生态环境学报 ›› 2023, Vol. 32 ›› Issue (1): 26-35.DOI: 10.16258/j.cnki.1674-5906.2023.01.004
张立进1,2,3,4(), 杜虎1,2,4, 曾馥平1,2,4, 黄国勤3, 宋敏5, 宋同清1,2,4,*(
)
收稿日期:
2022-06-24
出版日期:
2023-01-18
发布日期:
2023-04-06
通讯作者:
*宋同清,研究员,博士研究生导师,研究方向为森林生态、植物生态。E-mail: songtongq@isa.ac.cn作者简介:
张立进(1990年生),博士研究生,研究方向为植物生态学、农业生态学。E-mail: 570208044@qq.com
基金资助:
ZHANG Lijin1,2,3,4(), DU Hu1,2,4, ZENG Fuping1,2,4, HUANG Guoqin3, SONG Min5, SONG Tongqing1,2,4,*(
)
Received:
2022-06-24
Online:
2023-01-18
Published:
2023-04-06
摘要:
为了阐明植被恢复过程中喀斯特峰丛洼地生产力变化规律及与生物多样性的关系,以广西喀斯特峰丛洼地灌木林、次生林、原生林3种典型植被类型为研究对象,基于2007—2017年3次木本植物调查数据,利用统计学方法分析了植被恢复过程中三类植被群落生物量和生产力动态变化及生产力与物种多样性、结构多样性的关系。结果表明,(1)3种植被类型随着时间推移,次生林和原生林的生物量和生产力逐年增加,且次生林增幅更大,灌木林生物量随时间推移,呈先增加后降低趋势,导致整个10年间平均生产力仅为0.09 Mg·hm-2·a-1。(2)10年间来重要值前10的物种,灌木林除了小叶女贞(Ligustrum japonicum)和小巴豆(Croton tiglium)生产力增加,其余物种均减少,八角枫(Alangium chinense)降幅最大;次生林除了杜茎山(Maesa japonica)生产力小幅度降低,其余物种生产力均增加;原生林重要值排名前10的物种生产力全部增加,其中白毛长叶紫珠(Callicarpa longifolia)增幅最大。(3)灌木林生产力与物种多样性呈负相关,与结构多样性呈正相关;次生林生产力与物种Shannon-Wiener指数和物种Simpson指数呈正相关,与物种Pielou均匀度指数呈负相关,与结构Pielou均匀度指数和林分密度呈正相关,与结构Shannon-Wiener指数呈负相关,与结构Simpson指数无相关性;原生林生产力与物种Simpson指数、物种Pielou均匀度指数、结构Shannon-Wiener指数和结构Pielou均匀度指数呈负相关,与物种Shannon-Wiener指数、物种Simpson指数和林分密度无相关性。研究认为,不同植被类型在恢复过程中灌木林生物多样性对生产力的作用最大。综上,在森林经营管理过程中,提高群落结构的复杂性对提高森林生产力具有重要意义。
中图分类号:
张立进, 杜虎, 曾馥平, 黄国勤, 宋敏, 宋同清. 喀斯特峰丛洼地植被恢复过程中生产力与多样性关系探讨[J]. 生态环境学报, 2023, 32(1): 26-35.
ZHANG Lijin, DU Hu, ZENG Fuping, HUANG Guoqin, SONG Min, SONG Tongqing. Discussion on the Relationship between Productivity and Diversity during Vegetation Restoration in the Karst Peak-cluster Depression[J]. Ecology and Environment, 2023, 32(1): 26-35.
植被 类型 | 物种 | 重要值 (IV) | 物种、生产力变化 | |||
---|---|---|---|---|---|---|
2007(IV) | 2017(IV) | 物种数量变化 | 生产力变化/(Mg·hm-2·a-1) | |||
灌木林 | 黄荆 Vitex negundo | 29.81 | 27.61 | -1512 | -0.056 | |
八角枫 Alangium chinense | 12.62 | 12.2 | -205 | -0.107 | ||
小叶女贞 Ligustrum japonicum | 4.98 | 7.51 | -106 | 0.022 | ||
野桐 Mallotus japonicus | 4.36 | 4.24 | -70 | -0.01 | ||
小巴豆 Croton tiglium | 4.24 | 4.16 | -62 | 0.016 | ||
石山楠 Phoebe calcarea | 2.88 | 2.62 | -23 | -0.021 | ||
盐肤木 Rhus chinensis | 2.77 | 1.62 | -69 | -0.019 | ||
三桠苦 Evodia lepta | 2.75 | 1.92 | -59 | -0.016 | ||
火棘 Pyracantha fortuneana | 2.02 | 0 | -88 | -0.008 | ||
红背山麻秆 Alchornea trewioides | 1.9 | 1.31 | -47 | -0.004 | ||
次生林 | 菜豆树 Radermachera sinica | 15.63 | 10.71 | -51 | 0.09 | |
灰毛浆果楝 Cipadessa cinerascens | 11.46 | 11.4 | -154 | 0.168 | ||
香椿 Toona sinensis | 10.74 | 10.57 | -5 | 0.239 | ||
刀果鞍叶羊蹄甲 Bauhinia brachycarpa | 8.1 | 12.75 | 45 | 0.308 | ||
盐肤木 Rhus chinensis | 3.56 | 2.73 | -46 | 0.005 | ||
板栗 Castanea mollissima | 3.32 | 3.24 | -107 | 0.119 | ||
长管越南茜 Rubovietnamia aristata | 2.6 | 2.99 | -2 | 0.028 | ||
斜叶榕 Ficus tinctoria | 2.51 | 2.59 | -13 | 0.019 | ||
任豆 Zenia insignis | 2.43 | 3.55 | -5 | 0.155 | ||
杜茎山 Maesa japonica | 2.31 | 1.28 | -38 | -0.004 | ||
原生林 | 铁榄 Sinosideroxylon pedunculatum | 6.8 | 5.74 | -149 | 1.043 | |
小叶女贞 Ligustrum japonicum | 5.32 | 3.62 | -130 | 0.584 | ||
掌叶木 Handeliodendron bodinieri | 4.56 | 4.74 | -11 | 0.229 | ||
菜豆树 Radermachera sinica | 4.04 | 3.78 | -33 | 0.547 | ||
粗糠柴 Mallotus philippensis | 9.97 | 4.78 | -132 | 0.196 | ||
小叶栾树 Boniodendron minus | 9.89 | 1.98 | 3 | 0.59 | ||
杜茎山 Maesa japonica | 3.67 | 4.12 | -149 | 0.614 | ||
杉树 Cunninghamia lanceolata | 3.15 | 3.31 | -6 | 0.206 | ||
白毛长叶紫珠 Callicarpa longifolia | 2.41 | 3.32 | -23 | 0.655 | ||
枫香树 Liquidambar formosana | 2.25 | 3.19 | -8 | 0.415 |
表1 2007—2017年3种植被类型主要特征值变化
Table 1 Changes of main characteristic values of three vegetation types in 2007-2017
植被 类型 | 物种 | 重要值 (IV) | 物种、生产力变化 | |||
---|---|---|---|---|---|---|
2007(IV) | 2017(IV) | 物种数量变化 | 生产力变化/(Mg·hm-2·a-1) | |||
灌木林 | 黄荆 Vitex negundo | 29.81 | 27.61 | -1512 | -0.056 | |
八角枫 Alangium chinense | 12.62 | 12.2 | -205 | -0.107 | ||
小叶女贞 Ligustrum japonicum | 4.98 | 7.51 | -106 | 0.022 | ||
野桐 Mallotus japonicus | 4.36 | 4.24 | -70 | -0.01 | ||
小巴豆 Croton tiglium | 4.24 | 4.16 | -62 | 0.016 | ||
石山楠 Phoebe calcarea | 2.88 | 2.62 | -23 | -0.021 | ||
盐肤木 Rhus chinensis | 2.77 | 1.62 | -69 | -0.019 | ||
三桠苦 Evodia lepta | 2.75 | 1.92 | -59 | -0.016 | ||
火棘 Pyracantha fortuneana | 2.02 | 0 | -88 | -0.008 | ||
红背山麻秆 Alchornea trewioides | 1.9 | 1.31 | -47 | -0.004 | ||
次生林 | 菜豆树 Radermachera sinica | 15.63 | 10.71 | -51 | 0.09 | |
灰毛浆果楝 Cipadessa cinerascens | 11.46 | 11.4 | -154 | 0.168 | ||
香椿 Toona sinensis | 10.74 | 10.57 | -5 | 0.239 | ||
刀果鞍叶羊蹄甲 Bauhinia brachycarpa | 8.1 | 12.75 | 45 | 0.308 | ||
盐肤木 Rhus chinensis | 3.56 | 2.73 | -46 | 0.005 | ||
板栗 Castanea mollissima | 3.32 | 3.24 | -107 | 0.119 | ||
长管越南茜 Rubovietnamia aristata | 2.6 | 2.99 | -2 | 0.028 | ||
斜叶榕 Ficus tinctoria | 2.51 | 2.59 | -13 | 0.019 | ||
任豆 Zenia insignis | 2.43 | 3.55 | -5 | 0.155 | ||
杜茎山 Maesa japonica | 2.31 | 1.28 | -38 | -0.004 | ||
原生林 | 铁榄 Sinosideroxylon pedunculatum | 6.8 | 5.74 | -149 | 1.043 | |
小叶女贞 Ligustrum japonicum | 5.32 | 3.62 | -130 | 0.584 | ||
掌叶木 Handeliodendron bodinieri | 4.56 | 4.74 | -11 | 0.229 | ||
菜豆树 Radermachera sinica | 4.04 | 3.78 | -33 | 0.547 | ||
粗糠柴 Mallotus philippensis | 9.97 | 4.78 | -132 | 0.196 | ||
小叶栾树 Boniodendron minus | 9.89 | 1.98 | 3 | 0.59 | ||
杜茎山 Maesa japonica | 3.67 | 4.12 | -149 | 0.614 | ||
杉树 Cunninghamia lanceolata | 3.15 | 3.31 | -6 | 0.206 | ||
白毛长叶紫珠 Callicarpa longifolia | 2.41 | 3.32 | -23 | 0.655 | ||
枫香树 Liquidambar formosana | 2.25 | 3.19 | -8 | 0.415 |
森林类型 | 变量 | 样本数n | 线性模型 | 二次模型 | 模式 | |||
---|---|---|---|---|---|---|---|---|
R2 | P | R2 | P | |||||
灌木林 | 物种香浓指数 | 77 | 0.342 | <0.001 | 0.512 | <0.001 | 二次项曲线 ( | |
物种辛普森指数 | 75 | 0.022 | 0.260 | 0.030 | 0.244 | 负线性和二次项曲线 ( | ||
物种均匀度 | 77 | 0.077 | 0.035 | 0.081 | 0.029 | 负线性 ( | ||
次生林 | 物种香浓指数 | 67 | 0.059 | 0.049 | 0.061 | 0.042 | 正线性 ( | |
物种辛普森指数 | 66 | 0.076 | 0.026 | 0.077 | 0.026 | 正线性 ( | ||
物种均匀度 | 67 | 0.008 | 0.489 | 0.032 | 0.135 | 二次项曲线 ( | ||
原生林 | 物种香浓指数 | 61 | 0.001 | 0.782 | 0.001 | 0.786 | ns ( | |
物种辛普森指数 | 62 | <0.001 | 0.873 | 0.031 | 0.254 | 二次项曲线 ( | ||
物种均匀度 | 62 | 0.006 | 0.492 | 0.047 | 0.196 | 二次 ( |
表2 3种植被类型物种多样性与生产力的线性和二次回归分析
Table 2 Linear and quadratic regression analysis between species diversity and productivity of three types of vegetation
森林类型 | 变量 | 样本数n | 线性模型 | 二次模型 | 模式 | |||
---|---|---|---|---|---|---|---|---|
R2 | P | R2 | P | |||||
灌木林 | 物种香浓指数 | 77 | 0.342 | <0.001 | 0.512 | <0.001 | 二次项曲线 ( | |
物种辛普森指数 | 75 | 0.022 | 0.260 | 0.030 | 0.244 | 负线性和二次项曲线 ( | ||
物种均匀度 | 77 | 0.077 | 0.035 | 0.081 | 0.029 | 负线性 ( | ||
次生林 | 物种香浓指数 | 67 | 0.059 | 0.049 | 0.061 | 0.042 | 正线性 ( | |
物种辛普森指数 | 66 | 0.076 | 0.026 | 0.077 | 0.026 | 正线性 ( | ||
物种均匀度 | 67 | 0.008 | 0.489 | 0.032 | 0.135 | 二次项曲线 ( | ||
原生林 | 物种香浓指数 | 61 | 0.001 | 0.782 | 0.001 | 0.786 | ns ( | |
物种辛普森指数 | 62 | <0.001 | 0.873 | 0.031 | 0.254 | 二次项曲线 ( | ||
物种均匀度 | 62 | 0.006 | 0.492 | 0.047 | 0.196 | 二次 ( |
图3 3种植被类型群落物种多样性与生产力关系 圆圈代表取样样方;回归线表示物种多样性和生产力之间有显著的回归关系,下同
Figure 3 Relationship between species diversity and productivity in three types of vegetation
森林类型 | 变量 | 样本数n | 线性模型 | 二次模型 | 模式 | |||
---|---|---|---|---|---|---|---|---|
R2 | P | R2 | P | |||||
灌木林 | 胸径香浓指数 | 62 | 0.248 | <0.001 | 0.248 | <0.001 | 正线性 ( | |
胸径辛普森指数 | 65 | 0.105 | 0.009 | 0.145 | 0.008 | 二次项曲线 ( | ||
胸径均匀度 | 76 | 0.004 | 0.085 | 0.059 | 0.111 | 二次项曲线 ( | ||
林分密度 | 77 | 0.036 | 0.143 | 0.051 | 0.127 | 正线性 ( | ||
次生林 | 胸径香浓指数 | 71 | 0.015 | 0.309 | 0.034 | 0.315 | 二次项曲线 ( | |
胸径辛普森指数 | 73 | 0.002 | 0.718 | 0.003 | 0.893 | ns ( | ||
胸径均匀度 | 73 | 0.003 | 0.145 | 0.320 | 0.135 | 正线性 ( | ||
林分密度 | 69 | 0.062 | 0.040 | 0.088 | 0.031 | 正线性和二次项曲线 ( | ||
原生林 | 胸径香浓指数 | 61 | 0.035 | 0.130 | 0.076 | 0.008 | 二次项曲线 ( | |
胸径辛普森指数 | 62 | 0.001 | 0.785 | 0.027 | 0.405 | ns ( | ||
胸径均匀度 | 62 | 0.033 | 0.140 | 0.062 | 0.131 | 二次项曲线 ( | ||
林分密度 | 62 | <0.001 | 0.905 | 0.012 | 0.658 | ns ( |
表3 3种植被类型生物结构结构多样性与生产力的线性和二次回归分析
Table 3 Linear and quadratic regression analysis between structural diversity and productivity of three types of vegetation
森林类型 | 变量 | 样本数n | 线性模型 | 二次模型 | 模式 | |||
---|---|---|---|---|---|---|---|---|
R2 | P | R2 | P | |||||
灌木林 | 胸径香浓指数 | 62 | 0.248 | <0.001 | 0.248 | <0.001 | 正线性 ( | |
胸径辛普森指数 | 65 | 0.105 | 0.009 | 0.145 | 0.008 | 二次项曲线 ( | ||
胸径均匀度 | 76 | 0.004 | 0.085 | 0.059 | 0.111 | 二次项曲线 ( | ||
林分密度 | 77 | 0.036 | 0.143 | 0.051 | 0.127 | 正线性 ( | ||
次生林 | 胸径香浓指数 | 71 | 0.015 | 0.309 | 0.034 | 0.315 | 二次项曲线 ( | |
胸径辛普森指数 | 73 | 0.002 | 0.718 | 0.003 | 0.893 | ns ( | ||
胸径均匀度 | 73 | 0.003 | 0.145 | 0.320 | 0.135 | 正线性 ( | ||
林分密度 | 69 | 0.062 | 0.040 | 0.088 | 0.031 | 正线性和二次项曲线 ( | ||
原生林 | 胸径香浓指数 | 61 | 0.035 | 0.130 | 0.076 | 0.008 | 二次项曲线 ( | |
胸径辛普森指数 | 62 | 0.001 | 0.785 | 0.027 | 0.405 | ns ( | ||
胸径均匀度 | 62 | 0.033 | 0.140 | 0.062 | 0.131 | 二次项曲线 ( | ||
林分密度 | 62 | <0.001 | 0.905 | 0.012 | 0.658 | ns ( |
图4 3种植被类型群落结构多样性与生产力关系
Figure 4 Relationship between structural diversity and productivity Structural diversity and productivity in three types of vegetation
[1] |
DAN B, JOSE L S, WILLIAM L B, et al., 2009. Explaining growth of individual trees: Light interception and efficiency of light use by Eucalyptus at four sites in Brazil[J]. Forest Ecology and Management, 259(9): 1704-1713.
DOI URL |
[2] |
DU H, HU F, ZENG F P, et al., 2017. Spatial distribution of tree species in evergreen-deciduous broadleaf karst forests in southwest China[J]. Scientific Reports, 7(1): 15664.
DOI PMID |
[3] |
FAHEY R T, FOTIS A T, WOODS K D, 2015. Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests[J]. Ecological Applications, 25(3): 834-847.
DOI URL |
[4] |
GRACE J B, ANDERSON T M, SEABLOOM E W, et al., 2016. Integrative modelling reveals mechanisms linking productivity and plant species richness[J]. Nature, 529(7586): 390-393.
DOI |
[5] |
HELEN C K, OLIVER L P, 2007. The global relationship between forest productivity and biomass[J]. Global Ecology and Biogeography, 16(5): 618-631.
DOI URL |
[6] |
JAMES B G, 1999. The factors controlling species density in herbaceous plant communities: An assessment[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2(1): 1-28.
DOI URL |
[7] |
LIANG J J, BUONGIORNO J, MONSERUD R A, et al., 2007. Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality[J]. Forest Ecology and Management, 243(1): 116-127.
DOI URL |
[8] |
LOREAU M, NAEEM S, INCHAUSTI P, et al., 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges[J]. Science, 294(5543): 804-808.
DOI PMID |
[9] |
OUYANG S, XIANG W H, WANG X P, et al., 2016. Significant effects of biodiversity on forest biomass during the succession of subtropical forest in South China[J]. Forest Ecology and Management, 372: 291-302.
DOI URL |
[10] |
RYAN W M, LIN Y C, SUN I F, et al., 2011. Topographic and biotic regulation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan[J]. Forest Ecology and Management, 262(9): 1817-1825.
DOI URL |
[11] |
TILMAN D, ISBELL F, COWLES J M, 2014. Biodiversity and ecosystem functioning[J]. Annual Review of Ecology, Evolution, and Systematics, 45: 471-493.
DOI URL |
[12] |
WANG Y F, DU J Q, PANG Z, et al., 2022. Unimodal productivity- biodiversity relationship along the gradient of multidimensional resources across Chinese grasslands, National Science Review[J]. National Science Review, 9(12): nwac165.
DOI URL |
[13] |
YUAN Z Q, ALI A, WANG S P, et al., 2018. Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests[J]. Science of The Total Environment, 630: 422-431.
DOI URL |
[14] | 丁贵杰, 2003. 马尾松人工林生物量和生产力研究——Ⅰ.不同造林密度生物量及密度效应[J]. 福建林学院学报, 23(1): 34-38. |
DING G J, 2003. Study on biomass and productivity of Pinus massoniana planting stand: Ⅰ. biomass and density effect of different planting density[J]. Journal of Fujian College of Forestry, 23(1): 34-38. | |
[15] |
胡婵娟, 郭雷, 2012. 植被恢复的生态效应研究进展[J]. 生态环境学报, 21(9): 1640-1646.
DOI URL |
HU C J, GUO L, 2012. Advances in the research of ecological effects of vegetation restoration[J]. Ecology and Environmental Sciences[J], 21(9): 1640-1646. | |
[16] | 胡芳, 曾馥平, 杜虎, 等, 2018. 桂西北喀斯特常绿落叶阔叶混交林物种多样性分布格局的尺度效应[J]. 生态学报, 38(17): 6074-6083. |
HU F, ZENG F P, DU H, et al., 2018. Scale-dependent spatial patterns for species diversity in a karst evergreen and deciduous broad-leaved mixed forest of northwest Guangxi[J]. Acta Ecologica Sinica, 38(17): 6074-6083. | |
[17] |
冯凌, 喻理飞, 王阳, 等, 2022. 喀斯特地区植被不同恢复阶段功能冗余和功能多样性对群落稳定性的影响[J]. 生态环境学报, 31(4): 670-678.
DOI URL |
FENG L, YU L F, WANG Y, et al., The effects of the functional redundancy and functional diversity on the community stability in different stages of the plant communities restoration in karst vegetation[J]. Journal of Ecology and Environment, 31(4): 670-678. | |
[18] | 黄鑫, 戴冬, 黄春波, 等, 2019. 马尾松生物量和生产力研究进展[J]. 世界林业研究, 32(1): 53-58. |
HUANG X, DAI D, HUANG C B, et al., 2019. Researches progress in biomass and productivity of Pinus massoniana[J]. World Forestry Research, 32(1): 53-58. | |
[19] | 黄忠良, 孔国辉, 何道泉, 2000. 鼎湖山植物群落多样性的研究[J]. 生态学报, 20(2): 193-198. |
HUANG Z L, KONG G H, HE D Q, 2000. Plant community diversity in Dinghushan Nature Reserve[J]. Acta Ecologica Sinica, 20(2): 193-198. | |
[20] |
何斌, 李青, 陈群利, 等, 2021. 黔西北黄杉群落物种多样性的海拔梯度格局[J]. 生态环境学报, 30(6): 1111-1120.
DOI URL |
HE B, LI Q, CHEN Q L, et al., 2021. Altitudinal pattern of species diversity of Pseudotsuga sinensis community in northwestern Guizhou, China[J]. Journal of Eco-Environment, 30(6): 1111-1120. | |
[21] | 李瑞, 王霖娇, 盛茂银, 等, 2016. 喀斯特石漠化演替中植物多样性及其与土壤理化性质的关系[J]. 水土保持研究, 23(5): 111-119. |
LI R, WANG L J, SHENG M Y, et al., 2016. Plant species diversity and its relationship with soil properties in karst rocky desertification succession[J]. Research of Soil and Water Conservation, 23(5): 111-119. | |
[22] |
李艳朋, 许涵, 李意德, 等, 2016. 海南尖峰岭热带山地雨林物种多样性空间分布格局的尺度效应[J]. 植物生态学报, 40(9): 861-870.
DOI |
LI Y P, XU H, LI Y D, et al., 2016. Scale-dependent spatial patterns of species diversity in the tropical montane rain forest in Jianfengling, Hainan Island, China[J]. Chinese Journal of Plant Ecology, 40(9): 861-870.
DOI URL |
|
[23] | 李博, 2000. 生态学[M]. 北京: 高等教育出版社. |
LI B, 2000. Ecology[M]. Beijing: Higher Education Press. | |
[24] | 刘艳, 2016. 喀斯特峰丛洼地不同土地利用方式下表层土壤水分的时空规律研究[D]. 南宁: 广西大学. |
LIU Y, 2016. Temporal and spatial patterns of surface soil moisture under different land use patterns in karst peak-cluster depression[D]. Nanning: Guangxi University. | |
[25] | 鲁君悦, 吴兆飞, 张春雨, 等, 2021. 吉林蛟河针阔混交林林层结构对生产力的影响[J]. 生态学报, 41(5): 2024-2032. |
LU J Y, WU Z F, ZHANG C Y, et al., 2021. Influence of forest strate structure on productivity of coniferous and broad-leaved mixed forest in Jiaohe, Jilin[J]. Acta Ecologica Sinica, 41(5): 2024-2032. | |
[26] | 缪宁, 周珠丽, 史作民, 等, 2014. 岷江冷杉林皆伐后次生群落结构和物种多样性的演替动态[J]. 生态学报, 34(13): 3661-3671. |
MIAO N, ZHOU Z L, SHI Z M, et al., 2014. Successional dynamics of community structure and species diversity after clear- cutting of faxon fir (Abies faxoniana) forest stands[J]. Acta Ecologica Sinica, 34(13): 3661-3671. | |
[27] | 申文辉, 何琴飞, 彭玉华, 等, 2016. 桂西不同灌丛植物群落物种组成及其多样性[J]. 广西植物, 36(10): 1165-1171. |
SHEN W H, HE Q F, PENG Y H, et al., 2016. Species composition and diversity of different shrub communities in West Guangxi[J]. Guihaia, 36(10): 1165-1171. | |
[28] | 宋同清, 彭晚霞, 杜虎, 等, 2014. 中国西南喀斯特石漠化时空演变特征、发生机制与调控对策[J]. 生态学报, 34(18): 5328-5341. |
SONG T Q, PENG W X, DU H, et al., 2014. Occurrence,spatial-temporal dynamics and regulation strategies of karst rocky desertification in southwest China[J]. Acta Ecologica Sinica, 34(18): 5328-5341. | |
[29] | 童晓伟, 王克林, 岳跃民, 等, 2014. 桂西北喀斯特区域植被变化趋势及其对气候和地形的响应[J]. 生态学报, 34(12): 3425-3434. |
TONG X W, WANG K L, YUE Y M, et al., 2014. Trends in vegetation and their responses to climate and topography in northwest Guangxi[J]. Acta Ecologica Sinica, 34(12): 3425-3434. | |
[30] | 汪珍川, 杜虎, 宋同清, 等, 2015. 广西主要树种 (组) 异速生长模型及森林生物量特征[J]. 生态学报, 35(13): 4462-4472. |
WANG Z C, DU H, SONG T Q, et al., 2015. Allometric models of major tree species and forest biomass in Guangxi[J]. Acta Ecologica Sinica, 35(13): 4462-4472. | |
[31] | 王超, 贾翔, 赵莹, 等, 2019. 森林生物量估算方法研究进展[J]. 北华大学学报 (自然科学版), 20(3): 391-394. |
WANG C, JIA X, ZHAO Y, et al., 2019. Advances in forest biomass estimation methods[J]. Journal of Beihua University (Natural Science), 20(3): 391-394. | |
[32] |
吴初平, 韩文娟, 江波, 等, 2018. 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性[J]. 生物多样性, 26(6): 545-553.
DOI |
WU C P, HANG W J, JIANG B, et al., 2018. Environmental dependence of species richness on biomass and productivity in a secondary forest in Dinghai, Zhejiang province[J]. Biological diversity, 26(6): 545-553. | |
[33] | 吴统贵, 吴明, 萧江华, 2008. 杭州湾滩涂湿地植被群落演替与物种多样性动态[J]. 生态学杂志, 27(8): 1284-1289. |
WU T G, WU M, XIAO J H, 2018. Dynamics of community succession and species diversity of vegetations in beach wet lands of Hangzhou Bay[J]. Chinese Journal of Ecology, 27(8): 1284-1289. | |
[34] | 许丰伟, 高艳平, 何可权, 等, 2013. 马尾松不同林龄林分生物量与净生产力研究[J]. 湖北农业科学, 52(8): 1853-1858. |
XU F W, GAO Y P, HE K Q, et al., 2013. Study on Biomass and net productivity of Pinus massoniana of stand at different forest ages[J]. Hubei Agricultural Sciences, 52(8): 1853-1858. | |
[35] |
夏艳菊, 张静, 邹顺, 等, 2018. 南亚热带森林群落演替过程中结构多样性与碳储量的变化[J]. 生态环境学报, 27(3): 424-431.
DOI URL |
XIA Y J, ZHANG J, ZOU S, et al., 2018. Dynamics of structural diversity and carbon storage along a successional gradient in South subtropical forest[J]. Journal of Eco-Environment, 27(3): 424-431. | |
[36] | 于贵瑞, 2019. 森林生态系统过程与变化[M]. 北京: 高等教育出版社. |
YU G R, 2019. Forest ecosystem process and change[M]. Beijing: Higher Education Press. | |
[37] | 张芳, 杜虎, 曾馥平, 等, 2020. 西南喀斯特峰丛洼地木本植物群落结构与多样性变化[J]. 生态学报, 40(12): 4094-4104. |
ZHANG F, DU H, ZENG F P, et al., 2020. Changes of woody community structure and diversity in karst peak-cluster depressions in southwest China[J]. Acta Ecologica Sinica, 40(12): 4094-4104. | |
[38] | 周光益, 曾庆波, 林明献, 等, 1997. 海南木莲人工林生物量及养分分配[J]. 林业科学研究, 10(5): 453-457. |
ZHOU G Y, ZENG Q B, Lin M X, et al., 1997. Biomass and nutrient allocation in Manglietia hainanensis plantation ecosystem at Jianfengling[J]. Forest Research, 10(5): 453-457. | |
[39] | 周再知, 郑海水, 尹光天, 等, 1995. 橡胶树生物量估测的数学模型[J]. 林业科学研究, 8(6): 624-629. |
ZHOU Z Z, ZHENG H S, YIN G T, et al., 1995. Biomass equations for rubber tree in Southern China[J]. Forest Research, 8(6): 624-629. | |
[40] | 朱四喜, 常杰, 葛滢, 等, 2014. 全尺度人工湿地中植物多样性对生产力与多样性效应的影响[J]. 生态环境学报, 23(1): 35-42. |
ZHU S X, CHANG J, GE Y, et al., 2014. Effects of plant diversity on productivity and diversity effect in a full-scale constructed wetland[J]. Journal of Ecology and Environment, 23(1): 35-42. |
[1] | 郝蕾, 翟涌光, 戚文超, 兰穹穹. 2001-2020年内蒙古植被碳源/碳汇时空动态及对气候因子的响应[J]. 生态环境学报, 2023, 32(5): 825-834. |
[2] | 翁升恒, 张玉琴, 姜冬昕, 潘卫华, 李丽纯, 张方敏. 福建省森林植被NEP时空变化及影响因子分析[J]. 生态环境学报, 2023, 32(5): 845-856. |
[3] | 李登科, 王钊. 气候变化和人类活动对陕西省植被NPP影响的定量分析[J]. 生态环境学报, 2022, 31(6): 1071-1079. |
[4] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
[5] | 冯凌, 喻理飞, 王阳, 张丽敏, 赵庆, 李方兵. 喀斯特地区植被不同恢复阶段功能冗余和功能多样性对群落稳定性的影响[J]. 生态环境学报, 2022, 31(4): 670-678. |
[6] | 陈瑶, 李云红, 邵英男, 刘玉龙, 刘延坤. 阔叶红松林物种多样性与土壤理化特征研究[J]. 生态环境学报, 2022, 31(4): 679-687. |
[7] | 杨虎, 王佩瑶, 李小伟, 王继飞, 杨君珑. 贺兰山东坡不同植被类型的土壤真菌多样性及其群落结构[J]. 生态环境学报, 2022, 31(2): 239-247. |
[8] | 曹云, 孙应龙, 姜月清, 万君. 黄河流域净生态系统生产力的时空分异特征及其驱动因子分析[J]. 生态环境学报, 2022, 31(11): 2101-2110. |
[9] | 石智宇, 王雅婷, 赵清, 张连蓬, 朱长明. 2001-2020年中国植被净初级生产力时空变化及其驱动机制分析[J]. 生态环境学报, 2022, 31(11): 2111-2123. |
[10] | 杨艳, 周德成, 宫兆宁, 刘子源, 张良侠. 基于植被生产力的黄土高原地区生态脆弱性及其控制因子分析[J]. 生态环境学报, 2022, 31(10): 1951-1958. |
[11] | 孙雪娇, 李吉玫, 张毓涛, 李翔, 芦建江, 佘飞. 天山北坡山地森林林地产流产沙特征及其影响因素分析[J]. 生态环境学报, 2021, 30(9): 1821-1830. |
[12] | 洪文君, 莫罗坚, 张浩. 华南地区马占相思人工林不同改造模式对林分结构的影响[J]. 生态环境学报, 2021, 30(7): 1360-1367. |
[13] | 何斌, 李青, 陈群利, 李望军, 游萍. 黔西北黄杉群落物种多样性的海拔梯度格局[J]. 生态环境学报, 2021, 30(6): 1111-1120. |
[14] | 潘红丽, 李慧超, 余志祥, 蔡蕾, 李旭华, 刘兴良. 攀枝花市入侵植物马缨丹群落的物种组成与多样性研究[J]. 生态环境学报, 2021, 30(6): 1177-1182. |
[15] | 田义超, 杨棠, 徐欣. 北部湾典型入海流域植被净初级生产力时空分布特征及其影响因素[J]. 生态环境学报, 2021, 30(5): 938-948. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||