生态环境学报 ›› 2024, Vol. 33 ›› Issue (12): 1964-1977.DOI: 10.16258/j.cnki.1674-5906.2024.12.014
马志伟1,2(), 张丛志1, 赵占辉1, 吴其聪1, 赵金花1, 陈卓1, 李敬王1, 张楠1, 薛雅1, 王娅茹1, 陆芸萱1, 张佳宝1,**
收稿日期:
2024-12-17
出版日期:
2024-12-18
发布日期:
2024-12-31
通讯作者:
**张佳宝。作者简介:
马志伟(2000年生),女,硕士研究生,研究方向为土壤地力提升。E-mail: 15560380855@163.com基金资助:
MA Zhiwei1,2(), ZHANG Congzhi1, ZHAO Zhanhui1, WU Qicong1, ZHAO Jinhua1, CHEN Zhuo1, LI Jingwang1, ZHANG Nan1, XUE Ya1, WANG Yaru1, LU Yunxuan1, ZHANG Jiabao1,**
Received:
2024-12-17
Online:
2024-12-18
Published:
2024-12-31
摘要:
保障土壤健康和肥力是实现可持续农业生产的关键,尤其是在土地退化和粮食安全等全球挑战日益严峻的背景下。传统的土壤质量提升方法通常耗时较长,受制于土壤有机质积累过程的缓慢特性。木本泥炭,作为一种天然腐殖质材料,因其高有机碳含量、高腐殖化程度以及改善土壤结构和微生物活性的能力,成为应对这些挑战的潜在解决方案。本研究综合了关于木本泥炭的性质及其应用的研究,重点探讨了其在增强土壤团聚体稳定性、降低重金属毒性以及减少温室气体排放方面的作用。在土壤改良方面,木本泥炭能够快速提升土壤有机质含量、改善团聚体结构、增强微生物活性,从而提高土壤肥力和作物产量。此外,木本泥炭在污染修复领域也表现出显著优势,通过物理吸附、化学络合及离子交换等机制,降低土壤重金属和有机污染物的生物有效性及毒性,显著改善土壤质量和生态环境。相比传统改良材料如秸秆还田,木本泥炭的长期稳定性使其能够实现更高效的固碳减排目标,助力缓解全球气候变化。在矿区复垦、新垦耕地及设施农业中,木本泥炭展现了独特的应用价值,有效提升土壤物理化学性质和生物功能,促进农业和生态系统可持续发展。未来研究应聚焦木本泥炭的施用策略优化、与其他改良材料的协同效应、对土壤微生物群落的长期影响及环境安全性评估,以实现其在不同农业系统中的高效利用,为全球农业可持续发展提供技术支撑。
中图分类号:
马志伟, 张丛志, 赵占辉, 吴其聪, 赵金花, 陈卓, 李敬王, 张楠, 薛雅, 王娅茹, 陆芸萱, 张佳宝. 基于木本泥炭的土壤健康培育研究进展[J]. 生态环境学报, 2024, 33(12): 1964-1977.
MA Zhiwei, ZHANG Congzhi, ZHAO Zhanhui, WU Qicong, ZHAO Jinhua, CHEN Zhuo, LI Jingwang, ZHANG Nan, XUE Ya, WANG Yaru, LU Yunxuan, ZHANG Jiabao. Research Progress on Soil Health Cultivation Based on Woody Peat[J]. Ecology and Environment, 2024, 33(12): 1964-1977.
样品 | w(C)/(g·kg−1) | w(H)/(g·kg−1) | w(N)/(g·kg−1) | w(O)/(g·kg−1) | w(C)/w(H) | w(C)/w(N) |
---|---|---|---|---|---|---|
木本泥炭 | 524.0±3.63 | 36.26±2.78 | 8.51±1.39 | 429.4±3.11 | 14.49±1.01 | 62.37±9.73 |
表1 木本泥炭的有机质、腐殖质组分含量以及pH
Table 1 The content of organic matter, humus components and pH of woody peat
样品 | w(C)/(g·kg−1) | w(H)/(g·kg−1) | w(N)/(g·kg−1) | w(O)/(g·kg−1) | w(C)/w(H) | w(C)/w(N) |
---|---|---|---|---|---|---|
木本泥炭 | 524.0±3.63 | 36.26±2.78 | 8.51±1.39 | 429.4±3.11 | 14.49±1.01 | 62.37±9.73 |
样品 | w(OC)/(g·kg−1) | pH | w(humus)/(g·kg−1) | w(Fulvic acid)/(g·kg−1) | w(Humic acid)/(g·kg−1) | w(Humin)/(g·kg−1) |
---|---|---|---|---|---|---|
木本泥炭 | 532.6±15.32 | 3.58±0.07 | 670.4±19.29 | 25.14±7.55 | 527.2±31.58 | 118.1±33.93 |
表2 木本泥炭的元素组成
Table 2 Elemental composition of woody peat
样品 | w(OC)/(g·kg−1) | pH | w(humus)/(g·kg−1) | w(Fulvic acid)/(g·kg−1) | w(Humic acid)/(g·kg−1) | w(Humin)/(g·kg−1) |
---|---|---|---|---|---|---|
木本泥炭 | 532.6±15.32 | 3.58±0.07 | 670.4±19.29 | 25.14±7.55 | 527.2±31.58 | 118.1±33.93 |
[1] | AHMED S F, MEHEJABIN F, CHOWDHURY A A, et al., 2024. Biochar produced from waste-based feedstocks: Mechanisms, affecting factors, economy, utilization, challenges, and prospects[J]. GCB Bioenergy, 16(8): e13175. |
[2] | ARSLAN M, USMAN M, GAMAL EL-DIN M, 2024. Exploring nature’s filters: Peat-mineral mix for low and high-strength oilfield produced water reclamation[J]. Water Research, 255(9): 121502. |
[3] |
BANERJEE S, SCHLAEPPI K, VAN DER HEIJDEN M G A, 2018. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 16(9): 567-576.
DOI PMID |
[4] | BARKOVSKII A L, FUKUI H, LEISEN J, et al., 2009. Rearrangement of bacterial community structure during peat diagenesis[J]. Soil Biology & Biochemistry, 41(1): 135-143. |
[5] | BAUER I E, 2004. Modelling effects of litter quality and environment on peat accumulation over different time-scales[J]. Journal of Ecology, 92(4): 661-674. |
[6] | BLANCO-CANQUI H, LAL R, 2004. Mechanisms of carbon sequestration in soil aggregates[J]. Critical Reviews in Plant Sciences, 23(6): 481-504. |
[7] | CASTELLANOS H G, ARYANFAR Y, KEÇEBAŞ A, et al., 2024. A new paradigm for mining energy from industrial sludge: A low-cost fuel[J]. Journal of Water Process Engineering, 59: 104987. |
[8] | CHEN H, SHENG J, YE Q H, et al., 2025. Efficient resource recovery from food waste digestate via hydrothermal treatment and its application as organic fertilizer[J]. Bioresource Technology, 416: 131742. |
[9] | CONANT R T, SIX J, PAUSTIAN K, 2004. Land use effects on soil carbon fractions in the southeastern United States. II. changes in soil carbon fractions along a forest to pasture chronosequence[J]. Biology and Fertility of Soils, 40(3): 194-200. |
[10] |
CUI W W, LI X Q, DUAN W, et al., 2023. Heavy metal stabilization remediation in polluted soils with stabilizing materials: A review[J]. Environmental Geochemistry and Health, 45(7): 4127-4163.
DOI PMID |
[11] | DENEF K, SIX J, MERCKX R, et al., 2004. Carbon sequestration in microaggregates of no-tillage soils with different clay mineralogy[J]. Soil Science Society of America Journal, 68(6): 1935-1944. |
[12] | DENG S X, ZHANG X, ZHU Y H, et al., 2024. Recent advances in phyto-combined remediation of heavy metal pollution in soil[J]. Biotechnology Advances, 72: 108337. |
[13] | DORAN J W, SAFLEY M, PANKHURST C E, et al., 1997. Defining and assessing soil health and sustainable productivity[M]// Biological indicators of soil health. New York: CAB International. |
[14] | FARMER J, MATTHEWS R, SMITH J U, et al., 2011. Assessing existing peatland models for their applicability for modelling greenhouse gas emissions from tropical peat soils[J]. Current Opinion in Environmental Sustainability, 3(5): 339-349. |
[15] | FENG Y Z, CHEN R R, HU J L, et al., 2015. Bacillus asahii comes to the fore in organic manure fertilized alkaline soils[J]. Soil Biology & Biochemistry, 81: 186-194. |
[16] |
FRANCIOLI D, SCHULZ E, LENTENDU G, et al., 2016. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies[J]. Frontiers in Microbiology, 7: 1446.
DOI PMID |
[17] | FU W, FAN J, WANG S, et al., 2021. Woody peat addition increases soil organic matter but its mineralization is affected by soil clay in the four degenerated erodible soils[J]. Agriculture Ecosystems & Environment, 318: 107495. |
[18] | GAMAGE N P D, ASAEDA T, 2005. Decomposition and mineralization of Eichhornia crassipes litter under aerobic conditions with and without bacteria[J]. Hydrobiologia, 541(1): 13-27. |
[19] | GAO J, HAN H X, GAO C, et al., 2023. Organic amendments for in situ immobilization of heavy metals in soil: A review[J]. Chemosphere, 335: 139088. |
[20] | GARBOWSKI T, BAR-MICHALCZYK D, CHARAZIŃSKA S, et al., 2023. An overview of natural soil amendments in agriculture[J]. Soil & Tillage Research, 225: 105462. |
[21] | GAUTAM K, SHARMA P, DWIVEDI S, et al., 2023. A review on control and abatement of soil pollution by heavy metals: Emphasis on artificial intelligence in recovery of contaminated soil[J]. Environmental Research, 225: 115592. |
[22] | GHOSH D, MAITI S K, 2020. Can biochar reclaim coal mine spoil?[J] Journal of Environmental Management, 272: 111097. |
[23] | GLASER B, TURRIÓN M B, ALEF K, 2004. Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis[J]. Soil Biology & Biochemistry, 36(3): 399-407. |
[24] | GOLCHIN A, OADES J M, SKJEMSTAD J O, et al., 1994. Soil-structure and carbon cycling[J]. Australian Journal of Soil Research, 32: 1043-1068. |
[25] | GROVER M, MAHESWARI M, DESAI S, et al., 2015. Elevated CO2: Plant associated microorganisms and carbon sequestration[J]. Applied Soil Ecology, 95: 73-85. |
[26] | GRZYB A, WOLNA-MARUWKA A, NIEWIADOMSKA A, 2020. Environmental factors affecting the mineralization of crop residues[J]. Agronomy, 10(12): 1951. |
[27] | HAN L F, SUN K, JIN J, et al., 2016. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature[J]. Soil Biology & Biochemistry, 94: 107-121. |
[28] | HARINDINTWALI J D, ZHOU J L, YU X B, 2020. Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria: A novel tool for environmental sustainability[J]. Science of The Total Environment, 715: 136912. |
[29] | HEGEDUS C, PAȘCALĂU S-N, ANDRONIE L, et al., 2023. The Journey of 1000 Leagues towards the Decontamination of the Soil from Heavy Metals and the Impact on the Soil-Plant-Animal-Human Chain Begins with the First Step: Phytostabilization/Phytoextraction[J]. Agriculture, 13(3): 735. |
[30] | HOANG A T, GOLDFARB J L, FOLEY A M, et al., 2022a. Production of biochar from crop residues and its application for anaerobic digestion[J]. Bioresource Technology, 363: 127970. |
[31] | HOANG S A, BOLAN N, MADHUBASHANI A M P, et al., 2022b. Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review[J]. Environmental Pollution, 293(9): 118564. |
[32] | HOANG S A, SARKAR B, SESHADRI B, et al., 2021. Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review[J]. Journal of Hazardous Materials, 416: 125702. |
[33] | HU Y C, WANG J B, YANG Y S, et al., 2024. Revolutionizing soil heavy metal remediation: Cutting-edge innovations in plant disposal technology[J]. Science of The Total Environment, 918: 170577. |
[34] | HUANG P, ZHANG J B, MA D H, et al., 2017. Response to discussion of “Atmospheric deposition as an important nitrogen load to a typical agro-ecosystem in the Huang-Huai-Hai Plain” by Huang et al., (2016)[J]. Atmospheric Environment, 153: 236-239. |
[35] | JOOSTEN H, GREIFSWALD E-M-A-U, INTERNATIONAL W, 2009. The Global Peatland CO2 Picture: Peatland Status and Drainage Related Emissions in All Countries of the World[C]. |
[36] | KAMALI M, SWEYGERS N, AL-SALEM S, et al., 2022. Biochar for soil applications-sustainability aspects, challenges and future prospects[J]. Chemical Engineering Journal, 428: 131189. |
[37] | KAUR R, TYAGI R D, ZHANG X L, 2020. Review on pulp and paper activated sludge pretreatment, inhibitory effects and detoxification strategies for biovalorization[J]. Environmental Research, 182: 109094. |
[38] |
LAL R, 2004. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 304(5677): 1623-1627.
DOI PMID |
[39] | LEHMANN J, KLEBER M, 2015. The contentious nature of soil organic matter[J]. Nature, 528(7580): 60-68. |
[40] | LI D D, CHEN L, XU J S, et al., 2018. Chemical nature of soil organic carbon under different long-term fertilization regimes is coupled with changes in the bacterial community composition in a Calcaric Fluvisol[J]. Biology and Fertility of Soils, 54(8): 999-1012. |
[41] | LI J, SUN W H, LICHTFOUSE E, et al., 2024a. Life cycle assessment of biochar for sustainable agricultural application: A review[J]. Science of The Total Environment, 951: 175448. |
[42] | LI S X, XU S Q, CHEN S, et al., 2023. Carbon-containing additives changes the phosphorus flow by affecting humification and bacterial community during composting[J]. Bioresource Technology, 379: 129066. |
[43] | LI Y, ZHANG M L, WANG X B, et al., 2024b. Synergistic enhancement of cadmium immobilization and soil fertility through biochar and artificial humic acid-assisted microbial-induced calcium carbonate precipitation[J]. Journal of Hazardous Materials, 476: 135140. |
[44] | LIANG C, BALSER T C, 2012. Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool[J]. Nature Communications, 3(11): 1222. |
[45] | LIMA J Z, OGURA A P, ESPíNDOLA E L G, et al., 2024. Post-sorption of Cd, Pb, and Zn onto peat, compost, and biochar: Short-term effects of ecotoxicity and bioaccessibility[J]. Chemosphere, 352: 141521. |
[46] | LIU C L, ZHUANG J, XUE J H, et al., 2023a. Passivation mechanism of Cu and Zn with the introduction of composite passivators during anaerobic digestion of pig manure[J]. Bioresource Technology, 369(6): 128360. |
[47] | LIU N Q, ZHAO J, DU J W, et al., 2024a. Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review[J]. Science of The Total Environment, 948: 174237. |
[48] | LIU Z, DENG Z, DAVIS S J, et al., 2024b. Global carbon emissions in 2023[J]. Nature Reviews Earth & Environment, 5(4): 253-254. |
[49] | LU Q, JIANG Z W, FENG W X, et al., 2023. Exploration of bacterial community-induced polycyclic aromatic hydrocarbons degradation and humus formation during co-composting of cow manure waste combined with contaminated soil[J]. Journal of Environmental Management, 326(Part B): 116852. |
[50] | MINAYEVA T, BRAGG O, CHEREDNYCHENKO O, et al., 2008. Assessment on peatlands, biodiversity and climate change[C]. |
[51] | NAWAZ F, ALI M, AHMAD S, et al., 2024. Carbon based nanocomposites, surface functionalization as a promising material for VOCs (volatile organic compounds) treatment[J]. Chemosphere, 364: 143014. |
[52] | OSMAN K T, 2018. Peat soils[C]// OSMAN K T. Management of soil problems. Cham: Springer International Publishing: 145-183. |
[53] | PAGE S, HOSCILO A, WOSTEN H, et al., 2009. Restoration Ecology of Lowland Tropical Peatlands in Southeast Asia: Current knowledge and future research directions[J]. Ecosystems, 12(6): 888-905. |
[54] | PATHAK H K, SETH C S, CHAUHAN P K, et al., 2024. Recent advancement of nano-biochar for the remediation of heavy metals and emerging contaminants: Mechanism, adsorption kinetic model, plant growth and development[J]. Environmental Research, 255: 119136. |
[55] | PUGET P, CHENU C, BALESDENT J, 2000. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J]. European Journal of Soil Science, 51(4): 595-605. |
[56] | QIAO H, LIU Z Q, PENG X X, et al., 2024. Significance of humic matters-soil mineral interactions for environmental remediation: A review[J]. Chemosphere, 365: 143356. |
[57] | RAZA S T, FEYISSA A, LI R, et al., 2024. Emerging technology effects on combined agricultural and eco-vermicompost[J]. Journal of Environmental Management, 352(14): 120056. |
[58] | SARKAR S, SKALICKY M, HOSSAIN A, et al., 2020. Management of crop residues for improving input use efficiency and agricultural sustainability[J]. Sustainability, 12(23): 9808. |
[59] | SIX J, BOSSUYT H, DEGRYZE S, et al., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil & Tillage Research, 79(1): 7-31. |
[60] | SIX J, CONANT R T, PAUL E A, et al., 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soil, 241(2): 155-176. |
[61] | SIX J, ELLIOTT E T, PAUSTIAN K, 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry[J]. 32(14): 2099-2103. |
[62] | SUWARDI E T, WIJAYA H, 2013. Peningkatan Produksi Tanaman Pangan dengan Bahan Aktif Asam Humat dengan Zeolit sebagai Pembawa[J]. Jurnal Ilmu Pertanian Indonesia, 18(2): 79-84. |
[63] | TISDALL J M, 1991. Fungal hyphae and structural stability of soil[J]. Australian Journal of Soil Research, 29(6): 729-743. |
[64] | TISDALL J M, OADES J M, 1982. Organic-matter and water-stable aggregates in soils[J]. Journal of Soil Science, 33(2): 141-163. |
[65] | UPADHYAY N, VERMA S, SINGH A P, et al., 2016. Soil ecophysiological and microbiological indices of soil health: A study of coal mining site in Sonbhadra, Uttar Pradesh[J]. Journal of Soil Science and Plant Nutrition, 16(3): 778-800. |
[66] | URBANOVÁ Z, STRAKOVÁ P, KAŠTOVSKÁ E, 2018. Response of peat biogeochemistry and soil organic matter quality to rewetting in bogs and spruce swamp forests[J]. European Journal of Soil Biology, 85: 12-22. |
[67] | WANG X, FAN J, WANG H, et al., 2024. Synergy between woody peat and bentonite alters stability of soil organic carbon in coarse soil by enhancing capacity for soil aggregation and hydro-physical properties[J]. Land Degradation & Development, 61(1): 1-16. |
[68] | WANG X, GUO Q, WANG X Y, et al., 2023. Study on the effects of new developed biochar and sludge composite materials on copper and lead contaminated soil and its remediation mechanism[J]. Environmental Technology & Innovation, 32: 103429. |
[69] | WANG X Q, YU H Y, LI F B, et al., 2019. Enhanced immobilization of arsenic and cadmium in a paddy soil by combined applications of woody peat and Fe(NO3)3: Possible mechanisms and environmental implications[J]. Science of The Total Environment, 649: 535-543. |
[70] | WEIL R R, PROFESSOR N C B E, 2016. The nature and properties of soils[M]. Columbus: Pearson. |
[71] | WEN Y L, LIU W J, DENG W B, et al., 2019. Impact of agricultural fertilization practices on organo-mineral associations in four long-term field experiments: Implications for soil C sequestration[J]. Science of The Total Environment, 651(Part 1): 591-600. |
[72] | WOLF B, SNYDER G H, 2003. Sustainable soils: The place of organic matter in sustaining soils and their productivity[M]. New York: Food Products Press of the Haworth Press. |
[73] | WU X, LIN Y, WANG Y Y, et al., 2023. Volatile organic compound removal via biofiltration: Influences, challenges, and strategies[J]. Chemical Engineering Journal, 471: 144420. |
[74] | XIN X L, ZHANG J B, ZHU A N, et al., 2016. Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain[J]. Soil & Tillage Research, 156(S1): 166-172. |
[75] | YANG F, SUI L, TANG C Y, et al., 2021. Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances[J]. Science of The Total Environment, 768: 145106. |
[76] | YASIN M U, HANNAN F, MUNIR R, et al., 2024. Interactive mode of biochar-based silicon and iron nanoparticles mitigated Cd-toxicity in maize[J]. Science of The Total Environment, 912: 169288. |
[77] | YOU S M, LI W L, ZHANG W H, et al., 2022. Energy, economic, and environmental impacts of sustainable biochar systems in rural China[J]. Critical Reviews in Environmental Science and Technology, 52(7): 1063-1091. |
[78] | YU Y, YUAN S L, WAN Y N, et al., 2017. Effect of humic acid-based amendments on exchangeable cadmium and its accumulation by rice seedlings[J]. Environmental Progress & Sustainable Energy, 36(5): 1308-1313. |
[79] | YU Z H, ZHENG Y Y, ZHANG J B, et al., 2020. Importance of soil interparticle forces and organic matter for aggregate stability in a temperate soil and a subtropical soil[J]. Geoderma, 362(C): 114088. |
[80] | ZHANG J B, 2023a. Improving inherent soil productivity underpins agricultural sustainability[J]. Pedosphere, 33(1): 3-5. |
[81] | ZHANG Z X, LI J K, WANG H Y, et al., 2023b. Impact of co-contamination by PAHs and heavy metals on micro-ecosystem in bioretention systems with soil, sand, and water treatment residuals[J]. Journal of Cleaner Production, 383(1): 135417. |
[82] |
ZHAO Y C, WANG M Y, HU S J, et al., 2018. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J]. Proceedings of the National Academy of Sciences of The United States of America, 115(16): 4045-4050.
DOI PMID |
[83] | ZHENG Y, YU Z, ZHANG J, et al., 2024. Decomposition characteristics of woody peat and its mixtures with liable organic materials in a newly reclaimed saline-alkali soil: A one-year incubation experiment[J/OL]. Pedosphere, [2024-11-6]. https://www.sciencedirect.com/science/article/abs/pii/S1002016024001036. |
[84] | 敖俊华, 周文灵, 陈迪文, 等, 2017. 不同用量腐植酸钾对果蔗产量和品质的影响[J]. 甘蔗糖业 (2): 9-13. |
AO J H, ZHOU W L, CHEN D W, et al., 2017. Effect of different application rate of potassium humate fertilizer on the yield and quality of fruit cane[J]. Sugarcane and Canesugar (2): 9-13. | |
[85] | 蔡祖聪, 2019. 我国设施栽培养分管理中待解的科学和技术问题[J]. 土壤学报, 56(1): 36-43. |
CAI Z C, 2019. Scientific and technological issues of nutrient management under greenhouse cultivation in China[J]. Acta Pedologica Sinica, 56(1): 36-43. | |
[86] |
柴岫, 1981. 中国泥炭的形成与分布规律的初步探讨[J]. 地理学报, 36(3): 237-253.
DOI |
CHAI Y, 1981. The formation and types of peat in China and the law of governing its distribution[J]. Acta Geographica Sinica, 36(3): 237-253. | |
[87] | 常瑞雪, 甘晶晶, 陈清, 等, 2016. 碳源调理剂对黄瓜秧堆肥进程和碳氮养分损失的影响[J]. 农业工程学报, 32(S2): 254-259. |
CHANG R X, GAN J J, CHEN Q, et al., 2016. Effect of carbon resources conditioner on composting process and carbon and nitrogen loss during composting of cucumber stalk[J]. Transactions of the Chinese Society of Agricultural Engineering, 32(S2): 254-259. | |
[88] | 陈淑云, 1982. 泥炭资源的应用分类及其利用[J]. 江西腐植酸 (3): 5-10. |
CHEN S Y, 1982. Classification and utilization of peat resources[J]. Humic Acid (3): 5-10. | |
[89] | 陈淑云, 祖文辰, 1983. 我国泥炭资源的质量评价[J]. 江西腐植酸 (2): 1-10. |
CHEN S Y, ZU W C, 1983. Quality assessment of peat resources in China[J]. Humic Acid (2): 1-10. | |
[90] | 陈为京, 陈建爱, 杨焕明, 2009. 土壤生态改良剂T1010对寿光日光温室土壤环境的改良效果[J]. 中国生态农业学报, 17(2): 399-401. |
CHEN W J, CHEN J A, YANG H M, 2009. Effect of soil ecology modifier T1010 on soil environment improvement in solar-greenhouse in Shouguang City[J]. Chinese Journal of Eco-Agriculture, 17(2): 399-401. | |
[91] | 陈卓, 张丛志, 张佳宝, 等, 2025. 天然腐殖质改性材料的特性及其在滴灌方式下对玉米的促生作用[J]. 土壤学报, 62(2): 1-14. |
CHEN Z, ZHANG C Z, ZHANG J B, et al., 2025. Characteristics of natural humus modified materials and their growth-promoting effects on maize under drip irrigation[J]. Acta Pedologica Sinica, 62(2): 1-14. | |
[92] | 程亮, 张保林, 王杰, 等, 2011. 腐植酸肥料的研究进展[J]. 中国土壤与肥料 (5): 1-6. |
CHENG L, ZHANG B L, WANG J, et al., 2011. Research progress of humic-acid containing fertilizer[J]. Soil and Fertilizer Sciences in China (5): 1-6. | |
[93] | 范远, 张慧君, 杜宜春, 等, 2024. 不同生物炭对堆肥进程、品质以及重金属钝化的影响[J]. 中国土壤与肥料 (9): 104-110. |
FAN Y, ZHANG H J, DU Y C, et al., 2024. Effects of different biochar on composting process, quality and heavy metal passivation[J]. Soil and Fertilizer Sciences in China (9): 104-110. | |
[94] | 方丽婷, 张一扬, 黄崇俊, 等, 2017. 泥炭和褐煤对土壤有机碳和腐殖物质组成的影响[J]. 土壤通报, 48(5): 1149-1153. |
FANG L T, ZHANG Y Y, HUANG C J, et al., 2017. Effects of Peat and Brown Coal on Soil Organic Carbon and Humic Substances[J]. Chinese Journal of Soil Science, 48(5): 1149-1153. | |
[95] | 管方圆, 刘琛, 傅庆林, 等, 2022. 添加秸秆对水稻产量和土壤碳氮及微生物群落的影响[J]. 农业工程学报, 38(2): 223-230. |
GUAN F Y, LIU C, FU Q L, 2022. Effects of straw addition on rice yield, soil carbon, nitrogen, and microbial community[J]. Transactions of the Chinese Society of Agricultural Engineering, 38(2): 223-230. | |
[96] | 胡金明, 2000. 中国泥炭资源蕴藏的空间格局分析[J]. 安徽师范大学学报(自然科学版), 23(2): 144-146. |
HU J M, 2000. Analysis on spatial pattern of peat distribution in China[J]. Journal of Anhui Normal U niversity (Natural Science), 23(2): 144-146. | |
[97] | 胡明成, 邱子健, 王洲章, 等, 2024. 农田土壤地力提升和固碳减排协同研究进展[J/OL]. 农业环境科学学报, 1-16 [2024-12-27]. http://kns.cnki.net/kcms/detail/12.1347.S.20240626.1800.002.html. |
HU M C, QIU Z J, WANG Z Z, et al., 2024. Research progress on the synergy between enhancing farmland fertility and soil carbon sequestration and greenhouse gases emission mitigation[J]. Journal of Agro-Environment Science, 1-16 [2024-12-27]. http://kns.cnki.net/kcms/detail/12.1347.S.20240626.1800.002.html. | |
[98] | 黄锦福, 吉家乐, 陈迪文, 等, 2016. 施用木本泥炭及添加物对芒果产量与品质的影响[J]. 热带作物学报, 37(8): 1458-1462. |
HUANG J F, JI J L, CHEN D W, et al., 2016. Effect of woody peat and other materials application on the yield and quality of mango[J]. Chinese Journal of Tropical Crops, 37(8): 1458-1462. | |
[99] | 姜晓煜, 周姝慧, 吕林有, 等, 2024. 施加堆肥污泥与污泥蚓粪对风沙土理化性质及重金属的影响[J/OL]. 生态学杂志, 1-13[2024-12-27]. http://kns.cnki.net/kcms/detail/21.1148.Q.20241129.0901.004.html. |
JIANG X Y, ZHOU S H, LÜ L Y, et al., 2024. Effects of municipal sludge and harmless sludge on physicochemical properties and heavy metals of aeolian sandy soil[J/OL]. Chinese Journal of Ecology, 1-13 [2024-12-27]. http://kns.cnki.net/kcms/detail/21.1148.Q.20241129.0901.004.html. | |
[100] | 晋建勇, 孟宪民, 刘静, 2006. 欧洲园艺泥炭的开发与环境问题[J]. 腐植酸 (6): 17-21. |
JIN J Y, MENG X M, LIU J, 2006. Exploitation and environmental problems of horticulture peat in europe[J]. Humic Acid (6): 17-21. | |
[101] | 孔祥斌, 陈文广, 党昱譞, 2023. 中国耕地保护现状、挑战与转型[J]. 湖南师范大学社会科学学报, 52(5): 31-41. |
KONG X B, CHEN W G, DANG Y X, 2023. Current situation, challenges and transformation of cultivated land protection in China[J]. Journal of Social Science of Hunan Normal University, 52(5): 31-41. | |
[102] | 兰宇, 孟军, 韩晓日, 等, 2024. 生物炭基产品及其对土壤培肥改良效应的研究进展[J]. 植物营养与肥料学报, 30(7): 1396-1412. |
LAN Y, MENG J, HAN X R, et al., 2024. Advances in research on biochar-based products and their effects on soil fertility improvement[J]. Journal of Plant Nutrition and Fertilizers, 30(7): 1396-1412. | |
[103] | 李司童, 毛凯伦, 石锦辉, 等, 2017. 生物炭和菜籽饼配施对土壤养分、酶活性及烟叶产质量的影响[J]. 土壤通报, 48(6): 1429-1435. |
LI S T, MAO K L, SHI J H, et al., 2017. Effects of Combining Application of Biochar and Rapeseed Cake on Soil Nutrition, Soil enzyme Activities, Yield and Quality of Flue- cured Tobacco[J]. Chinese Journal of Soil Science, 48(6): 1429-1435. | |
[104] | 林军章, 刘森, 杨翔华, 等, 2004. 泥炭在农业上的应用[J]. 矿产保护与利用 (3): 24-27. |
LIN J Z, LIU S, YANG X H, et al., 2004. Application of peat to agriculture[J]. Conservation and Utilization of Mineral Resources (3): 24-27. | |
[105] |
刘丽, 孙炜琳, 王国刚, 等, 2024. 耕地 “提质扩容” 对中国粮食生产的影响分析[J]. 自然资源学报, 39(11): 2601-2618.
DOI |
LIU L, SUN W L, WANG G G, et al., 2024. The influence of cultivated land “improving quality and expanding capacity” on grain production in China[J]. Journal of Natural Resources, 39(11): 2601-2618.
DOI |
|
[106] | 刘硕, 黄迎新, 蒋云峰, 2024. 秸秆改良盐碱地的效果及作用机制[J]. 土壤与作物, 13(4): 439-447. |
LIU S, HUANG Y X, JIANG Y F, 2024. Effects and mechanism of straw application in ameliorating saline-alkali soils[J]. Soils and Crops, 13(4): 439-447. | |
[107] | 刘永和, 孟宪民, 王忠强, 2003. 泥炭资源的基本属性、理化性质和开发利用方向[J]. 干旱区资源与环境, 17(2): 18-22. |
LIU Y H, MENG X M, WANG Z Q, 2003. Basic attributes and characters of peat and the ways of peat utilization[J]. Journal of Land Resources and Environment, 17(2): 18-22. | |
[108] | 马海洋, 陈清, 石伟琦, 等, 2017. 施用木本泥炭对香蕉产量、品质及蕉园土壤养分的影响[J]. 广东农业科学, 44(1): 49-54. |
MA H Y, CHEN Q, SHI W Q, et al., 2017. Effects of woody peat on banana yield, quality and soil nutrients[J]. Guangdong Agricultural Sciences, 44(1): 49-54. | |
[109] | 马学慧, 1982. 我国泥炭性质及发育的探讨[J]. 地理科学, 2(2): 106-116. |
MA X H, 1982. An approach to the characteristics and development processes of prat in China[J]. Scientia Geographica Sinica, 2(2): 106-116. | |
[110] | 苗小鹏, 2023. 高标准农田建设现状问题及对策研究[J]. 科技风 (28): 154-156. |
MIAO X P, 2023. Research on the current issues and countermeasures of high-standard farmland construction[J]. Technology Wind (28): 154-156. | |
[111] |
潘根兴, 丁元君, 陈硕桐, 等, 2019. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 34(5): 451-470.
DOI |
PAN G X, DING Y J, CHEN S T, et al., 2019. Exploring the nature of soil organic matter from humic substances isolation to SOMics of molecular assemblage[J]. Advances in Earth Science, 34(5): 451-470.
DOI |
|
[112] | 彭格林, 张则有, 伍大茂, 1999. 泥炭与煤形成环境对比研究现状[J]. 地球科学进展, 14(3): 36-44. |
PENG G L, ZHNAG Z Y, WU D M, 1999. The study status of correlation of peat with coal-forming environment[J]. Advance in Earth Sciences, 14(3): 36-44 | |
[113] | 彭新华, 张斌, 赵其国, 2004. 土壤有机碳库与土壤结构稳定性关系的研究进展[J]. 土壤学报, 41(4): 618-623. |
PENG X H, ZHANG B, ZHAO Q G, 2004. A review on relationship between soil organic carbon pools and soil structure stability[J]. Acta Pedologica Sinica, 41(4): 618-623. | |
[114] | 曲成闯, 陈效民, 张佳宝, 等, 2018. 基于木本泥炭快速构建红壤新垦耕地优质耕作层技术与效果[J]. 水土保持学报, 32(6): 134-140. |
QU C C, CHEN X M, ZHANG J B, et al., 2018. Techniques and effects of quickly constructing high-quality tillage layers for newly-cultivated arable land in red soil and paddy field based on woody peat and organic materials[J]. Journal of Soil and Water Conservation, 32(6): 134-140. | |
[115] | 饶娇萍, 贾沁贤, 王登红, 等, 2020. 中国泥炭矿成矿规律与开发利用[J]. 地质学报, 94(1): 192-203. |
RAO J P, JIA Q X, WANG D H, et al., 2020. The metallogenic regularity, development and utilization of peat deposits in China[J]. Acta Geologica Sinica, 94(1): 192-203. | |
[116] | 史春余, 张夫道, 张树清, 等, 2004. 有机-无机复合肥对番茄产量、品质和有关生理特性的影响[J]. 中国农业科学, 37(8): 1183-1187. |
SHI C Y, ZHANG F D, ZHANG S Q, et al., 2004. Effects of organic-inorganic compound fertilizers on yield, quality and some related physiological characteristics in tomato[J]. Scientia Agricultura Sinica, 37(8): 1183-1187. | |
[117] | 舒灏, 石国荣, 谭军, 2017. 外源有机碳对植烟土壤水稳性团聚体稳定性的影响[J]. 天津农业科学, 23(6): 20-23, 26. |
SHU H, SHI G R, TAN J, 2017. Effects of exogenous organic carbon on the stability of water stable aggregates in tobacco growing soil[J]. Tianjin Agricultural Sciences, 23(6): 20-23, 26. | |
[118] | 孙波, 朱安宁, 姚荣江, 等, 2023. 潮土、红壤和盐碱地障碍消减技术与产能提升模式研究进展[J]. 土壤学报, 60(5): 1231-1247. |
SUN B, ZHU A N, YAO R J, et al., 2023. Research progress on barrier remediation technology and productivity enhancement model for fluvo-aquic soil, red soil, and saline-alkali soil[J]. Acta Pedologica Sinica, 60(5): 1231-1247. | |
[119] | 孙锦, 高洪波, 田婧, 等, 2019. 我国设施园艺发展现状与趋势[J]. 南京农业大学学报, 42(4): 594-604. |
SUN J, GAO H B, TIAN J, et al., 2019. Development status and trends of protected horticulture in China[J]. Journal of Nanjing Agricultural University, 42(4): 594-604. | |
[120] | 田恬, 田永强, 高丽红, 2021. 设施菜田土壤质量研究进展[J]. 中国蔬菜 (10): 35-44. |
TIAN T, TIAN Y Q, GAO L H, 2021. Research progress on soil quality of protected vegetable fields[J]. China Vegetables (10): 35-44. | |
[121] | 汪景宽, 徐香茹, 裴久渤, 等, 2021. 东北黑土地区耕地质量现状与面临的机遇和挑战[J]. 土壤通报, 52(3): 695-701. |
WANG J K, XU X R, PEI J B, et al., 2021. Current situations of black soil quality and facing opportunities and challenges in northeast China[J]. Chinese Journal of Soil Science, 52(3): 695-701. | |
[122] | 王国法, 任世华, 庞义辉, 等, 2021. 煤炭工业 “十三五” 发展成效与 “双碳” 目标实施路径[J]. 煤炭科学技术, 49(9): 1-8. |
WANG G F, REN S H, PANG Y H, et al., 2021. Development achievements of China’s coal industry during the 13th Five-Year Plan period and implementation path of “dual carbon” target[J]. Coal Science and Technology, 49(9): 1-8. | |
[123] | 王铭, 刘子刚, 马学慧, 等, 2012. 中国泥炭地有机碳储量分区[J]. 湿地科学, 10(2): 156-163. |
WANG M, LIU Z G, MA X H, et al., 2012. Division of organic carbon reserves of peatlands in China[J]. Wetland Science, 10(2): 156-163. | |
[124] | 王清奎, 汪思龙, 2005. 土壤团聚体形成与稳定机制及影响因素[J]. 土壤通报, 36(3): 415-421. |
WANG Q K, WANG S L, 2005. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Scienc, 36(3): 415-421. | |
[125] | 王薇薇, 梅燚, 吴永成, 等, 2024. 土壤改良剂和调理剂对设施辣椒产量及土壤性状的影响[J]. 长江蔬菜 (8): 26-28. |
WANG W W, MEI Y, WU Y C, et al., 2024. Effects of soil amendments and conditioners on yield and soil properties of greenhouse grown chili peppers[J]. Journal of Changjiang Vegetables (8): 26-28. | |
[126] | 王忠强, 刘婷婷, 王升忠, 等, 2007. 泥炭在环境修复中的应用研究概况和展望[J]. 科技通报, 23(2): 277-281. |
WANG Z Q, LIU T T, WANG S Z, et al., 2007. Review and prospect applied of peat in environmental remediation[J]. Bulletin of Science and Technology, 23(2): 277-281. | |
[127] |
王忠强, 张心昱, 孟宪民, 等, 2012. 泥炭形成过程对泥炭基质替代物研究的启示[J]. 自然资源学报, 27(7): 1252-1258.
DOI |
WANG Z Q, ZHANG X Y, MENG X M, et al., 2012. The enlightenment of nature peat formation to peat substitute research[J]. Journal of Natural Resources, 27(7): 1252-1258. | |
[128] | 王子豪, 梁红怡, 张冬寒, 等, 2024. 中国设施土壤重金属累积特征与污染阻控技术研究进展[J]. 农业工程学报, 40(9): 1-14. |
WANG Z H, LIANG H Y, ZHANG D H, et al., Accumulation characteristics and control technologies of heavy metal contamination in facility soil of China: A review[J]. Transactions of the Chinese Society of Agricultural Engineering, 40(9): 1-14. | |
[129] | 徐明岗, 段英华, 白珊珊, 等, 2024. 基于长期定位试验的土壤健康研究与展望[J]. 植物营养与肥料学报, 30(7): 1253-1261. |
XU M G, DUAN Y H, BAI S S, et al., Research and prospects for soil health based on long-term experiments in arable land of China[J]. Journal of Plant Nutrition and Fertilizers, 30(7): 1253-1261. | |
[130] | 姚冬梅, 付春香, 李萍, 2006. 泥炭对重金属离子的吸附性能[J]. 黑龙江科技学院学报, 16(1): 38-40. |
YAO D M, FU C X, LI P, 2006. Specific properties of adsorption for heavy metalions on peat[J]. Journal of Heilongjiang Institute of Science & Technology, 16(1): 38-40. | |
[131] | 袁京, 何胜洲, 李国学, 等, 2016. 添加不同辅料对污泥堆肥腐熟度及气体排放的影响[J]. 农业工程学报, 32(S2): 241-246. |
YUAN J, HE S Z, LI G X, et al., 2016. Effects of different additives on evaluation of maturity and gaseous emissions during sewage sludge composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 32(S2): 241-246. | |
[132] | 张地方, 袁京, 王国英, 等, 2016. 木本泥炭添加比例对猪粪堆肥腐熟度和污染及温室气体排放的影响[J]. 农业工程学报, 32(S2): 233-240. |
ZHANG D F, YUAN J, WANG G Y, et al., 2016. Effects of woody peat addition on maturity and gaseous emissions during pig manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 32(S2): 233-240. | |
[133] | 张阳武, 2009. 小兴安岭泥炭沼泽植物区系及土壤理化性质研究[D]. 哈尔滨: 东北林业大学. |
ZHANG Y W, 2009. Plant flora and physicochemical of soil peat swamp in Xiaoxing’an mountains[D]. Harbin:Northeast Foresty University. | |
[134] | 赵鹏, 史兴萍, 尚卿, 等, 2023. 矿区复垦地土壤改良研究进展[J]. 农业资源与环境学报, 40(1): 1-14. |
ZHAO P, SHI X P, SHANG Q, et al. The research progress on soil amelioration in mine reclamation land[J]. Journal of Agricultural Resources and Environment, 40(1): 1-14. | |
[135] | 郑延云, 张佳宝, 谭钧, 等, 2019. 不同来源腐殖质的化学组成与结构特征研究[J]. 土壤学报, 56(2): 386-397. |
ZHENG Y Y, ZHNAG J B, TAN J, 2009. Chemical composition and structure of humus relative to sources[J]. Acta Pedologica Sinica, 56(2): 386-397. | |
[136] | 中华人民共和国中共中央办公厅, 中华人民共和国国务院办公厅, 2024. 中共中央办公厅、国务院办公厅关于加强耕地保护提升耕地质量完善占补平衡的意见[A/OL]. 中华人民共和国国务院公报. https://www.gov.cn/gongbao/2024/issue_11646/202410/content_6980865.html. |
General Office of the CPC Central Committee of the People’s Republic of China, General Office of the State Council of the People’s Republic of China, 2024. Opinions of the General Office of the CPC Central Committee of the People’s Republic of China and the General Office of the State Council of the People’s Republic of China, improving the quality of cultivated land and improving the balance of occupation and compensation [A/OL]. Gazette of the State Council of the People’s Republic of China. https://www.gov.cn/gongbao/2024/issue_11646/202410/content_6980865.html. | |
[137] | 中华人民共和国自然资源部, 2024. 2023年中国自然资源公报[A/OL]. https://gi.mnr.gov.cn/202402/t20240229_2838490.html. |
Ministry of Natural Resources of the People’s Republic of China, 2024. 2023 China Natural Resources Bulletin [A/OL]. .https://gi.mnr.gov.cn/202402/t20240229_2838490.html |
[1] | 许铭宇, 俞龙生. 农林废弃有机材料对离子型稀土矿尾砂的土壤改良效应[J]. 生态环境学报, 2025, 34(1): 126-134. |
[2] | 叶俊宏, 刘珍环, 刘子瑜. 珠江三角洲城市群国土空间生态修复分区情景模拟[J]. 生态环境学报, 2025, 34(1): 4-12. |
[3] | 方吉, 吴啸, 宫清华, 韦泽棉, 王颖佳. 南方滨海农业县国土空间生态修复规划策略——以广东省徐闻县为例[J]. 生态环境学报, 2024, 33(7): 1019-1026. |
[4] | 孙明, 陈燕丽, 谢敏, 莫伟华, 潘良浩. 广西典型沙生红树林总初级生产力变化特征及其对气象因子的响应[J]. 生态环境学报, 2024, 33(5): 665-678. |
[5] | 高熙梣, 孔涛, 李华孙, 李多美, 张加良. 古龙酸母液、木霉菌与活性污泥配施对矸石山黑麦草生理特性及土壤微生物性质的影响[J]. 生态环境学报, 2023, 32(9): 1709-1718. |
[6] | 宫亮, 金丹丹, 牛世伟, 王娜, 邹晓锦, 张鑫, 隋世江, 解占军, 韩瑛祚. 辽宁省水稻田固碳减排潜力分析[J]. 生态环境学报, 2023, 32(7): 1226-1236. |
[7] | 古琛, 贾志清, 杜波波, 何凌仙子, 李清雪. 中国退化草地生态修复措施综述与展望[J]. 生态环境学报, 2022, 31(7): 1465-1475. |
[8] | 刘祥宏, 尹勤瑞, 辛建宝, 刘伟, 许秀泉, 黄占斌, 安如意. 生态植被自然修复及其人工促进技术研究进展与展望[J]. 生态环境学报, 2022, 31(7): 1476-1488. |
[9] | 李光炫, 石岸, 张黎明, 邢世和, 杨文浩. 不同粒径生物质炭对土壤重金属钝化及细菌群落的影响[J]. 生态环境学报, 2022, 31(3): 583-592. |
[10] | 郭丽芳, 杨瑞, 孙蔚旻. 尾矿固氮菌的分离筛选及其植物促生效应研究[J]. 生态环境学报, 2022, 31(11): 2180-2188. |
[11] | 李锋民, 陈琳, 姜晓华, 李晨光, 赵莎莎, 种云霄, 胡洪营, 高帅强. 水质净化与生态修复的水生植物优选指标体系构建[J]. 生态环境学报, 2021, 30(12): 2411-2422. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||