生态环境学报 ›› 2024, Vol. 33 ›› Issue (4): 607-616.DOI: 10.16258/j.cnki.1674-5906.2024.04.011
收稿日期:
2024-01-11
出版日期:
2024-04-18
发布日期:
2024-05-31
通讯作者:
*陈雪婷。E-mail: cxtsnow@126.com作者简介:
刘菁华(1986年生),女,工程师,硕士,主要从事渔业环境有机污染微生物修复方面的研究。E-mail: lingqitutu@126.com
基金资助:
LIU Jinghua(), ZHANG Yuping, CHEN Xueting*(
)
Received:
2024-01-11
Online:
2024-04-18
Published:
2024-05-31
摘要:
在渔业养殖过程中,使用绿色环保、高效低廉的微生物菌剂解决渔业废水中的抗生素残留,对保障水产品质量安全和生态环境有重要意义。为获得可应用于渔业养殖废水的红霉素降解菌剂,采用梯度富集驯化的方法从养殖污染底泥样品中分离筛选红霉素降解菌株,通过形态学特征和ITS(Internal Transcribed Spaces)序列分析进行微生物分类鉴定;采用单因素试验确定最适降解温度和pH;利用超高效液相色谱串联高分辨率电喷雾电离质谱仪鉴定降解产物,并据此推测降解途径,通过斑马鱼攻毒试验初步评估菌株的生物安全性;优化菌株固态发酵参数,制备红霉素降解菌剂,并初探降解菌剂对红霉素污染的养殖废水的修复效果。结果显示,获得一株红霉素降解菌株ERY-1并鉴定其为青霉菌属(Penicillium sp.);菌株ERY-1在温度20-35 ℃、pH 5-7的环境中具有较好的降解率,在该条件下,菌株对质量浓度为1.0 mg·L-1的红霉素的降解率在97%以上;鉴定了5种降解中间产物,并据此推测菌株ERY-1通过脱水、脱红霉支糖和开环逐渐使红霉素失去抗菌活性;斑马鱼攻毒试验初步表明菌株ERY-1对水生生物具有较高的安全性;以稻壳:麦麸:玉米粉质量比(m꞉m꞉m)为1꞉1꞉1作为固态培养基配方,初始料水比为1 g:1 L,接种量为0.75%,在温度为25 ℃,发酵13 d后获得产孢量约9.14×109 cfu·g-1的降解菌剂。将制备的降解菌剂投撒到有红霉素残留的养殖废水中,3 d后水中的红霉素未达到方法的检出质量浓度(0.2 ng·L-1)。结果表明,菌株ERY-1可有效的解决渔业养殖废水中的红霉素残留,由其制备的降解菌剂具有良好的应用和推广价值。
中图分类号:
刘菁华, 张玉平, 陈雪婷. 一株红霉素降解菌Penicillium sp. ERY-1的筛选、降解特性及其应用研究[J]. 生态环境学报, 2024, 33(4): 607-616.
LIU Jinghua, ZHANG Yuping, CHEN Xueting. Isolation, Characterization and Application of an Erythromycin-degrading Fungus Penicillium sp. ERY-1[J]. Ecology and Environment, 2024, 33(4): 607-616.
时间/min | 流动相A | 流动相B |
---|---|---|
0.1 | 95% | 5% |
2.0 | 95% | 5% |
25.0 | 5% | 95% |
35.0 | 5% | 95% |
40.0 | 95% | 5% |
表1 超高效液相色谱串联高分辨率电喷雾电离质谱仪(UPLC-HRMS)流动相梯度洗脱程序
Table 1 Mobile phase gradient elution program of ultra high performance liquid chromatography tandem high-resolution electrospray ionization mass spectrometry (UPLC-HRMS)
时间/min | 流动相A | 流动相B |
---|---|---|
0.1 | 95% | 5% |
2.0 | 95% | 5% |
25.0 | 5% | 95% |
35.0 | 5% | 95% |
40.0 | 95% | 5% |
样品 | 水温 | 盐度 | CODMn质量浓度 | DO | pH | 红霉素检出质量浓度 |
---|---|---|---|---|---|---|
渔业养殖废水 | 29.6 ℃ | 0.7‰ | 39.08 mg·L-1 | 13.02 mg·L-1 | 8.96 | 0.47 μg·mL-1 |
表2 养殖废水理化性质及红霉素检出质量浓度
Table 2 Physico-chemical properties and erythromycin concentration of aquaculture wastewater
样品 | 水温 | 盐度 | CODMn质量浓度 | DO | pH | 红霉素检出质量浓度 |
---|---|---|---|---|---|---|
渔业养殖废水 | 29.6 ℃ | 0.7‰ | 39.08 mg·L-1 | 13.02 mg·L-1 | 8.96 | 0.47 μg·mL-1 |
化合物 | 一级质谱 [M±H]±(m/z) | 化学式 | 理论质核比 [M+H]+(m/z) | 误差 (×10-6) |
---|---|---|---|---|
ERY | 734.4679 | C37H68O13N+ | 734.46852 | -0.85 |
C1 | 716.4594 | C37H66O12N+ | 716.45795 | 2.04 |
C2 | 558.3651 | C29H52O9N+ | 558.36366 | 2.49 |
C3 | 576.3754 | C29H54O10N+ | 576.37422 | 1.98 |
C4 | 435.2591 | C21H39O9- | 435.25886 | 0.47 |
C5 | 176.1274 | C8H18O3N+ | 176.12812 | -4.03 |
表3 红霉素及其代谢产物的超高效液相色谱串联高分辨率电喷雾电离质谱(UPLC-HRMS)数据
Table 3 Spectral data for Erythromycin and postulated biodegradation metabolites determined from UPLC-HRMS
化合物 | 一级质谱 [M±H]±(m/z) | 化学式 | 理论质核比 [M+H]+(m/z) | 误差 (×10-6) |
---|---|---|---|---|
ERY | 734.4679 | C37H68O13N+ | 734.46852 | -0.85 |
C1 | 716.4594 | C37H66O12N+ | 716.45795 | 2.04 |
C2 | 558.3651 | C29H52O9N+ | 558.36366 | 2.49 |
C3 | 576.3754 | C29H54O10N+ | 576.37422 | 1.98 |
C4 | 435.2591 | C21H39O9- | 435.25886 | 0.47 |
C5 | 176.1274 | C8H18O3N+ | 176.12812 | -4.03 |
[1] | AYDIN S, 2016. Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungi Trametes versicolor and Bjerkandera adusta[J]. Applied Microbiology and Biotechnology, 100(14): 6491-6499. |
[2] | BLAKE S L, BLAKE S L, WALKER S H, et al., 2011. Spectral accuracy and sulfur counting capabilities of the LTQ-FT-ICR and the LTQ-Orbitrap XL for small molecule analysis[J]. Journal of Mass Spectrometry, 22(12): 2269-2275. |
[3] | DERBALAH A, MASSOUD A, EL-MEHASSEB I, et al., 2021. Microbial detoxification of dimethoate and methomyl residues in aqueous media[J]. Water, 13(8): 1117. |
[4] | GU C, LIANG J X, LIU M, et al., 2023. Aerobic degradation of bisphenol A by Pseudomonas sp. LM-1: Characteristic and pathway[J]. Biodegradation, 34(1): 73-81. |
[5] | GHOBADI Z, HAMIDI-ESFAHANI Z, AZIZI M H, et al., 2021. Statistical optimization of arachidonic acid synthesis by Mortierella alpina CBS 754.68 in a solid-state fermenter[J]. Food Science & Nutrition, 10(2): 436-444. |
[6] | LU Q H, LIU J T, HE H Z, et al., 2021. Waste activated sludge stimulates in situ microbial reductive dehalogenation of organohalide-contaminated soil[J]. Journal of Hazardous Materials, 411: 125189. |
[7] | LIU X H, GUO X C, LIU Y, et al., 2019. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: Performance and microbial response[J]. Environmental Pollution, 254(Part A): 112996. |
[8] | MA Z, MI Y, HAN X, et al., 2020. Transformation of ginsenoside via deepeutectic solvents based on choline chloride as an enzymatic reaction medium[J]. Bioprocess and Biosystems Engineering, 43(7): 1195-1208. |
[9] | REN J J, NI S S, SHEN Y P, et al., 2022. Characterization of the erythromycin degradation pathway and related enzyme in Rhodococcus gordoniae rjjtx-2[J]. Journal of Cleaner Production, 379(Part 1): 134758. |
[10] | REN J J, WANG Z Z, DENG L J, et al., 2020. Biodegradation of erythromycin by Delftia lacustris RJJ‐61 and characterization of its erythromycin esterase[J]. Journal of Basic Microbiology, 61(1): 55-62. |
[11] | SINGH B, PRAGYA, TIWARI S K, et al., 2023. Production of fungal phytases in solid state fermentation and potential biotechnological applications[J]. World Journal of Microbiology & Biotechnology, 40(1): 22. |
[12] | SU Y T, LIU C, LONG Z, et al., 2019. Improved production of spores and bioactive metabolites from Bacillus amyloliquefaciens in solid-state fermentation by a rapid optimization process[J]. Probiotics and Antimicrob Proteins, 11(3): 921-930. |
[13] | WU A Q, LI L Y, ZHANG S, et al., 2023. Optimization of the hongqu starter preparation process for the manufacturing of red mold rice with high gamma-aminobutyric acid production by solid-state fermentation[J]. Biotechnology and Applied Biochemistry, 70(1): 458-468. |
[14] | ZHANG J Y, LI X Y, LEI H X, et al., 2022. New insights into thiamphenicol biodegradation mechanism by Sphingomonas sp. CL5.1 deciphered through metabolic and proteomic analysis[J]. Journal of Hazardous Materials, 426(9): 128101. |
[15] | ZHANG W W, QIU L N, GONG A J, et al., 2017. Isolation and characterization of a high-efficiency erythromycin A-degrading Ochrobactrum sp. strain[J]. Marine Pollution Bulletin, 114(2): 896-902. |
[16] | 蔡徐依, 田亚雄, 陈潘毅, 等, 2023. 固定化菌剂原位净化养殖水体效果及对微生物群落结构的影响[J]. 农业环境科学学报, 42(7): 1606-1615. |
CAI X Y, TIAN Y X, CHEN P Y, et al., 2023. In-situ purification of aquaculture water using an immobilized bacterial agent and its influence on the microbial community structure[J]. Journal of Agro-Environment Science, 42(7): 1606-1615. | |
[17] | 韩冰, 周丽鹏, 姚文利, 等, 2023. 污水中红霉素抗性菌的特性[J]. 科学技术与工程, 23(25): 11021-11026. |
HAN B, ZHOU L P, YAO W L, et al., 2023. Characteristics of erythromycin resistant bacteria in sewage[J]. Science Technology and Engineering, 23(25): 11021-11026. | |
[18] | 何梦琦, 高品, 薛罡, 等, 2014. 功能菌生物强化处理地表水中红霉素药物的研究[J]. 环境科学与技术, 37(7): 72-77. |
HE M Q, GAO P, XUE G, et al., 2014. Bioaugmented treatment of erythromycin by engineered microorganism in surface water[J]. Environmental Science & Technology, 37(7): 72-77. | |
[19] | 孔华忠, 2007. 青霉属及其相关有性型属//中国真菌志 (第三十五卷)[M]. 北京: 科学出版社. |
KONG H Z, 2007. Penicillium sp. and its related sexual forms// Fungi of China (Volume 35)[M]. Beijing: Science Press. | |
[20] | 林浩澎, 孙慧明, 罗娉婷, 等, 2022. 一株耐碱变形假单胞菌ZY-3的鉴定及其脱氮特性[J]. 微生物学通报, 49(10): 4066-4079. |
LIN H P, SUN H M, LUO P T, et al., 2022. Identification of an alkali-tolerant Pseudomonas plecoglossicida ZY-3 and its nitrogen removal characteristics[J]. Microbiology China, 49(10): 4066-4079. | |
[21] | 刘洋锋, 张海燕, 孔聪, 等, 2022. 上海地区水产养殖环境及非药品类渔药投入品中农兽药的污染特征及风险评估[J]. 农业环境科学学报, 41(9): 2055-2063. |
LIU Y F, ZHANG H Y, KONG C, et al., 2022. Pollution characteristics and risk assessment of pesticides and veterinary drugs in aquaculture environment and non-drugs fishery inputs in Shanghai, China[J]. Journal of Agro-Environment Science, 41(9): 2055-2063. | |
[22] | 曲甍甍, 卜元卿, 田丰, 等, 2018. 微生物农药环境风险评价试验准则第4部分: 鱼类毒性试验:NY/T 3152.4[S]. 北京: 中国农业出版社. |
QU M M, BU Y Q, TIAN F, et al., 2018. Risk assessment test guidelines for microbial pesticide—Part 4: Fish toxicity test: NY/T 3152.4[S]. Beijing: China Agricultural Press. | |
[23] | 史朝斌, 2019. 水产养殖区抗生素的残留特性研究[J]. 河南水产 (4): 28-29, 36. |
SHI C B, 2019. Study on residual characteristics of antibiotics in aquaculture areas[J]. Henan Fisheries (4): 28-29, 36. | |
[24] | 师杨杰, 靳红梅, 管益东, 等, 2023. 复合微生物菌剂发酵制备生物腐植酸的条件优化及其结构特性[J]. 农业环境科学学报, 42(9): 2120-2129. |
SHI Y J, JIN H M, GUAN Y D, et al., 2023. Optimization of fermentation conditions and structural characteristics of biological humic substances prepared using compound microbial agents[J]. Journal of Agro-Environment Science, 42(9): 2120-2129. | |
[25] | 王敏奇, 许晓玲, 李卫芬, 等, 2009. 一株红霉素降解菌红圆酵母的选育及其降解特性[J]. 农业生物技术学报, 17(2): 341-346. |
WANG M Q, XU X L, LI W F, et al., 2009. Screening of an erythromycin-degrading strain Rhodotorula and its degradation characteristics[J]. Journal of Agricultural Biotechnology, 17(2): 341-346. | |
[26] | 王莹, 陈虎, 徐梦迪, 等, 2023. 一株红球菌属细菌LV4在高盐条件下的吡啶降解特性[J]. 生物工程学报, 39(3): 1202-1216. |
WANG Y, CHEN H, XU M D, et al., 2023. Pyridine degradation characteristics of Rhodococcus sp. LV4 under high salinity conditions[J]. Chinese Journal of Biotechnology, 39(3): 1202-1216. | |
[27] |
许双燕, 张涛, 张成, 等, 2021. 一株红霉素降解菌的筛选、鉴定与降解特性[J]. 浙江农业学报, 33(1): 131-141.
DOI |
XU S Y, ZHANG T, ZHANG C, et al., 2021. Isolation and identification of an erythromycin degradation bacterium strain and its biodegradation characteristics[J]. Acta Agriculturae Zhejiangensis, 33(1): 131-141.
DOI |
|
[28] |
叶繁, 冯时欢, 吴佳佳, 等, 2019. 养殖虾塘常见耐药菌的分离鉴定与耐药基因检测[J]. 生态环境学报, 28(9): 1843-1849.
DOI |
YE F, FENG S H, WU J J, et al., 2019. Antibiotic resistant bacterial isolation and identification from shrimp ponds and their antibiotic resistance genes detection[J]. Ecology and Environmental Sciences, 28(9): 1843-1849. | |
[29] | 袁钰龙, 刘冬梅, 向荣程, 等, 2021. 大环内酯类抗生素微生物降解的研究进展[J]. 生物工程学报, 37(9): 3129-3141. |
YUAN Y L, LIU D M, XIANG R C, et al., 2021. Advances in biodegradation of macrolide antibiotics[J]. Chinese Journal of Biotechnology, 37(9): 3129-3141. | |
[30] | 赵汉胤, 陈潘毅, 唐欣哲, 等, 2021. 生物炭原位添加对养殖池塘底泥中微生物群落结构的影响[J]. 农业环境科学学报, 40(12): 2770-2778. |
ZHAO H Y, CHEN P Y, TANG X Z, et al., 2021. Effects of in-situ biochar amendment on the microbial community structure of sediments in aquaculture ponds[J]. Journal of Agro-Environment Science, 40(12): 2770-2778. | |
[31] | 卓丽, 王美欢, 石运刚, 等, 2019. 南方典型水源地及水产养殖区抗生素的复合污染特征及生态风险[J]. 生态毒理学报, 14(2): 164-175. |
ZHUO L, WANG M H, SHI Y G, et al., 2019. Occurrence, distribution, and ecological risk of antibiotics in surface water of typical drinking water sources and aquaculture in South China[J]. Asian Journal of Ecotoxicology, 14(2): 164-175. |
[1] | 姜晓静, 谢嘉慧, 马凯, 高丽. 天鹅湖沉积物中解磷菌的解磷能力及其对硬毛藻生长的影响[J]. 生态环境学报, 2024, 33(4): 633-644. |
[2] | 蓝浚, 陈冠虹, 张俊涛, Hemmat-Jou Mohammad Hossein, 舒小华, 方利平, 李芳柏. 电子穿梭体介导土壤锑还原成矿的微生物机制[J]. 生态环境学报, 2024, 33(2): 272-281. |
[3] | 丁昊, 李长鑫, 丁静, 兰昊. n-damo细菌在不同生态环境中的遗传多样性和潜在功能研究[J]. 生态环境学报, 2024, 33(2): 202-211. |
[4] | 李嘉惠, 童辉, 陈曼佳, 刘承帅, 姜琪, 易秀. 微氧生物亚铁氧化及其重金属固定效应研究进展[J]. 生态环境学报, 2024, 33(2): 310-320. |
[5] | 马媛, 田路露, 吕杰, 柳沛, 张旭, 李二阳, 张清航. 天山北坡雪岭云杉森林土壤微生物群落及影响因素研究[J]. 生态环境学报, 2024, 33(1): 1-11. |
[6] | 杨正桥, 邹奇, 韦行, 周凯, 陈志良. 金属尾矿微生物对尾矿环境的适应与调控机制研究进展[J]. 生态环境学报, 2024, 33(1): 156-166. |
[7] | 袁佳宝, 宋艳宇, 刘桢迪, 朱梦圆, 程小峰, 马秀艳, 陈宁, 李晓宇. 松嫩平原芦苇湿地土壤酶活性剖面分布特征及其微生物养分限制指示作用[J]. 生态环境学报, 2023, 32(12): 2141-2153. |
[8] | 李成涛, 吴婉晴, 陈晨, 张勇, 张凯. 可生物降解PBAT微塑料对土壤理化性质及上海青生理指标的影响[J]. 生态环境学报, 2023, 32(11): 1964-1977. |
[9] | 李璇, 钱秀雯, 黄娟, 王鸣宇, 肖君. 纳米氧化镍暴露下人工湿地运行性能及微生物群落的响应[J]. 生态环境学报, 2023, 32(10): 1833-1841. |
[10] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(10): 1802-1810. |
[11] | 唐志伟, 翁颖, 朱夏童, 蔡洪梅, 代雯慈, 王捧娜, 郑宝强, 李金才, 陈翔. 秸秆还田下中国农田土壤微生物生物量碳变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(9): 1552-1562. |
[12] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[13] | 姜懿珊, 孙迎韬, 张干, 罗春玲. 中国不同气候类型森林土壤微生物群落结构及其影响因素[J]. 生态环境学报, 2023, 32(8): 1355-1364. |
[14] | 朱忆雯, 尹丹, 胡敏, 杜衍红, 洪泽彬, 程宽, 于焕云. 稻田土壤氮循环与砷形态转化耦合的研究进展[J]. 生态环境学报, 2023, 32(7): 1344-1354. |
[15] | 陈懂懂, 霍莉莉, 赵亮, 陈昕, 舒敏, 贺福全, 张煜坤, 张莉, 李奇. 青海高寒草地水热因子对土壤微生物生物量碳、氮空间变异的贡献——基于增强回归树模型[J]. 生态环境学报, 2023, 32(7): 1207-1217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||