文发. 鄂中丘陵区不同林龄马尾松人工林林下植物多样性与土壤理化性质关系[J]. 生态环境学报, 2024, 33(10): 1525-1533. |
[8] | 宋思梦, 林冬梅, 周恒宇, 罗宗志, 张丽丽, 易超, 林辉, 林兴生, 刘斌, 苏德伟, 郑丹, 余世葵, 林占熺. 种植巨菌草对乌兰布和沙漠植物物种多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(9): 1595-1605. |
[9] | 王玉琴, 宋梅玲, 周睿, 王宏生. 黄帚橐吾扩散对高寒草甸土壤理化特性及酶活性的影响[J]. 生态环境学报, 2023, 32(8): 1384-1391. |
[10] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[11] | 杨春亮, 刘旻霞, 王千月, 苗乐乐, 肖音迪, 王敏. 单户与联户放牧经营下草玉梅与嵩草种群空间格局及其关联性[J]. 生态环境学报, 2023, 32(4): 651-659. |
[12] | 袁佳宝, 宋艳宇, 刘桢迪, 朱梦圆, 程小峰, 马秀艳, 陈宁, 李晓宇. 松嫩平原芦苇湿地土壤酶活性剖面分布特征及其微生物养分限制指示作用[J]. 生态环境学报, 2023, 32(12): 2141-2153. |
[13] | 赵蔓, 张晓曼, 杨明洁. 林火干扰对栓皮栎-辽东栎混交林植物多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(10): 1732-1740. |
[14] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[15] | 周选博, 王晓丽, 马玉寿, 王彦龙, 罗少辉, 谢乐乐. 返青期休牧措施下高寒草甸主要植物种群的生态位变化特征[J]. 生态环境学报, 2022, 31(8): 1547-1555. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||