生态环境学报 ›› 2024, Vol. 33 ›› Issue (12): 1931-1943.DOI: 10.16258/j.cnki.1674-5906.2024.12.011
官国庆1,2(), 黄紫琳3, 江龙飞1, 罗春玲1,**(
)
收稿日期:
2024-04-12
出版日期:
2024-12-18
发布日期:
2024-12-31
通讯作者:
**罗春玲。E-mail: clluo@gig.ac.cn作者简介:
官国庆(1998年生),男,硕士研究生,研究方向为烃类污染物的生物降解。E-mail: guanguoqing@gig.ac.cn基金资助:
GUAN Guoqing1,2(), HUANG Zilin3, JIANG Longfei1, LUO Chunling1,**(
)
Received:
2024-04-12
Online:
2024-12-18
Published:
2024-12-31
摘要:
土壤重金属-有机物复合污染问题较为普遍,重金属超积累植物可通过吸收积累重金属至植株内,从而去除土壤中的重金属,但这类植物对复合污染土壤中有机污染物去除的影响尚不清楚,尤其是根际微生物在此过程中的作用机理仍然未知。基于此,探讨了镉-菲(Cadmium-Phenanthrene,Cd-PHE)复合污染土壤中,不同质量分数Cd处理下伴矿景天(Sedum plumbizincicola)对土壤中PHE生物消减的影响及其作用机理。对不同质量分数的土壤Cd影响下PHE的降解率、微生物群落组成、PHE潜在降解菌组成以及丰度进行分析,发现Cd会抑制PHE的降解,Cd添加量为10 mg∙kg−1时种植伴矿景天与不种植处理PHE的降解率分别降低了25.6%和13.3%。而伴矿景天在土壤Cd质量分数较低时则能显著促进Cd-PHE复合污染土壤中PHE的降解,其平均降解率较未种植物处理高出6.77%。同时提高了根际土壤中PHE潜在降解菌的丰度,其平均丰度较未种植处理高出0.538%。进一步结合SIP识别到的功能微生物分析发现,Cd的存在可通过降低以Micrococcaceae为代表的不耐受或具有低Cd耐受性的功能微生物的丰度,影响这类微生物对PHE的降解过程,从而不利于土壤中PHE的降解。而伴矿景天则能缓解Cd对PHE潜在降解菌的毒害,并通过在根际显著富集Micrococcaceae和Ellin6067等植物促生菌,提高这类特定PHE潜在降解菌的丰度,进而提高根际土壤中PHE降解菌的总丰度,促进土壤中PHE的降解。此外,通过DNA-SIP技术,还探查到Ellin6067、KD3-93、Flavisolibacter和Adhaeribacter为具有PHE潜在降解功能的微生物。该研究有望为耐重金属植物或重金属超积累植物在重金属-多环芳烃复合污染土壤修复领域的应用提供理论指导。
中图分类号:
官国庆, 黄紫琳, 江龙飞, 罗春玲. 伴矿景天对重金属-多环芳烃复合污染土壤有机污染物消减及微生物的影响[J]. 生态环境学报, 2024, 33(12): 1931-1943.
GUAN Guoqing, HUANG Zilin, JIANG Longfei, LUO Chunling. Influence of Sedum plumbizincicola on the Reduction of Organic Contaminants and Microorganisms in Soil Contaminated with Heavy Metals and Polycyclic Aromatic Hydrocarbons[J]. Ecology and Environment, 2024, 33(12): 1931-1943.
指标 | 量值 |
---|---|
有机质质量分数/(g∙kg‒1) | 14.2 |
全氮质量分数/(g∙kg‒1) | 0.740 |
全磷质量分数/(g∙kg‒1) | 0.750 |
全钾质量分数/(g∙kg‒1) | 3.75 |
碱解氮质量分数/(mg∙kg−1) | 70.6 |
有效磷质量分数/(mg∙kg−1) | 16.5 |
速效钾质量分数/(mg∙kg−1) | 337 |
pH | 5.91 |
有机碳百分比/% | 1.60 |
总镉质量分数/(mg∙kg−1) | 0.830 |
总铜质量分数/(mg∙kg−1) | 327 |
总铅质量分数/(mg∙kg−1) | 68.1 |
总锌质量分数/(mg∙kg−1) | 116 |
总铬质量分数/(mg∙kg−1) | 91.8 |
16种优控多环芳烃质量分数/(mg∙kg−1) | 2.28 |
菲质量分数/(mg∙kg−1) | 2.01 |
209种多氯联苯质量分数/(mg∙kg−1) | 0.600 |
砂粒百分比/% | 35.4 |
粉粒百分比/% | 59.6 |
黏粒百分比/% | 5.00 |
表1 供试土壤基本理化性质
Table 1 Basic physicochemical properties of the tested soil
指标 | 量值 |
---|---|
有机质质量分数/(g∙kg‒1) | 14.2 |
全氮质量分数/(g∙kg‒1) | 0.740 |
全磷质量分数/(g∙kg‒1) | 0.750 |
全钾质量分数/(g∙kg‒1) | 3.75 |
碱解氮质量分数/(mg∙kg−1) | 70.6 |
有效磷质量分数/(mg∙kg−1) | 16.5 |
速效钾质量分数/(mg∙kg−1) | 337 |
pH | 5.91 |
有机碳百分比/% | 1.60 |
总镉质量分数/(mg∙kg−1) | 0.830 |
总铜质量分数/(mg∙kg−1) | 327 |
总铅质量分数/(mg∙kg−1) | 68.1 |
总锌质量分数/(mg∙kg−1) | 116 |
总铬质量分数/(mg∙kg−1) | 91.8 |
16种优控多环芳烃质量分数/(mg∙kg−1) | 2.28 |
菲质量分数/(mg∙kg−1) | 2.01 |
209种多氯联苯质量分数/(mg∙kg−1) | 0.600 |
砂粒百分比/% | 35.4 |
粉粒百分比/% | 59.6 |
黏粒百分比/% | 5.00 |
处理组 | w(Cd)/(mg∙kg−1) | w(PHE)/(mg∙kg−1) | 是否种植物 |
---|---|---|---|
Rhizo-0 | 0 | 100 | 是 |
Rhizo-1 | 1 | 100 | 是 |
Rhizo-5 | 5 | 100 | 是 |
Rhizo-10 | 10 | 100 | 是 |
Bulk-0 | 0 | 100 | 否 |
Bulk-1 | 1 | 100 | 否 |
Bulk-5 | 5 | 100 | 否 |
Bulk-10 | 10 | 100 | 否 |
表2 盆栽试验设计
Table 2 Scheme of the pot experiments
处理组 | w(Cd)/(mg∙kg−1) | w(PHE)/(mg∙kg−1) | 是否种植物 |
---|---|---|---|
Rhizo-0 | 0 | 100 | 是 |
Rhizo-1 | 1 | 100 | 是 |
Rhizo-5 | 5 | 100 | 是 |
Rhizo-10 | 10 | 100 | 是 |
Bulk-0 | 0 | 100 | 否 |
Bulk-1 | 1 | 100 | 否 |
Bulk-5 | 5 | 100 | 否 |
Bulk-10 | 10 | 100 | 否 |
Cd添加量/(mg∙kg−1) | f |
---|---|
0 | 15.1±1.06b |
1 | 29.8±2.82a |
5 | 15.2±0.53b |
10 | 18.6±0.66b |
表3 不同处理组的生物富集系数(f)
Table 3 Bioconcentration factor of different treatments
Cd添加量/(mg∙kg−1) | f |
---|---|
0 | 15.1±1.06b |
1 | 29.8±2.82a |
5 | 15.2±0.53b |
10 | 18.6±0.66b |
图2 培养第110天时不同处理组土壤中总Cd及有效态Cd质量分数
Figure 2 Mass fraction of total cadmium and available cadmium of soil in all treatments after cultivation for 110 days
ASV | Phylum | Class | Order | Family | Genus | 处理 |
---|---|---|---|---|---|---|
ASV_1 | Bacteroidota | Bacteroidia | Chitinophagales | Chitinophagaceae | Flavisolibacter | Bulk-5 |
ASV_2 | Bacteroidota | Bacteroidia | Chitinophagales | Chitinophagaceae | Flavisolibacter | Bulk-1 |
ASV_18 | Proteobacteria | Gammaproteobacteria | Burkholderiales | Comamonadaceae | Ramlibacter | Rhizo-10 |
ASV_56 | Proteobacteria | Gammaproteobacteria | Burkholderiales | Comamonadaceae | Bulk-10 | |
ASV_69 | Euryarchaeota | Methanobacteria | Methanobacteriales | Methanobacteriaceae | Methanobacterium | Bulk-10 |
ASV_80 | Bacteroidota | Bacteroidia | Cytophagales | Hymenobacteraceae | Adhaeribacter | Bulk-1, Bulk-5 |
ASV_155 | Acidobacteriota | Blastocatellia | Blastocatellales | Blastocatellaceae | Bulk-10, Rhizo-5 | |
ASV_168 | Bacteroidota | Bacteroidia | Chitinophagales | Chitinophagaceae | Rhizo-0 | |
ASV_182 | Chloroflexi | Ktedonobacteria | Ktedonobacterales | JG30-KF-AS9 | JG30-KF-AS9 | Rhizo-1 |
ASV_223 | Actinobacteriota | Actinobacteria | Micrococcales | Micrococcaceae | Rhizo-0 | |
ASV_579 | Bacteroidota | Bacteroidia | Sphingobacteriales | KD3-93 | Rhizo-10 | |
ASV_913 | Proteobacteria | Gammaproteobacteria | Burkholderiales | Nitrosomonadaceae | Ellin6067 | Rhizo-1 |
ASV_1170 | Actinobacteriota | Actinobacteria | Propionibacteriales | Nocardioidaceae | Nocardioides | Rhizo-10 |
表4 不同处理组中的PHE潜在降解菌分类信息
Table 4 Taxonomic information of identified phenanthrene-degrading bacteria in different treatments
ASV | Phylum | Class | Order | Family | Genus | 处理 |
---|---|---|---|---|---|---|
ASV_1 | Bacteroidota | Bacteroidia | Chitinophagales | Chitinophagaceae | Flavisolibacter | Bulk-5 |
ASV_2 | Bacteroidota | Bacteroidia | Chitinophagales | Chitinophagaceae | Flavisolibacter | Bulk-1 |
ASV_18 | Proteobacteria | Gammaproteobacteria | Burkholderiales | Comamonadaceae | Ramlibacter | Rhizo-10 |
ASV_56 | Proteobacteria | Gammaproteobacteria | Burkholderiales | Comamonadaceae | Bulk-10 | |
ASV_69 | Euryarchaeota | Methanobacteria | Methanobacteriales | Methanobacteriaceae | Methanobacterium | Bulk-10 |
ASV_80 | Bacteroidota | Bacteroidia | Cytophagales | Hymenobacteraceae | Adhaeribacter | Bulk-1, Bulk-5 |
ASV_155 | Acidobacteriota | Blastocatellia | Blastocatellales | Blastocatellaceae | Bulk-10, Rhizo-5 | |
ASV_168 | Bacteroidota | Bacteroidia | Chitinophagales | Chitinophagaceae | Rhizo-0 | |
ASV_182 | Chloroflexi | Ktedonobacteria | Ktedonobacterales | JG30-KF-AS9 | JG30-KF-AS9 | Rhizo-1 |
ASV_223 | Actinobacteriota | Actinobacteria | Micrococcales | Micrococcaceae | Rhizo-0 | |
ASV_579 | Bacteroidota | Bacteroidia | Sphingobacteriales | KD3-93 | Rhizo-10 | |
ASV_913 | Proteobacteria | Gammaproteobacteria | Burkholderiales | Nitrosomonadaceae | Ellin6067 | Rhizo-1 |
ASV_1170 | Actinobacteriota | Actinobacteria | Propionibacteriales | Nocardioidaceae | Nocardioides | Rhizo-10 |
[1] | AHMED A, HASNAIN S, 2010. Auxin-producing Bacillus sp.: Auxin quantification and effect on the growth of Solanum tuberosum[J]. Pure and Applied Chemistry, 82(1): 313-319. |
[2] | BACOSA H P, STEICHEN J, KAMALANATHAN M, et al., 2020. Polycyclic aromatic hydrocarbons (PAHs) and putative PAH-degrading bacteria in Galveston Bay, TX (USA), following Hurricane Harvey (2017)[J]. Environmental Science and Pollution Research, 27(28): 34987-34999. |
[3] | BAO H, WANG J, ZHANG H, et al., 2021. Enhanced rhizodegradation of polycyclic aromatic hydrocarbons in corn straw-amended soil related to changing of bacterial community and functional gene expression[J/OL]. PREPRINT (Version 1) available at Research Square, [2021-03-30]. https://doi.org/10.21203/rs.3.rs-332456/v1 |
[4] | BENEDUZI A, AMBROSINI A, PASSAGLIA L M, 2012. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents[J]. Genetics and Molecular Biology, 35(4(suppl)): 1044-1051. |
[5] |
BOLYEN E, RIDEOUT J R, DILLON M R, et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 37(8): 852-857.
DOI PMID |
[6] |
BRINCH U C, EKELUND F, JACOBSEN C S, 2002. Method for spiking soil samples with organic compounds[J]. Applied and Environmental Microbiology, 68(4): 1808-1816.
DOI PMID |
[7] | CAO Y, LI Z Y, DU P H, et al., 2024. Effects of different dwarfing interstocks on the rhizosphere, endophytic bacteria, and drought resistance of apple trees[J]. Microbiological Research, 283: 127690. |
[8] | CÉBRON A, NORINI M-P, BEGUIRISTAIN T, et al., 2008. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples[J]. Journal of Microbiological Methods, 73(2): 148-159. |
[9] |
CHAKRABORTY P, SAMPATH S, MUKHOPADHYAY M, et al., 2019. Baseline investigation on plasticizers, bisphenol A, polycyclic aromatic hydrocarbons and heavy metals in the surface soil of the informal electronic waste recycling workshops and nearby open dumpsites in Indian metropolitan cities[J]. Environmental Pollution, 248: 1036-1045.
DOI PMID |
[10] |
CRAMPON M, BODILIS J, PORTET-KOLTALO F, 2018. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential[J]. Journal of Hazardous Materials, 359: 500-509.
DOI PMID |
[11] | CUI W Z, LIU Y Y, LI W G, et al., 2023. Remediation agents drive bacterial community in a Cd-contaminated soil[J]. Toxics, 11(1): 53. |
[12] |
DE SOUZA E M, BASSANI V L, SPEROTTO R A, et al., 2016. Inoculation of new rhizobial isolates improve nutrient uptake and growth of bean (Phaseolus vulgaris) and arugula (Eruca sativa)[J]. Journal of the Science of Food and Agriculture, 96(10): 3446-3453.
DOI PMID |
[13] | GLÖCKNER F O, 2019. The SILVA database project: An ELIXIR core data resource for high-quality ribosomal RNA sequences[J]. Biodiversity Information Science and Standards, 3: e36125. |
[14] | HONG S H, HAM SY, KIM J S, et al., 2016. Application of sodium polyacrylate and plant growth-promoting bacterium, Micrococcaceae HW-2, on the growth of plants cultivated in the rooftop[J]. International Biodeterioration & Biodegradation, 113: 297-303. |
[15] | HUANG X F, CHAPARRO J M, REARDON K F, et al., 2014. Rhizosphere interactions: root exudates, microbes, and microbial communities[J]. Botany, 92: 267-275. |
[16] | HUANG Z L, JIANG L F, LU W S, et al., 2022. Elsholtzia splendens promotes phenanthrene and polychlorinated biphenyl degradation under Cu stress through enrichment of microbial degraders[J]. Journal of Hazardous Materials, 438: 129492. |
[17] | HUSSAIN I, PUSCHENREITER M, GERHARD S, et al., 2018. Rhizoremediation of petroleum hydrocarbon-contaminated soils: improvement opportunities and field applications[J]. Environmental and Experimental Botany, 147: 202-219. |
[18] | JIANG L F, SONG M K, LUO C L, et al., 2015. Novel phenanthrene-degrading bacteria identified by DNA-stable isotope probing[J]. PLOS ONE, 10(6): e0130846. |
[19] | JIANG L F, ZHANG D Y, SONG M K, et al., 2022. The positive role of root decomposition on the bioremediation of organic pollutants contaminated soil: A case study using PCB-9 as a model compound[J]. Soil Biology and Biochemistry, 171: 108726. |
[20] | LI J, GURAJALA H K, WU L H, et al., 2018. Hyperaccumulator plants from China: A synthesis of the current state of knowledge[J]. Environmental Science & Technology, 52(21): 11980-11994. |
[21] |
LIU J, CHEN X, SHU H Y, et al., 2018. Microbial community structure and function in sediments from e-waste contaminated rivers at Guiyu area of China[J]. Environmental Pollution, 235: 171-179.
DOI PMID |
[22] | LIU M, HUANG B, BI X H, et al., 2013. Heavy metals and organic compounds contamination in soil from an e-waste region in South China[J]. Environmental Science: Processes & Impacts, 15(5): 919-929. |
[23] | LUO J P, GU S H, GUO X Y, et al., 2022. Core microbiota in the rhizosphere of heavy metal accumulators and its contribution to plant performance[J]. Environmental Science & Technology, 56(18): 12975-12987. |
[24] | MARK G L, DOW J M, KIELY P D, et al., 2005. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions[J]. Proceedings of the National Academy of Sciences, 102(48): 17454-17459. |
[25] | MISHRA J, SINGH R, ARORA NK, 2017. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms[J]. Frontiers in Microbiology, 8: 295763. |
[26] |
NARASIMHAN K, BASHEER C, BAJIC V B, et al., 2003. Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls[J]. Plant Physiology, 132(1): 146-153.
PMID |
[27] | NGUYEN P M, AFZAL M, ULLAH I, et al., 2019. Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency[J]. Environmental Science and Pollution Research, 26: 21109-21126. |
[28] | SALIMI F, KHORSHIDI M, AMIRAHMADI F, et al., 2023. Effectiveness of phosphate and zinc solubilizing Paenarthrobacter nitroguajacolicus P1 as Halotolerant rhizobacterium with growth-promoting activity on Pistacia vera L[J]. Current Microbiology, 80(10): 336. |
[29] | SANSINENEA E, 2019. Bacillus spp.: As plant growth-promoting bacteria[M]//SINGH H, KESWANI C, REDDY M, et al., Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Singapore: Springer: 225-237. |
[30] | SINGHA LP, PANDEY P, 2020. Rhizobacterial community of Jatropha curcas associated with pyrene biodegradation by consortium of PAH-degrading bacteria[J]. Applied Soil Ecology, 155: 103685. |
[31] |
SMITH M, FLOWERS T, DUNCAN H, et al., 2011. Study of PAH dissipation and phytoremediation in soils: Comparing freshly spiked with weathered soil from a former coking works[J]. Journal of Hazardous Materials, 192(3): 1219-1225.
DOI PMID |
[32] |
SONG M K, LUO C L, JIANG L F, et al., 2019. The presence of in situ sulphamethoxazole degraders and their interactions with other microbes in activated sludge as revealed by DNA stable isotope probing and molecular ecological network analysis[J]. Environment International, 124: 121-129.
DOI PMID |
[33] |
SONG Y F, WILKE B M, SONG X Y, et al., 2006. Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals (HMs) as well as their genotoxicity in soil after long-term wastewater irrigation[J]. Chemosphere, 65(10): 1859-1868.
PMID |
[34] | STOREY S, ASHAARI M M, CLIPSON N, et al., 2018. Opportunistic bacteria dominate the soil microbiome response to phenanthrene in a microcosm-based study[J]. Frontiers in Microbiology, 9: 339359. |
[35] |
TANG X J, SHEN C F, SHI D Z, et al., 2010. Heavy metal and persistent organic compound contamination in soil from Wenling: An emerging e-waste recycling city in Taizhou area, China[J]. Journal of Hazardous Materials, 173(1-3): 653-660.
DOI PMID |
[36] |
TONG H, LIU C S, LI F B, et al., 2015. The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing[J]. Journal of Hazardous Materials, 298: 252-260.
DOI PMID |
[37] |
WU L H, LI Z, AKAHANE I, et al., 2012. Effects of organic amendments on Cd, Zn and Cu bioavailability in soil with repeated phytoremediation by Sedum plumbizincicola[J]. International Journal of Phytoremediation, 14(10): 1024-1038.
PMID |
[38] |
XIA S Q, SHI Y, FU Y G, et al., 2005. DGGE analysis of 16S rDNA of ammonia-oxidizing bacteria in chemical-biological flocculation and chemical coagulation systems[J]. Applied Microbiology and Biotechnology, 69(1): 99-105.
PMID |
[39] |
XIAO X, FAN M C, WANG E T, et al., 2017. Interactions of plant growth-promoting rhizobacteria and soil factors in two leguminous plants[J]. Applied Microbiology and Biotechnology, 101(23-24): 8485-8497.
DOI PMID |
[40] | YANG W H, WANG S S, NI W Z, et al., 2019. Enhanced Cd-Zn-Pb-contaminated soil phytoextraction by Sedum alfredii and the rhizosphere bacterial community structure and function by applying organic amendments[J]. Plant and Soil, 444(1-2): 101-118. |
[41] |
YE Q H, LIANG C Y, CHEN X W, et al., 2019. Molecular characterization of methanogenic microbial communities for degrading various types of polycyclic aromatic hydrocarbon[J]. Journal of Environmental Sciences, 86: 97-106.
DOI PMID |
[42] | YI M L, ZHANG L L, LI Y, et al., 2022. Structural, metabolic, and functional characteristics of soil microbial communities in response to benzo[a]pyrene stress[J]. Journal of Hazardous Materials, 431: 128632. |
[43] |
YILMAZ E I, 2003. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1[J]. Research in Microbiology, 154(6): 409-415.
PMID |
[44] | ZHANG Y C, KOMOREK R, SON J Y, et al., 2021. Molecular imaging of plant-microbe interactions on the brachypodium seed surface[J]. Analyst, 146(19): 5855-5865. |
[45] | ZHANG Z H, RENGEL Z, CHANG H, et al., 2012. Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs)[J]. Geoderma, 175-176: 1-8. |
[46] |
ZHAO X H, FAN F Q, ZHOU H D, et al., 2018. Microbial diversity and activity of an aged soil contaminated by polycyclic aromatic hydrocarbons[J]. Bioprocess and Biosystems Engineering, 41(6): 871-883.
DOI PMID |
[47] | 姜悦, 罗继鹏, 乔亚蓓, 等, 2023. 土壤类型对超积累植物东南景天叶际微生物群落结构和功能的影响[J/OL]. 浙江大学学报(农业与生命科学版), 1-13 [2024-10-29]. http://kns.cnki.net/kcms/detail/33.1247.S.20231123.1610.002.html. |
JIANG Y, LUO J P, QIAO Y B, et al., 2023. Effects of soil types on phyllosphere microbial community structure and function of hyperaccumulator Sedum alfredii[J/OL]. Journal of Zhejiang University (Agriculture & Life Sciences), 1-13[2024-10-29]. http://kns.cnki.net/kcms/detail/33.1247.S.20231123.1610.002.html. | |
[48] | 李婉怡, 於维维, 余琼阳, 等, 2023. 土壤重金属-有机物复合污染环境效应与修复技术研究进展[J]. 土壤, 55(3): 453-463. |
LI W Y, YU W W, YU Q Y, et al., 2023. Environmental Effects and Remediation Technologies of Heavy Metal-Organic Pollutant Co-contaminated Soil: A Review[J]. Soils, 55(3): 453-463. | |
[49] | 宋孟珂, 江龙飞, 王琰, 等, 2014. 稳定同位素探针技术在有机污染物生物降解中的应用[J]. 微生物学通报, 41(4): 699-711. |
SONG M K, JIANG L F, WANG Y, et al., 2014. Application of stable isotope probing in biodegradation of organic pollutants[J]. Microbiology China, 41(4): 699-711. |
[1] | 李璇, 王路茗, 闫春妮, 黄娟. 金属氧化物与非金属氧化物纳米颗粒暴露下人工湿地微生物群落的响应差异[J]. 生态环境学报, 2024, 33(7): 1089-1095. |
[2] | 李林峰, 徐梓盛, 陈勇, 李奇, 林晓扬, 李义纯. 施硅水平对水稻根表铁膜和体内Cd累积分布的影响[J]. 生态环境学报, 2024, 33(5): 781-790. |
[3] | 张腾云, 王静, 高健磊, 葛文静, 王宗耀, 韩龙. 碱性农田土壤冬小麦不同生育期镉的迁移转化研究[J]. 生态环境学报, 2024, 33(3): 450-459. |
[4] | 刘楚天, 郭栋栋, 侯磊, 梁启斌, 王艳霞, 施艳婷, 戚艳娥. 营养调控影响滇杨幼苗镉积累的效应模型分析[J]. 生态环境学报, 2024, 33(3): 460-468. |
[5] | 李高帆, 徐文卓, 卫昊明, 晏再生, 尤佳, 江和龙, 黄娟. 三维多孔生物炭吸附剂的制备及其对菲的吸附行为[J]. 生态环境学报, 2024, 33(2): 261-271. |
[6] | 纪晟莹, 李杰, 李鑫, 陶禹, 陈娟, 王晓玉. 环境与基因型互作对瓜类蔬菜镉积累的影响及产地土壤安全阈值研究[J]. 生态环境学报, 2024, 33(12): 1944-1952. |
[7] | 宋江琴, 尹亚丽, 赵文, 刘燕, 随奇奇, 火久艳, 郑文贤, 李世雄. 青海高原黑土滩退化草地土壤微生物群落空间分异特征[J]. 生态环境学报, 2024, 33(11): 1696-1707. |
[8] | 石润, 李法云, 周纯亮, 王玮, 周艳秋. 凤仙花种子包衣载体固定化微生物修复石油烃污染土壤的效应[J]. 生态环境学报, 2023, 32(9): 1700-1708. |
[9] | 姜懿珊, 孙迎韬, 张干, 罗春玲. 中国不同气候类型森林土壤微生物群落结构及其影响因素[J]. 生态环境学报, 2023, 32(8): 1355-1364. |
[10] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[11] | 范婉仪, 涂晨, 王顺扬, 吴昕优, 李烜桢, 骆永明. 不同品种烟草对轻度污染耕地土壤中镉的累积特征与减量修复潜力[J]. 生态环境学报, 2023, 32(8): 1516-1524. |
[12] | 梁燚彤, 李泽敏, 吴宇伦, 邱光磊, 吴海珍, 韦朝海. 亚硝酸盐对厌氧氨氧化耦合系统的脱氮效能及微生物群落的影响[J]. 生态环境学报, 2023, 32(7): 1275-1284. |
[13] | 王丽华, 王磊, 许端平, 薛杨. 煤胶体对重金属铜与镉的吸附特征研究[J]. 生态环境学报, 2023, 32(7): 1293-1300. |
[14] | 李治梅, 安娅, 李梅, 王室苹, 秦好丽. 巯基/铁基功能化蒙脱土对土壤镉的钝化行为研究[J]. 生态环境学报, 2023, 32(7): 1301-1312. |
[15] | 李振国, 郝星雨, 贺甜莲, 景蕊, 荣成, 顾承真, 郑新宇. 竹醋液对紫苏镉毒的缓解效应研究[J]. 生态环境学报, 2023, 32(7): 1313-1324. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||