生态环境学报 ›› 2024, Vol. 33 ›› Issue (6): 888-899.DOI: 10.16258/j.cnki.1674-5906.2024.06.006
收稿日期:
2024-03-01
出版日期:
2024-06-18
发布日期:
2024-07-30
通讯作者:
*作者简介:
杨乐(1987年生),男,讲师,硕士研究生,主要研究方向为城市生态系统、生态城市规划、生态安全与保护方面的研究。E-mail: yangl@lzufe.edu.cn
基金资助:
Received:
2024-03-01
Online:
2024-06-18
Published:
2024-07-30
摘要:
反枝苋(Amaranthus retroflexus L.)是一种入侵较早、分布范围广、危害程度严重的全国性分布恶性杂草。为了及时防控反枝苋,阻止或减缓进一步扩散蔓延,亟需明确其在中国的适宜生境及入侵趋势。基于296个分布点和32个环境变量,利用集合物种分布模型分析反枝苋在当前(1970—2000年)的潜在适生区,并预测未来(2021—2040年和2041—2060年)3种气候情景下(SSPs1-2.6、SSPs2-4.5和SSPs5-8.5)的分布格局,综合分析影响反枝苋地理分布的主要环境变量及入侵趋势。结果表明,1)通过3种模型精度评价指标(AUC、KAPPA和TSS),集合模型(EM)模拟和预测的结果最为准确,当前气候条件下反枝苋主要的潜在适生区分布在华北地区、华中地区、华东地区、华南地区、西南地区的东部、西北地区的南部和北部些许地区,分布面积为4.39×106 km2。反枝苋的潜在分布重心位于陕西省延安市宜川县,地理坐标为110.32°E,36.13°N。2)影响反枝苋潜在分布的主要环境变量为年平均温度(Bio1)、土地利用覆盖(LUCC)、海拔(Altitude)和年降水量(Bio12)。3)在2030年和2050年的3种不同气候情景下,随着年份和排放情景的增加,反枝苋的总适生区面积均会增加,并且扩张区的面积远大于收缩区的面积,扩张面积的比率在11.2%—21.4%。反枝苋在未来均有向高纬度地区扩散的趋势,华北地区的东部和东北地区的南部扩散面积最为显著,西北地区的南部和西南地区的东部也在逐渐扩散。该研究结果将有助于对该物种入侵动态的早期预警,为及时采取防控措施阻止其传播扩散提供理论支持。
中图分类号:
杨乐. 基于集合模型预测外来植物反枝苋的入侵趋势[J]. 生态环境学报, 2024, 33(6): 888-899.
YANG Le. Prediction of Invasive Trend of Alien Plant Amaranthus retroflexus Based on Ensemble Model[J]. Ecology and Environment, 2024, 33(6): 888-899.
数据名称 | 具体变量 (32个) | 数据来源 | 数据分辨率 |
---|---|---|---|
气候变量 (19个) | 气温 (11个)、降水 (8个) | ( | 2.5 arc-minutes |
土壤属性变量 (9) | 土壤有效含水量、含沙量、淤泥含量; 碎石体积百分比、粘土含量、有机碳含量; 土壤阳离子交换能力、土壤容重和酸碱度 | https://www.fao.org/soils-porta | |
土地利用覆盖 | 土地利用覆盖类型 | ( | |
地形变量 (3个) | 海拔、坡向和坡度 | ( | |
中国行政区划图 | GS (2020) 4619号 | ( | 矢量边界 |
表1 环境变量数据来源及其分辨率
Table 1 Environment variable data sources and their resolutions
数据名称 | 具体变量 (32个) | 数据来源 | 数据分辨率 |
---|---|---|---|
气候变量 (19个) | 气温 (11个)、降水 (8个) | ( | 2.5 arc-minutes |
土壤属性变量 (9) | 土壤有效含水量、含沙量、淤泥含量; 碎石体积百分比、粘土含量、有机碳含量; 土壤阳离子交换能力、土壤容重和酸碱度 | https://www.fao.org/soils-porta | |
土地利用覆盖 | 土地利用覆盖类型 | ( | |
地形变量 (3个) | 海拔、坡向和坡度 | ( | |
中国行政区划图 | GS (2020) 4619号 | ( | 矢量边界 |
代码 | 描述 |
---|---|
Bio1 | 年均温/℃ |
Bio2 | 平均气温日较差/℃ |
Bio3 | 等温性 (BIO2/BIO7) (×100) |
Bio12 | 年降水量/mm |
Bio15 | 降水量变异系数 |
Altitude | 海拔/m |
Aspect | 坡向 |
LUCC | 土地利用覆盖类型 |
T_SILT | 淤泥含量 |
T_PH_H2O | 酸碱度 |
表2 研究选用的10个环境变量
Table 2 10 environmental variables selected for the study
代码 | 描述 |
---|---|
Bio1 | 年均温/℃ |
Bio2 | 平均气温日较差/℃ |
Bio3 | 等温性 (BIO2/BIO7) (×100) |
Bio12 | 年降水量/mm |
Bio15 | 降水量变异系数 |
Altitude | 海拔/m |
Aspect | 坡向 |
LUCC | 土地利用覆盖类型 |
T_SILT | 淤泥含量 |
T_PH_H2O | 酸碱度 |
图2 不同设置参数下模型表现 H是片段化(Hinge)、L是线性(Linear)、Q是二次型(Quadratic)、P是乘积型(Product)和T是阈值性(Threshold)
Figure 2 The model performance under different setting parameters
模型 | AUC | KAPPA | TSS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准偏差 | 变异系数% | 平均值 | 标准偏差 | 变异系数% | 平均值 | 标准偏差 | 变异系数% | |||
ANN | 0.770 | 0.053 | 6.84 | 0.444 | 0.083 | 18.7 | 0.444 | 0.082 | 18.5 | ||
CTA | 0.809 | 0.041 | 5.09 | 0.533 | 0.066 | 12.4 | 0.533 | 0.065 | 12.3 | ||
FDA | 0.853 | 0.028 | 3.30 | 0.573 | 0.055 | 9.51 | 0.573 | 0.054 | 9.49 | ||
GAM | 0.861 | 0.028 | 3.31 | 0.581 | 0.057 | 9.80 | 0.584 | 0.051 | 8.81 | ||
GBM | 0.874 | 0.023 | 2.49 | 0.602 | 0.054 | 9.12 | 0.605 | 0.051 | 8.44 | ||
GLM | 0.820 | 0.027 | 3.24 | 0.510 | 0.053 | 10.5 | 0.510 | 0.053 | 10.5 | ||
MARS | 0.865 | 0.025 | 2.92 | 0.602 | 0.051 | 8.58 | 0.603 | 0.050 | 8.31 | ||
MaxEnt | 0.834 | 0.052 | 6.36 | 0.580 | 0.086 | 14.9 | 0.579 | 0.086 | 14.9 | ||
RF | 0.871 | 0.021 | 2.50 | 0.611 | 0.055 | 8.93 | 0.612 | 0.054 | 8.95 | ||
SRE | 0.674 | 0.035 | 5.25 | 0.347 | 0.071 | 20.3 | 0.347 | 0.071 | 20.4 | ||
EM | 0.887 | 0.010 | 1.14 | 0.645 | 0.006 | 1.05 | 0.645 | 0.007 | 1.13 |
表3 11种模型的的KAPPA、TSS和AUC描述性统计
Table 3 Descriptive statistics of the KAPPA, TSS and AUC for 11 models
模型 | AUC | KAPPA | TSS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准偏差 | 变异系数% | 平均值 | 标准偏差 | 变异系数% | 平均值 | 标准偏差 | 变异系数% | |||
ANN | 0.770 | 0.053 | 6.84 | 0.444 | 0.083 | 18.7 | 0.444 | 0.082 | 18.5 | ||
CTA | 0.809 | 0.041 | 5.09 | 0.533 | 0.066 | 12.4 | 0.533 | 0.065 | 12.3 | ||
FDA | 0.853 | 0.028 | 3.30 | 0.573 | 0.055 | 9.51 | 0.573 | 0.054 | 9.49 | ||
GAM | 0.861 | 0.028 | 3.31 | 0.581 | 0.057 | 9.80 | 0.584 | 0.051 | 8.81 | ||
GBM | 0.874 | 0.023 | 2.49 | 0.602 | 0.054 | 9.12 | 0.605 | 0.051 | 8.44 | ||
GLM | 0.820 | 0.027 | 3.24 | 0.510 | 0.053 | 10.5 | 0.510 | 0.053 | 10.5 | ||
MARS | 0.865 | 0.025 | 2.92 | 0.602 | 0.051 | 8.58 | 0.603 | 0.050 | 8.31 | ||
MaxEnt | 0.834 | 0.052 | 6.36 | 0.580 | 0.086 | 14.9 | 0.579 | 0.086 | 14.9 | ||
RF | 0.871 | 0.021 | 2.50 | 0.611 | 0.055 | 8.93 | 0.612 | 0.054 | 8.95 | ||
SRE | 0.674 | 0.035 | 5.25 | 0.347 | 0.071 | 20.3 | 0.347 | 0.071 | 20.4 | ||
EM | 0.887 | 0.010 | 1.14 | 0.645 | 0.006 | 1.05 | 0.645 | 0.007 | 1.13 |
时期 | 高适生区 | 中适生区 | 低适生区 | 总适生区 |
---|---|---|---|---|
当前 | 0.884 | 1.30 | 2.21 | 4.39 |
2030s, SSPs1-2.6 | 0.962 | 1.41 | 2.32 | 4.69 |
2030s, SSPs2-4.5 | 0.920 | 1.44 | 2.39 | 4.75 |
2030s, SSPs5-8.5 | 0.975 | 1.55 | 2.42 | 4.94 |
2050s, SSPs1-2.6 | 0.930 | 1.43 | 2.35 | 4.70 |
2050s, SSPs2-4.5 | 0.925 | 1.54 | 2.43. | 4.89 |
2050s, SSPs5-8.5 | 0.935 | 1.67 | 2.46 | 5.07 |
表4 不同时期反枝苋的适生区面积
Table 4 The suitable habitat area of A. retroflexus in different periods 106 km2
时期 | 高适生区 | 中适生区 | 低适生区 | 总适生区 |
---|---|---|---|---|
当前 | 0.884 | 1.30 | 2.21 | 4.39 |
2030s, SSPs1-2.6 | 0.962 | 1.41 | 2.32 | 4.69 |
2030s, SSPs2-4.5 | 0.920 | 1.44 | 2.39 | 4.75 |
2030s, SSPs5-8.5 | 0.975 | 1.55 | 2.42 | 4.94 |
2050s, SSPs1-2.6 | 0.930 | 1.43 | 2.35 | 4.70 |
2050s, SSPs2-4.5 | 0.925 | 1.54 | 2.43. | 4.89 |
2050s, SSPs5-8.5 | 0.935 | 1.67 | 2.46 | 5.07 |
气候变化情景 | 收缩区 | 扩张区 | 稳定区 |
---|---|---|---|
2030s, SSPs1-2.6 | 0.192 | 0.490 | 4.20 |
2030s, SSPs2-4.5 | 0.185 | 0.539 | 4.21 |
2030s, SSPs5-8.5 | 0.091 | 0.634 | 4.30 |
2050s, SSPs1-2.6 | 0.270 | 0.579 | 4.12 |
2050s, SSPs2-4.5 | 0.245 | 0.745 | 4.15 |
2050s, SSPs5-8.5 | 0.259 | 0.938 | 4.14 |
表5 未来气候变化情景下反枝苋的适生区范围变化
Table 5 The scope change of A. retroflexus suitable area under future climate change scenarios 106 km2
气候变化情景 | 收缩区 | 扩张区 | 稳定区 |
---|---|---|---|
2030s, SSPs1-2.6 | 0.192 | 0.490 | 4.20 |
2030s, SSPs2-4.5 | 0.185 | 0.539 | 4.21 |
2030s, SSPs5-8.5 | 0.091 | 0.634 | 4.30 |
2050s, SSPs1-2.6 | 0.270 | 0.579 | 4.12 |
2050s, SSPs2-4.5 | 0.245 | 0.745 | 4.15 |
2050s, SSPs5-8.5 | 0.259 | 0.938 | 4.14 |
[1] | AHMED S E, MCINERNY G, O'HARA K, et al., 2015. Scientists and software-surveying the species distribution modelling community[J]. Diversity Distributions, 21(3): 258-267. |
[2] | ALLOUCHE O, TSOAR A, KADMON R, 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS)[J]. Journal of Applied Ecology, 43(6): 1223-1232. |
[3] |
BELLARD C, THUILLER W, LEROY B, et al., 2013. Will climate change promote future invasions?[J]. Global Change Biology, 19(12): 3740-3748.
DOI PMID |
[4] |
BOULANGEAT I, GRAVEL D, THUILLER W, 2012. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances[J]. Ecology Letters, 15(6): 584-593.
DOI PMID |
[5] | BREIMAN L, 2001. Random forests[J]. Machine Learning, 45: 5-32. |
[6] | BROGNIEZ D, BALLABIO C, STEVENS A, et al., 2015. A map of the topsoil organic carbon content of Europe generated by a generalized additive model[J]. European Journal of Soil Science, 66(1): 121-134. |
[7] | BROWN J L, 2014. SDM toolbox: A python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses[J]. Methods in Ecology Evolution, 5(7): 694-700. |
[8] |
CHEN I C, HILL J K, OHLEMÜLLER R, et al., 2011. Rapid range shifts of species associated with high levels of climate warming[J]. Science, 333(6045): 1024-1026.
DOI PMID |
[9] | DICOLA V, BROENNIMANN O, PETITPIERRE B, et al., 2017. ecospat: An R package to support spatial analyses and modeling of species niches and distributions[J]. Ecography, 40(6): 774-787. |
[10] | DINU M, ANGHEL A I, OLARU O T, et al., 2017. Toxicity investigation of an extract of Amaranthus retroflexus L. (Amaranthaceae) leaves[J]. Farmacia, 65(2): 289-294. |
[11] | ELITH J, LEATHWICK J R, 2009. Species distribution models: ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution, and Systematics, 40: 677-697. |
[12] |
ELITH J, LEATHWICK J R, HASTIE T, 2008. A working guide to boosted regression trees[J]. Journal of Animal Ecology, 77(4): 802-813.
DOI PMID |
[13] | FANG Y Q, ZHANG X H, WEI H Y, et al., 2021. Predicting the invasive trend of exotic plants in China based on the ensemble model under climate change: A case for three invasive plants of Asteraceae[J]. Science of the Total Environment, 756: 143841. |
[14] | FRIEDMAN J H, 1991. Multivariate adaptive regression splines[J]. The Annals of Statistics, 19(1): 1-67. |
[15] | GASSÓ N, THUILLER W, PINO J, et al., 2012. Potential distribution range of invasive plant species in Spain[J]. NeoBiota, 12: 25-40. |
[16] | GUO K Q, JIANG X L, XU G B, 2021. Potential suitable distribution area of Quercus lamellosa and the influence of climate change[J]. Chinese Journal of Ecology, 40(8): 2563-2574. |
[17] | HAMAD A M, NELDER J A, 1997. Generalized linear models for quality-improvement experiments[J]. Journal of Quality Technology, 29(3): 292-304. |
[18] |
HANLEY J A, MCNEIL B J, 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve[J]. Radiology, 143(1): 29-36.
DOI PMID |
[19] | HAO Q, MA J S, 2023. Invasive alien plants in China: An update[J]. Plant Diversity, 45(1): 117-121. |
[20] | HAO T, ELITH J, LAHOZMONFORT J J, et al., 2020. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models[J]. Ecography, 43(4): 549-558. |
[21] | HASTIE T, TIBSHIRANI R, BUJA A, 1994. Flexible discriminant analysis by optimal scoring[J]. Journal of the American Statistical Association, 89(428): 1255-1270. |
[22] | HULME P E, 2017. Climate change and biological invasions: evidence, expectations, and response options[J]. Biological Reviews, 92(3): 1297-1313. |
[23] | LEK S, GUÉGAN J F, 1999. Artificial neural networks as a tool in ecological modelling, an introduction[J]. Ecological Modelling, 120(2-3): 65-73. |
[24] | LI J Y, CHANG H, LIU T, et al., 2019. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century[J]. Agricultural Forest Meteorology, 275: 243-254. |
[25] | LOPES A, DEMARCHI L O, PIEDADEM T F, et al., 2023. Predicting the range expansion of invasive alien grasses under climate change in the Neotropics[J]. Perspectives in Ecology Conservation, 21(2): 128-135. |
[26] | NIX H, BUSBY J, 1986. BIOCLIM, a bioclimatic analysis and prediction system[M]. Division of Water Land Resources: Canberra. |
[27] | PEARSON R G, DAWSON T P, 2003. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?[J]. Global Ecology Biogeography, 12(5): 361-371. |
[28] | PETER A, ŽLABUR J Š, ŠURIĆ J, et al., 2021. Invasive plant species biomass-Evaluation of functional value[J]. Molecules, 26(13): 3814. |
[29] | PHILLIPS S J, ANDERSON R P, DUDíK M, et al., 2017. Opening the black box: An open-source release of Maxent[J]. Ecography, 40(7): 887-893. |
[30] | PHILLIPS S J, ANDERSON R P, SCHAPIRE R E, 2006. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 190(3-4): 231-259. |
[31] | QIAO H J, LIN C T, JI L Q, et al., 2012. mMWeb-an online platform for employing multiple ecological niche modeling algorithms[J]. PLOS ONE, 7(8): e43327. |
[32] | QIN Z, ZHANG J E, JIANG Y P, et al., 2018. Invasion process and potential spread of Amaranthus retroflexus in China[J]. Weed Research, 58(1): 57-67. |
[33] |
ROGER E, DUURSMA D E, DOWNEY P O, et al., 2015. A tool to assess potential for alien plant establishment and expansion under climate change[J]. Journal of Environmental Management, 159: 121-127.
DOI PMID |
[34] | SONG J Y, ZHANG H, LI M, et al., 2021. Prediction of spatiotemporal invasive risk of the red import fire ant, Solenopsis invicta (Hymenoptera: Formicidae), in China[J]. Insects, 12(10): 874. |
[35] | TELEWSKIF W, ZEEVAARTJAJAJO B, 2002. The 120-yr period for Dr. Beal’s seed viability experiment[J]. American Journal of Botany, 89(8): 1285-1288. |
[36] | THUILLER W, RICHARDSON D M, PYŠEK P, et al., 2005. Niche based modelling as a tool for predicting the risk of alien plant invasions at a global scale[J]. Global Change Biology, 11(12): 2234-2250. |
[37] | VAYSSIÈRES M P, PLANT R E, ALLENDIAZ B H, 2000. Classification trees: An alternative non-parametric approach for predicting species distributions[J]. Journal of Vegetation Science, 11(5): 679-694. |
[38] | WALTHER B A, PIRSIG L H, 2017. Determining conservation priority areas for Palearctic passerine migrant birds in sub-Saharan Africa[J]. Avian Conservation and Ecology, 12(1): 2. |
[39] | WANG R, WANG Y Z, 2006. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China[J]. Diversity Distributions, 12(4): 397-408. |
[40] | WENG Y W, CAI W J, WANG C, 2020. The application and future directions of the shared socioeconomic pathways (SSPs)[J]. Advances in Climate Change Research, 16(2): 215-222. |
[41] | YE X Z, ZHAO G H, ZHANG M Z, et al., 2020. Distribution pattern of endangered plant Semiliquidambar cathayensis (Hamamelidaceae) in response to climate change after the last interglacial period[J]. Forests, 11(4): 434. |
[42] | ZHU L W, CAO D D, HU Q J, et al., 2016. Physiological changes and sHSPs genes relative transcription in relation to the acquisition of seed germination during maturation of hybrid rice seed[J]. Journal of the Science of Food Agriculture, 96(5): 1764-1771. |
[43] | 李晓晶, 张宏军, 倪汉文, 2004. 反枝苋的生物学特性及防治[J]. 农药科学与管理, 25(3): 13-16. |
LI X J, ZHANG H J, NI H W, 2004. Review on the biological characters and control of redroot pigweed (Amaranthus retroflexus)[J]. Pesticide Science and Administration, 25(3): 13-16. | |
[44] |
刘伟, 朱丽, 桑卫国, 2007. 影响入侵种反枝苋分布的环境因子分析及可能分布区预测[J]. 植物生态学报, 31(5): 834-841.
DOI |
LIU W, ZHU L, SANG W G, 2007. Potential global geographical distribution of Amaranthus retroflexus[J]. Chinese Journal of Plant Ecology, 31(5): 834-841. | |
[45] | 塞依丁·海米提, 2020. 气候变化情景下入侵种反枝苋在新疆的潜在分布格局研究[D]. 乌鲁木齐: 新疆大学. |
SEIDIN HAMID, 2020. Potential distribution pattern of invasive species Amaranthus retroflexus L. in Xinjiang under climate change[D]. Urumqi: Xinjiang University. | |
[46] | 魏莹, 李倩, 李阳, 等, 2020. 外来入侵植物反枝苋的研究进展[J]. 生态学杂志, 39(1): 282-291. |
WEI Y, LI Q, LI Y, et al., 2020. Research advances of invasive alien plant Amaranthus retroflexus L.[J]. Chinese Journal of Ecology, 39(1): 282-291. | |
[47] | 辛晓歌, 吴统文, 张洁, 等, 2019. BCC模式及其开展的CMIP6试验介绍[J]. 气候变化研究进展, 15(5): 533-539. |
XIN X G, WU T W, ZHANG J, et al., 2019. Introduction of BCC models and its participation in CMIP6[J]. Advances in Climate Change Research, 15(5): 533-539. |
[1] | 田叙辰, 魏洪玲, 解胜男, 储启名, 杨婧, 张颖, 肖思秋, 唐中华, 刘英, 李德文. 基于MaxEnt模型的东北地区槭树潜在地理分布[J]. 生态环境学报, 2024, 33(4): 509-519. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||