生态环境学报 ›› 2024, Vol. 33 ›› Issue (6): 877-887.DOI: 10.16258/j.cnki.1674-5906.2024.06.005
关玉亮1,2(), 甘先华2, 殷祚云1, 黄钰辉2, 陶玉柱2, 李宽3, 张卫强2, 邓彩琼2, 曾祥尧2, 黄芳芳2,*(
)
收稿日期:
2024-02-11
出版日期:
2024-06-18
发布日期:
2024-07-30
通讯作者:
* 黄芳芳。E-mail: huangff@sinogaf.cn作者简介:
关玉亮(1998年生),男,硕士研究生,从事植物生态学、园艺学研究。E-mail: 981120244@qq.com
基金资助:
GUAN Yuliang1,2(), GAN Xianhua2, YIN Zuoyun1, HUANG Yuhui2, TAO Yuzhu2, LI Kuan3, ZHANG Weiqiang2, DENG Caiqiong2, ZENG Xiangyao2, HUANG Fangfang2,*(
)
Received:
2024-02-11
Online:
2024-06-18
Published:
2024-07-30
摘要:
研究植物多样性沿海拔梯度分布格局对森林植被恢复和物种保护具有重要作用。为探讨山地地区植物多样性垂直分布特点,以南岭自然保护区8个海拔梯度(800、900、1000、1100、1200、1300、1400和1500 m)为研究对象,从群落水平和系统发育水平两个方面,分析不同海拔梯度植物多样性分布格局,并结合对数柯西模型进行不同海拔梯度植物多度拟合。结果表明:1)南岭8个海拔梯度样地内共有物种290种,隶属81科148属;2)南岭物种多样性沿海拔梯度呈“单峰”趋势,中海拔(1000—1300 m)物种多样性指数(物种丰富度指数157、Shannon-Wiener指数为4.142、Pielou’s evenness指数为0.459)最高,高海拔(1300—1500 m)最低(物种丰富度指数69、Shannon-Wiener指数为2.317、Pielou’s evenness指数为0.197);3)乔木层系统发育多样性(−2.918—0.762)变化趋势异于物种多样性,系统发育总体上呈离散结构,环境过滤效应在南岭森林群落构建中起重要作用,竞争排斥效应在高海拔森林中逐渐显现;4)中高海拔群落中生境限制和种间竞争可能削弱乔木层优势种的形成潜力,但提高罕见种在群落中的共存概率就物种保护而言,低海拔(800—1000 m)人为干扰严重,建议低海拔设置生态红线,高海拔(1300—1500 m)森林生境则相对恶劣,却为众多珍稀濒危植物的重要栖息地,建议为这些物种创造良好的生长条件,如降低种间竞争强度、改善小气候等。研究结果将加深对南岭常绿阔叶林植物群落生物多样性变化格局的认识,有助于该区域多样性保护策略的制定。
中图分类号:
关玉亮, 甘先华, 殷祚云, 黄钰辉, 陶玉柱, 李宽, 张卫强, 邓彩琼, 曾祥尧, 黄芳芳. 南岭自然保护区不同海拔梯度植物多样性分布格局[J]. 生态环境学报, 2024, 33(6): 877-887.
GUAN Yuliang, GAN Xianhua, YIN Zuoyun, HUANG Yuhui, TAO Yuzhu, LI Kuan, ZHANG Weiqiang, DENG Caiqiong, ZENG Xiangyao, HUANG Fangfang. Distribution Pattern of Plant Diversity at Different Elevations in Nanling Nature Reserve[J]. Ecology and Environment, 2024, 33(6): 877-887.
样地号 | 经度 | 纬度 | 海拔/m | 坡向 | 优势种 |
---|---|---|---|---|---|
A | 113°3′37.95″E | 24°53′28.85″N | 800 | W | 鹿角锥、华润楠 (Machilus chinensis)、广东木莲 (Manglietia kwangtungensis)、红锥 (Castanopsis hystrix) |
B | 113°2′34.22″E | 24°52′56.75″N | 900 | W | 赤杨叶 (Alniphyllum fortunei)、鹿角锥、华润楠、短尾鹅耳枥 (Carpinus londoniana)、红柴枝 (Meliosma oldhamii) |
C | 113°1′10.93″E | 24°55′45.88″N | 1000 | W | 甜槠、杜鹃 (Rhododendron simsii)、新木姜子、罗浮锥 (Castanopsis faberi) |
D | 113°1′6.26″E | 24°55′58.05″N | 1100 | W | 红楠 (Machilus thunbergii)、华南桂 (Cinnamomum austrosinense)、毛桃木莲、罗浮锥 |
E | 113°1′17.40″E | 24°56′17.68″N | 1200 | W | 杜鹃、毛桃木莲、美叶柯 (Lithocarpus calophyllus)、红楠、银钟花 (Perkinsiodendron macgregorii) |
F | 113°1′22.71″E | 24°56′27.53″N | 1300 | W | 华南五针松、甜槠、木荷、杜鹃、五列木 (Pentaphylax euryoides) |
G | 113°1′31.12″E | 24°56′33.71″N | 1400 | W | 木荷、毛桃木莲、红楠、硬壳桂 (Cryptocarya chingii)、红淡比(Cleyera japonica) |
H | 113°1′40.88″E | 24°56′22.50″N | 1500 | E | 甜槠、新木姜子、木莲、碟斗青冈 (Quercus disciformis)、木荷 |
表1 南岭自然保护区样地基本概况
Table 1 Plot information in Nanling Reserve
样地号 | 经度 | 纬度 | 海拔/m | 坡向 | 优势种 |
---|---|---|---|---|---|
A | 113°3′37.95″E | 24°53′28.85″N | 800 | W | 鹿角锥、华润楠 (Machilus chinensis)、广东木莲 (Manglietia kwangtungensis)、红锥 (Castanopsis hystrix) |
B | 113°2′34.22″E | 24°52′56.75″N | 900 | W | 赤杨叶 (Alniphyllum fortunei)、鹿角锥、华润楠、短尾鹅耳枥 (Carpinus londoniana)、红柴枝 (Meliosma oldhamii) |
C | 113°1′10.93″E | 24°55′45.88″N | 1000 | W | 甜槠、杜鹃 (Rhododendron simsii)、新木姜子、罗浮锥 (Castanopsis faberi) |
D | 113°1′6.26″E | 24°55′58.05″N | 1100 | W | 红楠 (Machilus thunbergii)、华南桂 (Cinnamomum austrosinense)、毛桃木莲、罗浮锥 |
E | 113°1′17.40″E | 24°56′17.68″N | 1200 | W | 杜鹃、毛桃木莲、美叶柯 (Lithocarpus calophyllus)、红楠、银钟花 (Perkinsiodendron macgregorii) |
F | 113°1′22.71″E | 24°56′27.53″N | 1300 | W | 华南五针松、甜槠、木荷、杜鹃、五列木 (Pentaphylax euryoides) |
G | 113°1′31.12″E | 24°56′33.71″N | 1400 | W | 木荷、毛桃木莲、红楠、硬壳桂 (Cryptocarya chingii)、红淡比(Cleyera japonica) |
H | 113°1′40.88″E | 24°56′22.50″N | 1500 | E | 甜槠、新木姜子、木莲、碟斗青冈 (Quercus disciformis)、木荷 |
图2 南岭自然保护区不同海拔不同层次物种多样性分析 实线表示相关性显著(p<0.05);虚线表示相关性不显著(p>0.05)。墨绿色方块及拟合线对应所有海拔样地;草绿色方块对应剔除800 m和900 m样地。下同
Figure 2 Analysis of species diversity at different elevations and layers in Nanling Nature Reserve
图4 南岭自然保护区倍程尺度下对数柯西模型预测种-多度分布:不同海拔同一层次
Figure 4 Distribution of species-abundance predicted by logarithm Cauchy model at double scale in Nanling Nature Reserve: Same layer at different altitudes
[1] | ALBRECHT J, PETERS M K, BECKER J N, et al., 2021. Species richness is more important for ecosystem functioning than species turnover along an elevation gradient[J]. Nature Ecology & Evolution, 5(12): 1582-1593. |
[2] | ALLEN A P, GILLOOLY J F, 2006. Assessing latitudinal gradients inspection rates and biodiversity at the global scale[J]. Ecology Letter, 9(8): 947-954. |
[3] | ALI A, LIN S L, HE J K, et al., 2019. Climatic water availability is the main limiting factor of biotic attributes across large-scale elevation gradient in tropical forests[J]. Science of The Total Environment, 647(9): 1211-1221. |
[4] | BIRHANE E, AHMED S, HAILEMARIAM M, et al., 2020. Carbon stock and woody species diversity in home garden agroforestry along an elevation gradient in southern Ethiopia[J]. Agroforestry Systems, 94(11): 1099-1110. |
[5] | BOSCUTTI F, CASOLO V, BERALDO P, et al., 2018. Shrub growth and plant diversity along an elevation gradient: Evidence of indirect effects of climate on alpine ecosystems[J]. Plos One, 13(4): e0196653. |
[6] | CHRISTIAN K, 2007. The use of altitude in ecological research[J]. Trends in Ecology and Evolution, 22(11): 569-574. |
[7] | CULMSEE H, LEUSCHNER C, 2013. Consistent patterns of elevation change in tree taxonomic and phylogeny diversity across Malesian mountain forests[J]. Journal of Biogeography, 40(10): 1997-2010. |
[8] | FONTANA V, GUARIENTO E, HILPOLD A, et al., 2020. Species richness and beta diversity patterns of multiple taxa along an elevation gradient in pastured grasslands in the European Alps[J]. Scientific Reports, 10(1): 12516. |
[9] | GEBREHIWOT K, DEMISSEW S, WOLDU Z, et al., 2019. Elevation changes in vascular plants richness, diversity, and distribution pattern in Yosef mountain range, Northern Ethiopia[J]. Plant Diversity, 41(4): 220-228. |
[10] | GUO Q F, KELT D A, SUN Z Y, et al., 2013. Global variation in elevational diversity patterns[J]. Scientific Reports, 3(1): 3007. |
[11] | HISANO M, SEARLE E B, CHEN H Y, 2018. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems[J]. Biological Reviews, 93(1): 439-456. |
[12] | HE X F, ZIEGLER A D, ELSEN P R, et al., 2023. Accelerating global mountain forest loss threatens biodiversity hot spots[J]. One Earth, 6(3): 303-315. |
[13] | KECK F, KAHLERT M, 2019. Community phylogeny structure reveals the imprint of dispersal-related dynamics and environmental filtering by nutrient availability in freshwater diatoms[J]. Scientific Report, 9(1): 11590. |
[14] | LIANG J, CROWTHER T W, PICARD N, et al., 2016. Positive biodiversity-productivity relationship predominant in global forests[J]. Science, 354(11): 657-671. |
[15] | LIU B, 2017. Vertical patterns in plant diversity and their relations with environmental factor son the southern slope of the Tianshan Mountain (middle section) in Xinjiang (China)[J]. Journal of Mountain Science, 14(2): 742-757. |
[16] | MORUETA-HOLME N, ENGEMANN K, SANDOVAL A P, et al., 2015. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt[J]. Proceedings of the National Academy of Sciences, 112(41): 12741-12745. |
[17] | PAUSAS J G, AUSTIN M P, 2001. Patterns of plant species richness in relation to different environments: An appraisal[J]. Journal of Vegetation Science, 12(2): 153-166. |
[18] | QIAN H, JIN Y L, et al., 2016. An updated megaphylogeny of plants, a tool for generating plant phylogeny and an analysis of phylogeny community structure[J]. Journal of Plant Ecology, 9(2): 233-239. |
[19] | QIAN H, HAO Z Q, ZHANG J, 2014. Phylogeny structure and phylogeny diversity of angiosperm assemblages in forests along an elevation gradient in Changbai Mountain, China[J]. Journal of Plant Ecology, 7(2): 154-165. |
[20] | SAITTA A, ANSLAN S, BAHRAM M, et al., 2018. Tree species identity and diversity drive fungal richness and community composition along an elevation gradient in a Mediterranean ecosystem[J]. Mycorrhiza, 28(6): 39-47. |
[21] | SWENSON N G, 2014. Functional and phylogeny ecology in R[M]. New York: Springer. |
[22] | TITO R, VASCONCELOS H L, FEELEY K J, 2020. Mountain ecosystems as natural laboratories for climate change experiments[J]. Frontiers in Forests and Global Change, 3(38): 1-8. |
[23] | TORRES B, VASSEUR L, LÓPEZ R, et al., 2020. Structure and above ground biomass along an elevation small-scale gradient: case study in an Evergreen Andean Amazon forest, Ecuador[J]. Agroforestry Systems, 94(8): 1235-1245. |
[24] | WEBB C O, ACKERLY D, ACKERLY S W, 2008. Phylocom: Software for the analysis of phylogeny community structure and character evolution[J]. Bioinformatics, 24(18): 2098-2100. |
[25] | YAN Y J, YANG X, TANG Z Y, 2013. Patterns of species diversity and phylogeny structure of vascular plants on the Qinghai-Tibetan Plateau[J]. Ecology and Evolution, 3(13): 4584-4595. |
[26] | ZHANG R, ZHANG Z C, SHANG K, et al., 2021. A taxonomic and phylogeny perspective on plant community assembly along an elevation gradient in subtropical forests[J]. Journal of Plant Ecology, 14(4): 702-716. |
[27] | ZHANG J T, ZHANG B Y, QIAN Z Y, et al., 2015. Functional diversity of Cercidiphyllum japonicum, communities in the Shennongjia Reserve, central China[J]. Journal of Forestry Research, 26(1): 171-177. |
[28] | 郭英荣, 雷平, 晏雨鸿, 等, 2015. 江西武夷山黄岗山西北坡植物物种多样性沿海拔梯度的变化[J]. 生态学杂志, 34(11): 3002-3008. |
GUO Y R, LEI P, YAN Y H, et al., 2015. Changes of plant species diversity along the elevation gradient on the northwest slope of Huang gang Mountain, Wuyi Mountain, Jiangxi Province[J]. Chinese Journal of Ecology, 34(11): 3002-3008. | |
[29] |
何斌, 李青, 陈群利, 等, 2021. 黔西北黄杉群落物种多样性的海拔梯度格局[J]. 生态环境学报, 30(6): 1111-1120.
DOI |
HE B, LI Q, CHEN Q L, et al., 2021. Altitudinal pattern of species diversity of Pseudotsuga sinensis communty in northwestern Guizhou, China[J]. Ecology and Environmental Sciences, 30(6): 1111-1120. | |
[30] |
黄建雄, 郑凤英, 米湘成, 2010. 不同尺度上环境因子对常绿阔叶林群落的谱系结构的影响[J]. 植物生态学报, 34(3): 309-315.
DOI |
HUANG J X, ZHENG F Y, MI X C, 2010. Effects of environmental factors on the phylogeny structure of evergreen broad-leaved forest communities at different scales[J]. Chinese Journal of Plant Ecology, 34(3): 309-315. | |
[31] |
刘秉儒, 2021. 生物多样性的海拔分布格局研究及进展[J]. 生态环境学报, 30(2): 438-444.
DOI |
LIU B R, 2021. Recent advances in altitudinal distribution patterns of biodiversity[J]. Ecology and Environmental Sciences, 30(2): 438-444. | |
[32] | 罗亚皇, 马梁梁, 高连明, 等, 2023. 高黎贡山南段海拔梯度森林乔木层时空动态[J]. 广西植物, 43(11): 1-20. |
LUO Y H, MA L L, GAO L M, et al., 2023. Temporal and spatial dynamics of forest canopy layer with elevation gradient in the southern part of Gaoligong Mountain[J]. Plants of Guangxi, 43(11): 1-20. | |
[33] |
吕自立, 刘彬, 常凤, 等, 2023. 巴音布鲁克高寒草甸物种多样性与系统发育多样性沿海拔梯度分布格局及驱动因子[J]. 草业学报, 32(7): 12-22.
DOI |
LÜ Z L, LIU B, CHANG F, et al., 2023. Distribution pattern and driving factors of species diversity and phylogeny diversity along altitude gradient in Bayanbulak alpine meadow[J]. Journal of Pratacultural Science, 32(7): 12-22. | |
[34] |
牛红玉, 王峥峰, 练琚愉, 等, 2011. 群落构建研究的新进展:进化和生态相结合的群落谱系结构研究[J]. 生物多样性, 19(3): 275-283.
DOI |
NIU H Y, WANG Z F, LIAN J Y, et al., 2011. Recent progress in community construction studies: A study on community lineage structure combine evolution and ecology[J]. Biodiversity Science, 19(3): 275-283. | |
[35] |
牛克昌, 刘怿宁, 沈泽昊, 等, 2009. 群落构建的中性理论和生态位理论[J]. 生物多样性, 17(6): 579-593.
DOI |
NIU K C, LIU Y N, SHEN Z H, et al., 2009. Neutral theory and niche theory of community construction[J]. Biodiversity Science, 17(6): 579-593. | |
[36] | 彭少麟, 殷祚云, 任海, 等, 2003. 多物种集合的种-多度关系模型研究进展[J]. 生态学报, 23(8): 1590-1605. |
PENG S L, YIN Z Y, REN H, et al., 2003. Advances in species-abundance relationship models for multi-species collections[J]. Acta Ecology Sciences, 23(8): 1590-1605. | |
[37] |
吴红宝, 水宏伟, 胡国铮, 等, 2019. 海拔对藏北高寒草地物种多样性和生物量的影响[J]. 生态环境学报, 28(6): 1071-1079.
DOI |
WU H B, SHUI H H, HU G Z, et al., 2019. Species diversity and biomass distribution patterns of alpine grassland along an elevation gradient in the Northern Tibetan Plateau[J]. Ecology and Environmental Sciences, 28(6): 1071-1079. | |
[38] | 谢致敬, 常亮, Scheu Stefan, 等, 2022. 长白山森林生态系统凋落物层和土壤层跳虫物种多样性和功能多样性对海拔梯度的响应[J]. 生态学报, 42(9): 3471-3481. |
XIE Z J, CHANG L, SCHEU S, et al., 2022. Responses of species diversity and functional diversity of litter layer and soil layer hoppers to elevation gradient in Changbai Mountain forest ecosystem[J]. Acta Ecology Sciences, 42(9): 3471-3481. | |
[39] | 徐卫, 杨婷, 李泽华, 等, 2022. 广东南岭植物群丛物种多样性沿海拔梯度分布格局[J]. 林业与环境科学, 38(1): 9-17. |
XU W, YANG T, LI Z H, et al., 2022. Distribution pattern of plant diversity along elevation gradient in Nanling, Guangdong Province[J]. Forestry and Environmental Science, 38(1): 9-17. | |
[40] | 徐璐, 刘旻霞, 穆若兰, 等, 2021. 高寒草甸植物群落谱系结构与多样性格局[J]. 中国环境科学, 41(3): 1387-1397. |
XU L, LIU M X, MU R L, et al., 2021. Phylogeny structure and diversity pattern of alpine meadow plant communities[J]. Chinese Journal of Environmental Sciences, 41(3): 1387-1397. | |
[41] |
闫玮明, 孙冰, 裴男才, 等, 2019. 粤北阔叶人工林和次生林植物多样性与土壤理化性质相关性研究[J]. 生态环境学报, 28(5): 898-907.
DOI |
YAN W M, SUN B, PEI N C, et al., 2019. Correlation analyses on plant diversity and soil physical-chemical properties between evergreen broad-leaved plantations and natural secondary forests in North Guangdong, China[J]. Ecology and Environmental Sciences, 28(5): 898-907. | |
[42] | 杨龙, 郑艳伟, 张玉玲, 等, 2017. 广东南岭国家级自然保护区综合地理考察研究[M]. 广州: 华南理工大学出版社. |
YANG L, ZHENG Y W, ZHANG Y L, et al., 2017. Comprehensive geographical survey of Nanling National Nature Reserve in Guangdong Province[M]. Guangzhou: South China University of Technology Press. | |
[43] | 杨元合, 饶胜, 胡会峰, 等, 2004. 青藏高原高寒草地植物物种丰富度及其与环境因子和生物量的关系[J]. 生物多样性, 12(1): 200-205. |
YANG Y H, RAO S, HU H F, et al., 2004. Plant species richness and its relationship with environmental factors and biomass in alpine grassland of Qinghai-Tibet Plateau[J]. Biodiversity Science, 12(1): 200-205. | |
[44] |
殷祚云, 任海, 彭少麟, 等, 2009. 华南退化草坡自然恢复中物种多度分布的动态与模拟[J]. 生态环境学报, 18(1): 222-228.
DOI |
YIN Z Y, REN H, PENG S L, et al., 2009. Dynamics and modeling of species abundance distribution during natural restoration of degraded hilly grassland in south China[J]. Ecology and Environmental Sciences, 18(1): 222-228. | |
[45] | 殷祚云, 曾令海, 何波祥, 等, 2013. 城市景观林中幼龄期红锥个体大小之统计分布模型[J]. 生态环境学报, 22(2):189-198. |
YIN Z Y, ZENG L H, HE B X et al., 2013. Statistical distribution models of body sizes of young castanopsis hystrix in an urban landscape forest[J]. Ecology and Environmental Sciences, 22(2): 189-198. | |
[46] | 张璐, 李镇魁, 苏志尧, 等, 2007. 南岭国家级自然保护区森林群丛的数量分类与排序[J]. 华南农业大学学报, 6(3): 71-75. |
ZHANG L, LI Z Q, SU Z Y, et al., 2007. Quantitative classification and sequencing of forest associations in Nanling National Nature Reserve[J]. Journal of South China Agricultural University, 6(3): 71-75. | |
[47] |
张蕊, 赵学勇, 王少昆, 等, 2019. 极端干旱对荒漠草原群落物种多样性和地上生物量碳氮的影响[J]. 生态环境学报, 28(4): 715-722.
DOI |
ZHANG R, ZHAO X Y, WANG S K, et al., 2019. Effect of extreme drought on the community species diversity and aboveground biomass carbon and nitrogen in the desert-steppe region in northern China[J]. Ecology and Environmental Sciences, 28(4): 715-722. | |
[48] |
张晓龙, 邓清月, 秦浩, 等, 2020. 不同海拔梯度灌丛草甸群落多样性的分布特征——以五台山亚高山-高山带南坡为例[J]. 生态环境学报, 29(4): 657-664.
DOI |
ZHANG X L, DENG Q Y, QIN H, et al., 2020. The distribution characteristics of shrub-meadow community diversity at different elevations: A case study of the southern slope of subalpine-alpine zone in Wutai Mountain[J]. Ecology and Environmental Sciences, 29(4): 657-664. | |
[49] | 张新时, 2007. 中华人民共和国植被图 (1꞉1000000)[M]. 北京: 地质出版社. |
ZHANG X S, 2007. Vegetation map of the People’s Republic of China (1꞉1000000)[M]. Beijing: Geology Press. |
[1] | 王梓晗, 吕世杰, 王忠武, 刘红梅. 放牧强度对优势种群重要值和物种多样性及其二者典型关系的影响[J]. 生态环境学报, 2024, 33(6): 869-876. |
[2] | 卿彩霞, 陈圣宾, 邓杰文, 邓惺位, 李喆, 邱鹭. 生境数量和生境质量以及气象因子对成都市粪食性金龟物种多样性的影响[J]. 生态环境学报, 2024, 33(5): 708-719. |
[3] | 卫玺玺, 晁鑫艳, 郑景明, 唐可欣, 万龙, 周金星. 贺兰山东、西侧典型植物群落物种多样性差异及其影响因子[J]. 生态环境学报, 2024, 33(4): 520-530. |
[4] | 李佳婧, 梁咏亮, 李静尧, 李小伟, 杨君珑. 基于叶片功能性状的贺兰山西坡植物生态策略分析[J]. 生态环境学报, 2024, 33(1): 45-53. |
[5] | 房园, 梁中, 张毓涛, 师庆东, 孙雪娇, 李吉玫, 李翔, 董振涛. 天山云杉森林生态系统的水源涵养能力海拔梯度变化特征[J]. 生态环境学报, 2023, 32(9): 1574-1584. |
[6] | 宋思梦, 林冬梅, 周恒宇, 罗宗志, 张丽丽, 易超, 林辉, 林兴生, 刘斌, 苏德伟, 郑丹, 余世葵, 林占熺. 种植巨菌草对乌兰布和沙漠植物物种多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(9): 1595-1605. |
[7] | 秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468. |
[8] | 赵蔓, 张晓曼, 杨明洁. 林火干扰对栓皮栎-辽东栎混交林植物多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(10): 1732-1740. |
[9] | 张立进, 杜虎, 曾馥平, 黄国勤, 宋敏, 宋同清. 喀斯特峰丛洼地植被恢复过程中生产力与多样性关系探讨[J]. 生态环境学报, 2023, 32(1): 26-35. |
[10] | 黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89. |
[11] | 冯凌, 喻理飞, 王阳, 张丽敏, 赵庆, 李方兵. 喀斯特地区植被不同恢复阶段功能冗余和功能多样性对群落稳定性的影响[J]. 生态环境学报, 2022, 31(4): 670-678. |
[12] | 陈瑶, 李云红, 邵英男, 刘玉龙, 刘延坤. 阔叶红松林物种多样性与土壤理化特征研究[J]. 生态环境学报, 2022, 31(4): 679-687. |
[13] | 王小娜, 徐当会, 王谢军, 方向文. 祁连山灌丛群落结构特征随海拔梯度和经度的变化[J]. 生态环境学报, 2022, 31(2): 231-238. |
[14] | 殷祚云. 南亚热带森林3层次物种多度之广义泊松分布模型[J]. 生态环境学报, 2022, 31(1): 17-25. |
[15] | 蔡锡安, 黄娟, 吴彤, 刘菊秀, 蒋芬, 王森浩. 植物叶片排放甲烷的初步研究[J]. 生态环境学报, 2021, 30(9): 1842-1847. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||