生态环境学报 ›› 2024, Vol. 33 ›› Issue (4): 520-530.DOI: 10.16258/j.cnki.1674-5906.2024.04.003
卫玺玺1(), 晁鑫艳1, 郑景明1,*(
), 唐可欣2, 万龙2, 周金星2
收稿日期:
2023-10-10
出版日期:
2024-04-18
发布日期:
2024-05-31
通讯作者:
*郑景明。E-mail: zhengjm@bjfu.edu.cn作者简介:
卫玺玺(1998年生),女,硕士研究生,研究方向为森林生态学。E-mail: 1434723844@qq.com
基金资助:
WEI Xixi1(), CHAO Xinyan1, ZHENG Jingming1,*(
), TANG Kexin2, WAN Long2, ZHOU Jinxing2
Received:
2023-10-10
Online:
2024-04-18
Published:
2024-05-31
摘要:
深入理解干旱与半干旱地区山地植物群落的物种多样性特征及其环境影响因子,是全球气候变化下区域生物多样性保护的基础。贺兰山脉地处中国温带草原与温带荒漠的过渡带,其东、西侧受不同气候影响,各植被类型的物种多样性特征也存在差异。选取贺兰山东、西侧广泛分布的5个森林群落类型,通过群落组成、环境因子调查,分析贺兰山东、西侧典型植物群落物种多样性的差异及主要影响因子。结果表明,1)东、西侧典型植物群落在物种丰富度、水分生态类型构成上均存在较大差异:西侧群落的环境比东侧更干旱,因此水分生态类型构成上旱生植物的占比更高;在灰榆林、山杨林、青海云杉林中,相同取样面积时位于西侧的植物群落的物种丰富度明显高于东侧。2)物种多样性在东侧表现为随海拔升高先升后降,西侧则沿海拔升高而下降。灰榆林、油松林的物种丰富度在东、西侧存在显著差异。3)东、西两侧总体植物多样性空间分布格局与土壤含水量、速效磷、土壤容重的相关性相对较高。其中,土壤容重、海拔与乔木层多样性的相关性较高,海拔、土壤速效磷与灌木层多样性的相关性较高,草本层的多样性则主要受土壤速效磷、含水量的影响。贺兰山东、西侧典型森林群落的物种多样性与海拔、土壤理化特征具有相关性,因此改善土壤理化性质的林地管理措施可能有助于提高群落物种多样性。研究结果有助于深入理解干旱与半干旱山地生态系统的结构与功能,为脆弱山地生态系统的保育与恢复提供理论依据。
中图分类号:
卫玺玺, 晁鑫艳, 郑景明, 唐可欣, 万龙, 周金星. 贺兰山东、西侧典型植物群落物种多样性差异及其影响因子[J]. 生态环境学报, 2024, 33(4): 520-530.
WEI Xixi, CHAO Xinyan, ZHENG Jingming, TANG Kexin, WAN Long, ZHOU Jinxing. Study on Species Diversity of Typical Plant Communities and Their Influencing Factors in the Eastern and Western Helan Mountains[J]. Ecology and Environment, 2024, 33(4): 520-530.
群系 | 群系名称 | 群系的环境条件 | 样地海拔范围/km | 样地经度范围/° | 样地纬度范围/° | 样方数量 |
---|---|---|---|---|---|---|
Ⅰ | 灰榆林 Form. Ulmus glaueescens | 环境较干燥, 土壤多为石灰性灰褐土, 粗骨土, 土层较薄, 常有较大面积岩石裸露, 林下灌丛较发达 | e: 1.95-2.04 w: 1.85-1.91 | e: 105.92-105.94 w: 105.77-105.79 | e: 38.73-38.77 w: 38.61-38.66 | e: 6 w: 6 |
Ⅱ | 油松林 Form. Pinus tabulaeformis | 环境干燥, 有岩石裸露,土壤多为灰褐土, 林下以灌丛为主, 郁闭度不高 | e: 2.03-2.21 w: 2.12-2.15 | e: 105.94-106.58 w: 105.74-105.81 | e: 38.74-39.20 w: 38.61-38.85 | e: 6 w: 6 |
Ⅲ | 山杨林 Form. Populus davidiana | 环境湿润, 林下物种组成较为丰富, 灌木层较发达 | e: 2.23-2.34 w: 2.10-2.19 | e: 105.87-105.92 w: 105.80-105.85 | e: 38.76-38.88 w: 38.83-38.86 | e: 6 w: 6 |
Ⅳ | 青海云杉林 Form. Picea crassifolia | 环境温凉, 土壤多为山地淋溶灰褐土, 土层深厚 | e: 2.40-2.52 w: 2.35-2.36 | e: 105.87-105.91 w: 105.88-105.91 | e: 38.74-38.78 w: 38.90-38.97 | e: 6 w: 6 |
Ⅴ | 青海云杉纯林 Form. pure Picea crassifolia | 环境冷湿, 土层深厚 | e: 2.59-2.70 w: 2.53-2.67 | e: 105.90-105.91 w: 105.82-105.85 | e: 38.77-38.78 w: 38.66-38.67 | e: 6 w: 6 |
表1 群系类型及样方数量
Table 1 Vegetation formations and number of plots
群系 | 群系名称 | 群系的环境条件 | 样地海拔范围/km | 样地经度范围/° | 样地纬度范围/° | 样方数量 |
---|---|---|---|---|---|---|
Ⅰ | 灰榆林 Form. Ulmus glaueescens | 环境较干燥, 土壤多为石灰性灰褐土, 粗骨土, 土层较薄, 常有较大面积岩石裸露, 林下灌丛较发达 | e: 1.95-2.04 w: 1.85-1.91 | e: 105.92-105.94 w: 105.77-105.79 | e: 38.73-38.77 w: 38.61-38.66 | e: 6 w: 6 |
Ⅱ | 油松林 Form. Pinus tabulaeformis | 环境干燥, 有岩石裸露,土壤多为灰褐土, 林下以灌丛为主, 郁闭度不高 | e: 2.03-2.21 w: 2.12-2.15 | e: 105.94-106.58 w: 105.74-105.81 | e: 38.74-39.20 w: 38.61-38.85 | e: 6 w: 6 |
Ⅲ | 山杨林 Form. Populus davidiana | 环境湿润, 林下物种组成较为丰富, 灌木层较发达 | e: 2.23-2.34 w: 2.10-2.19 | e: 105.87-105.92 w: 105.80-105.85 | e: 38.76-38.88 w: 38.83-38.86 | e: 6 w: 6 |
Ⅳ | 青海云杉林 Form. Picea crassifolia | 环境温凉, 土壤多为山地淋溶灰褐土, 土层深厚 | e: 2.40-2.52 w: 2.35-2.36 | e: 105.87-105.91 w: 105.88-105.91 | e: 38.74-38.78 w: 38.90-38.97 | e: 6 w: 6 |
Ⅴ | 青海云杉纯林 Form. pure Picea crassifolia | 环境冷湿, 土层深厚 | e: 2.59-2.70 w: 2.53-2.67 | e: 105.90-105.91 w: 105.82-105.85 | e: 38.77-38.78 w: 38.66-38.67 | e: 6 w: 6 |
图1 典型植物群落的物种水分生态类型构成 Ⅰ-Ⅴ依次代表灰榆林、油松林、山杨林、青海云杉林、青海云杉纯林;下标e表示贺兰山东侧,w表示西侧
Figure 1 Shows the species composition of water ecological types in typical plant communities
群落类型 | 东侧 | 西侧 | ||||||
---|---|---|---|---|---|---|---|---|
生长型 | 主要优势种 | 重要值 | 水分生态类型 | 主要优势种 | 重要值 | 水分生态类型 | ||
Ⅰ:灰榆林 | 草本层 | 阿拉善鹅观草 芨芨草 | 0.30 0.15 | 旱生 中生 | 短花针茅 百里香 | 0.19 0.12 | 旱生 中旱生 | |
灌木层 | 绣线菊 金露梅 | 0.26 0.13 | 旱生 中生 | 荒漠锦鸡儿 单瓣黄刺玫 | 0.24 0.13 | 强旱生 中生 | ||
Ⅱ:油松林 | 草本层 | 苔草 阿拉善鹅观草 | 0.42 0.09 | 中旱生 旱生 | 苔草 小红菊 | 0.49 0.19 | 中旱生 中生 | |
灌木层 | 西北栒子 小檗 | 0.28 0.16 | 中生 旱中生 | 栒子 西北栒子 | 0.34 0.21 | 中生 中生 | ||
Ⅲ:山杨林 | 草本层 | 苔草 小红菊 | 0.43 0.12 | 中旱生 中生 | 苔草 阿拉善鹅观草 | 0.20 0.10 | 中旱生 旱生 | |
灌木层 | 小檗 小叶忍冬 | 0.28 0.15 | 旱中生 旱中生 | 小檗 西北栒子 | 0.25 0.20 | 旱中生 中生 | ||
Ⅳ:青海云杉林 | 草本层 | 苔草 小红菊 | 0.36 0.18 | 中旱生 中生 | 小红菊 苔草 | 0.27 0.21 | 中生 中旱生 | |
灌木层 | 小檗 忍冬 | 0.53 0.20 | 旱中生 旱中生 | 小檗 小叶忍冬 | 0.41 0.27 | 旱中生 旱中生 | ||
Ⅴ:青海云杉纯林 | 草本层 | 苔草 小红菊 | 0.36 0.17 | 中旱生 中生 | 苔草 小红菊 | 0.51 0.07 | 中旱生 中生 | |
灌木层 | 金露梅 | 1.00 | 旱中生 | 金露梅 | 1.00 | 旱中生 |
表2 贺兰山东、西部典型群落植物主要的优势种及其重要值
Table 2 Main dominant species and their important values of typical communities in eastern and western Helan Mountains
群落类型 | 东侧 | 西侧 | ||||||
---|---|---|---|---|---|---|---|---|
生长型 | 主要优势种 | 重要值 | 水分生态类型 | 主要优势种 | 重要值 | 水分生态类型 | ||
Ⅰ:灰榆林 | 草本层 | 阿拉善鹅观草 芨芨草 | 0.30 0.15 | 旱生 中生 | 短花针茅 百里香 | 0.19 0.12 | 旱生 中旱生 | |
灌木层 | 绣线菊 金露梅 | 0.26 0.13 | 旱生 中生 | 荒漠锦鸡儿 单瓣黄刺玫 | 0.24 0.13 | 强旱生 中生 | ||
Ⅱ:油松林 | 草本层 | 苔草 阿拉善鹅观草 | 0.42 0.09 | 中旱生 旱生 | 苔草 小红菊 | 0.49 0.19 | 中旱生 中生 | |
灌木层 | 西北栒子 小檗 | 0.28 0.16 | 中生 旱中生 | 栒子 西北栒子 | 0.34 0.21 | 中生 中生 | ||
Ⅲ:山杨林 | 草本层 | 苔草 小红菊 | 0.43 0.12 | 中旱生 中生 | 苔草 阿拉善鹅观草 | 0.20 0.10 | 中旱生 旱生 | |
灌木层 | 小檗 小叶忍冬 | 0.28 0.15 | 旱中生 旱中生 | 小檗 西北栒子 | 0.25 0.20 | 旱中生 中生 | ||
Ⅳ:青海云杉林 | 草本层 | 苔草 小红菊 | 0.36 0.18 | 中旱生 中生 | 小红菊 苔草 | 0.27 0.21 | 中生 中旱生 | |
灌木层 | 小檗 忍冬 | 0.53 0.20 | 旱中生 旱中生 | 小檗 小叶忍冬 | 0.41 0.27 | 旱中生 旱中生 | ||
Ⅴ:青海云杉纯林 | 草本层 | 苔草 小红菊 | 0.36 0.17 | 中旱生 中生 | 苔草 小红菊 | 0.51 0.07 | 中旱生 中生 | |
灌木层 | 金露梅 | 1.00 | 旱中生 | 金露梅 | 1.00 | 旱中生 |
图2 典型植物群落的木本植物水分生态类型构成 Ⅰ-Ⅴ依次代表灰榆林、油松林、山杨林、青海云杉林、青海云杉纯林;下标e表示贺兰山东侧,w表示西侧
Figure 2 Shows the species composition of water ecological types of Woody Plants in typical plant communities
图3 东、西侧典型植物群落物种多样性的差异 Ⅰ-Ⅴ依次代表灰榆林、油松林、山杨林、青海云杉林、青海云杉纯林。e、w分别表示贺兰山东侧、西侧;柱形图表示物种多样性指数,折线图表示海拔变化。图中的“*”表示东、西侧相同群落类型的多样性指数的差异显著(P<0.05),未标注“*”表示东、西侧同群落类型的群落多样性指数无显著差异
Figure 3 Differences in the species diversity characteristics of typical plant communities in the east and west
图4 东、西侧典型植物群落草、灌、乔多样性的差异 e、w分别表示贺兰山东侧、西侧;柱形图表示物种多样性指数,折线图表示海拔变化。“*”含义同图2
Figure 4 Differences in the diversity characteristics of typical plant communities in the east and west of China
多样性 指数 | 可解释的变异总量/ % | 环境因子 | 调整R | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ALT | STN | STP | SAP | SNN | SAN | SWC | SOM | SBD | pH | |||
R | 36.3 | 3.32 | 53.3 | 43.3 | 0.407*** | |||||||
H′ | 50.2 | 39.3 | 3.22 | 54.6 | 2.87 | 0.547*** | ||||||
E | 15.9 | 31.1 | 68.9 | 0.198* | ||||||||
R (m) | 39.4 | 12.3 | 6.02 | 11.5 | 13.3 | 22.9 | 33.9 | 0.478*** | ||||
H′ (m) | 46.9 | 17.4 | 15.2 | 5.25 | 19.5 | 41.3 | 1.43 | 0.543*** | ||||
E (m) | 29.0 | 45.3 | 23.1 | 31.7 | 0.339*** | |||||||
R (s) | 41.8 | 63.9 | 22.7 | 13.4 | 0.459*** | |||||||
H′ (s) | 50.6 | 62.8 | 19.3 | 11.9 | 6.02 | 0.552*** | ||||||
E (s) | 23.5 | 1.79 | 2.81 | 10.4 | 43.6 | 20.0 | 21.5 | 0.341* | ||||
R (h) | 24.0 | 10.8 | 16.8 | 46.9 | 25.5 | 0.310** | ||||||
H′ (h) | 29.5 | 70.2 | 29.8 | 0.328*** | ||||||||
E (h) | 33.2 | 33.80 | 25.9 | 12.2 | 9.13 | 18.9 | 0.41*** |
表3 影响物种多样性的关键因子及贡献占比
Table 3 Key factors affecting species diversity and their contribution proportion
多样性 指数 | 可解释的变异总量/ % | 环境因子 | 调整R | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ALT | STN | STP | SAP | SNN | SAN | SWC | SOM | SBD | pH | |||
R | 36.3 | 3.32 | 53.3 | 43.3 | 0.407*** | |||||||
H′ | 50.2 | 39.3 | 3.22 | 54.6 | 2.87 | 0.547*** | ||||||
E | 15.9 | 31.1 | 68.9 | 0.198* | ||||||||
R (m) | 39.4 | 12.3 | 6.02 | 11.5 | 13.3 | 22.9 | 33.9 | 0.478*** | ||||
H′ (m) | 46.9 | 17.4 | 15.2 | 5.25 | 19.5 | 41.3 | 1.43 | 0.543*** | ||||
E (m) | 29.0 | 45.3 | 23.1 | 31.7 | 0.339*** | |||||||
R (s) | 41.8 | 63.9 | 22.7 | 13.4 | 0.459*** | |||||||
H′ (s) | 50.6 | 62.8 | 19.3 | 11.9 | 6.02 | 0.552*** | ||||||
E (s) | 23.5 | 1.79 | 2.81 | 10.4 | 43.6 | 20.0 | 21.5 | 0.341* | ||||
R (h) | 24.0 | 10.8 | 16.8 | 46.9 | 25.5 | 0.310** | ||||||
H′ (h) | 29.5 | 70.2 | 29.8 | 0.328*** | ||||||||
E (h) | 33.2 | 33.80 | 25.9 | 12.2 | 9.13 | 18.9 | 0.41*** |
[1] | BHATTACHARYA A, CHATTERJEE N, RAWAT G S, et al., 2020. Blue sheep resource selection in alpine grasslands of a western Himalayan landscape: A point process approach[J]. Zoological Studies, 59: e11. |
[2] | CHENG H, 2020. Future earth and sustainable developments[J]. The Innovation, 1(3): 100055. |
[3] | DE BELLO F, LAVOREL S, HALLETT L M, et al., 2021. Functional trait effects on ecosystem stability: Assembling the jigsaw puzzle[J]. Trends in Ecology & Evolution, 36(9): 822-836. |
[4] | DINGAAN M N V, TSUBO M, WALKER S, et al., 2017. Soil chemical properties and plant species diversity along a rainfall gradient in semi-arid grassland of south Africa[J]. Plant Ecology and Evolution, 150(1): 35-44. |
[5] |
JACTEL H, BROCKERHOFF E G, 2007. Tree diversity reduces herbivory by forest insects[J]. Ecology Letters, 10(9): 835-848.
PMID |
[6] | JIANG Y, KANG M Y, ZHU Y, et al., 2007. Plant biodiversity patterns on helan mountain, China[J]. Acta Oecologica-International Journal of Ecology, 32(2): 125-133. |
[7] | PFEIFER-MEISTER L, BRIDGHAM S D, REYNOLDS L L, et al., 2016. Climate change alters plant biogeography in Mediterranean prairies along the West Coast, USA[J]. Global Change Biology, 22(2): 845-855. |
[8] | PRIETO P, PENUELAS J, LLORET F, et al., 2009. Experimental drought and warming decrease diversity and slow down post-fire succession in a Mediterranean shrubland[J]. Ecography, 32(4): 623-636. |
[9] | GENG Q W, ARIF M, YUAN Z X, et al., 2022. Plant species composition and diversity along successional gradients in arid and semi-arid regions of China[J]. Forest Ecology and Management, 524(15): 120542. |
[10] |
RAHBEK C, BORREGAARD M K, ANTONELLIA, et al., 2019. Building mountain biodiversity: Geological and evolutionary processes[J]. Science, 365(6458): 1114-1119.
DOI PMID |
[11] |
RAHBEK C, BORREGAARD M K, COLWELL R K, et al., 2019. Humboldt's enigma: What causes global patterns of mountain biodiversity?[J]. Science, 365(6458): 1108-1113.
DOI PMID |
[12] |
WALKE M D, WAHREN C H, HOLLISTER R D, et al., 2006. Plant community responses to experimental warming across the tundra biome[J]. Proceedings of the National Academy of Sciences of the United States of America, 103(5): 1342-1346.
DOI PMID |
[13] |
陈瑶, 李云红, 邵英男, 等, 2022. 阔叶红松林物种多样性与土壤理化特征研究[J]. 生态环境学报, 31(4): 679-687.
DOI |
CHEN Y, LI Y H, SHAO Y N, et al., 2022. Study on species diversity and soil physical and chemical characteristics of broad-leaved Pinus koraiensis forest[J]. Ecology and Environmental Sciences, 31(4): 679-687. | |
[14] |
方精云, 2004. 探索中国山地植物多样性的分布规律[J]. 生物多样性, 12(1): 1-4.
DOI |
FANG J Y, 2004. Exploring the distribution patterns of plant diversity in mountainous areas of China[J]. Biodiversity Science, 12(1): 1-4. | |
[15] | 冯建孟, 王襄平, 徐成东, 等, 2006. 玉龙雪山植物物种多样性和群落结构沿海拔梯度的分布格局[J]. 山地学报, 24(1): 110-116. |
FENG J M, WANG X P, XU C D, et al., 2006. The distribution pattern of plant species diversity and community structure along altitude gradient in Yulong Snow Mountain[J]. Mountain Research, 24(1): 110-116. | |
[16] | 贺金生, 陈伟烈, 1997. 陆地植物群落物种多样性的梯度变化特征[J]. 生态学报, 17(1): 93-101. |
HE J S, CHEN W L, 1997. The gradient variation characteristics of species diversity in terrestrial plant communities[J]. Acta Ecologica Sinica, 17(1): 93-101. | |
[17] | 江源, 熊敏, 2002. 贺兰山植物物种资源构成的垂直分异[J]. 资源科学, 24(3): 49-53. |
JIANG Y, XIONG M, 2002. Vertical differentiation of plant species resources in Helan Mountain[J]. Resources Science, 24(3): 49-53. | |
[18] | 李晓娟, 张卫宁, 2014. 贺兰山国家级自然保护区生物多样性保护探析[J]. 现代农业科技 (17): 203-204. |
LI X J, ZHANG W N, 2014. Analysis of biodiversity conservation in Helan Mountains National Nature Reserve[J]. Xiandai Nongye Keji (17): 203-204. | |
[19] | 李婷婷, 唐永彬, 周润惠, 等, 2021. 云顶山不同人工林林下植物多样性及其与土壤理化性质的关系[J]. 生态学报, 41(3): 1168-1177. |
LI T T, TANG Y B, ZHOU R H, et al., 2021. Plant diversity under different plantations in Yunding Mountain and its relationship with soil physical and chemical properties[J]. Acta Ecologica Sinica, 41(3): 1168-1177. | |
[20] | 梁存柱, 朱宗元, 李志刚, 2012. 贺兰山植被[M]. 银川: 阳光出版社:47-87. |
LIANG C Z, ZHU Z Y, LI Z G, 2012. Helan Mountains vegetation[M]. Yinchuan: Yangguang Publishing House:47-87. | |
[21] |
梁存柱, 朱宗元, 王炜, 等, 2004. 贺兰山植物群落类型多样性及其空间分异[J]. 植物生态学报, 28(3): 361-368.
DOI |
LIANG C Z, ZHU Z Y, WANG W, et al., 2004. Diversity and spatial differentiation of plant communities in Helan Mountains[J]. Chinese Journal of Plant Ecology, 28(3): 361-368.
DOI |
|
[22] | 马克平, 刘玉明, 1994. 生物群落多样性的测度方法Ⅰα多样性的测度方法(下)[J]. 生物多样性, 2(4): 231-239. |
MA K P, LIU Y M, 1994. Measurement method for biodiversity of biological communities I α methods for measuring diversity (Part 2)[J]. Biodiversity Science, 2(4): 231-239. | |
[23] |
刘秉儒, 2021. 生物多样性的海拔分布格局研究及进展[J]. 生态环境学报, 30(2): 438-444.
DOI |
LIU B R, 2021. Recent advances in altitudinal distribution patterns of biodiversity[J]. Ecology and Environmental Sciences, 30(2): 438-444. | |
[24] | 刘振生, 高惠, 滕丽微, 等, 2013. 基于MAXENT模型的贺兰山岩羊生境适宜性评价[J]. 生态学报, 33(22): 7243-7249. |
LIU Z S, GAO H, TENG L W, et al., 2013. Based on MAXENT model for habitat suitability assessment of Helan Mountains rock sheep[J]. Acta Ecologica Sinica, 33(22): 7243-7249. | |
[25] | 刘振生, 曹丽荣, 王小明, 等, 2005. 贺兰山岩羊冬季对卧息地的选择[J]. 兽类学报, 42(3): 1-8. |
LIU Z S, CAO L R, WANG X M, et al., 2005. The choice of winter resting place for rock sheep in Helan Mountains[J]. Acta Theriologica Sinica, 42(3): 1-8. | |
[26] | 刘振生, 王小明, 李志刚, 等, 2007. 贺兰山岩羊的数量与分布[J]. 动物学杂志, 42(3): 1-8. |
LIU Z S, WANG X M, LI Z G, et al., 2007. Quantity and distribution of Helan Mountains rock sheep[J]. Chinese Journal of Zoology, 42(3): 1-8. | |
[27] |
齐丹卉, 杨洪晓, 卢琦, 等, 2021. 浑善达克沙地植物群落物种多样性及环境解释[J]. 中国沙漠, 41(6): 65-77.
DOI |
QI D H, YANG H X, LU Q, et al., 2021. Species diversity and environmental interpretation of plant communities in Hunshandak sandy land[J]. Journal of Desert Research, 41(6): 65-77. | |
[28] | 苏闯, 张芯毓, 马文红, 等, 2018. 贺兰山灌丛群落物种多样性海拔格局及环境解释[J]. 山地学报, 36(5): 699-708. |
SU C, ZHANG X Y, MA W H, et al., 2018. Altitude pattern and environmental interpretation of species diversity in shrub communities in Helan Mountain[J]. Mountain Research, 36(5): 699-708. | |
[29] | 苏强, 鲁娅娜, 刘矜杰, 2021. 内蒙古贺兰山不同生境下小叶金露梅种群特征与空间格局研究[J]. 内蒙古林业 (12): 35-37. |
SU Q, LU Y N, LIU J J, 2021. Study on population characteristics and spatial pattern of Potentilla parvifolia under different habitats in Helan Mountains[J]. Inner Mongolia Forestry (12): 35-37. | |
[30] |
孙小丽, 康萨如拉, 张庆, 等, 2015. 荒漠草原物种多样性、生产力与气候因子和土壤养分之间关系的研究[J]. 草业学报, 24(12): 10-19.
DOI |
SUN X L, KANG S R L, ZHANG Q, et al., 2015. Study on the relationship between Species diversity, productivity, climate factors and soil nutrients in desert steppe[J]. Acta Prataculturae Sinica, 24(12): 10-19. | |
[31] | 孙越, 夏富才, 赵秀海, 等, 2017. 张广才岭温带次生针阔混交林物种组成和群落结构特征[J]. 生态学报, 37(10): 3425-3436. |
SUN Y, XIA F C, ZHAO X H, et al., 2017. Species composition and community structure characteristics of temperate secondary coniferous and broad-leaved mixed forests in Zhangguangcai Range[J]. Acta Ecologica Sinica, 37(10): 3425-3436. | |
[32] | 王兴文, 徐海声, 岳太青, 2008. 贺兰山东坡灰榆疏林草原与灰榆生态环境中的限制性因子分析[J]. 防护林科技, 83(2): 68-69. |
WANG X W, XU H S, YUE T Q, 2008. Analysis of restrictive factors in Ulmus pumila Savanna and Ulmus pumila ecological environment on the eastern slope of Helan Mountain[J]. Protection Forest Science Technology, 83(2): 68-69. | |
[33] | 谢建冲, 孟德怀, 李宗智, 等, 2022. 宁夏贺兰山国家级自然保护区岩羊 (Pseudois nayaur) 种群数量及结构[J]. 生态学报, 42(10): 4189-4196. |
XIE J C, MENG D H, LI Z Z, et al., 2022. The population quantity and structure of the rock sheep (Pseudois nayaur) in Helan Mountains National Nature Reserve, Ningxia[J]. Acta Ecologica Sinica, 42(10): 4189-4196. | |
[34] |
杨崇曜, 李恩贵, 陈慧颖, 等, 2017. 内蒙古西部自然植被的物种多样性及其影响因素[J]. 生物多样性, 25(12): 1303-1312.
DOI |
YANG C Y, LI E G, CHEN H Y, et al., 2017. Species diversity of natural vegetation in western Inner Mongolia and its influencing factors[J]. Biodiversity Science, 25(12): 1303-1312. | |
[35] | 杨壹, 邱开阳, 李静尧, 等, 2023. 贺兰山东坡典型植物群落多样性垂直分布特征与土壤因子的关系[J]. 生态学报, 43(12): 1-10. |
YANG Y, QIU K Y, LI J Y, et al., 2023. Relationship between vertical distribution characteristics of typical plant community diversity and soil factors on the eastern slope of Helan Mountains[J]. Acta Ecologica Sinica, 43(12): 1-10. | |
[36] | 赵宏亮, 倪细炉, 侯晖, 等, 2023. 贺兰山蒙古扁桃灌丛穿透雨特征及影响因素[J]. 干旱区资源与环境, 37(2): 165-170. |
ZHAO H L, NI X L, HOU H, et al., 2023. Characteristics and influencing factors of Amygdalus mongolica shrub penetrating rain in Helan Mountains[J]. Journal of Arid Land Resources and Environment, 37(2): 165-170. | |
[37] |
赵朋波, 邱开阳, 谢应忠, 等, 2022. 海拔梯度对贺兰山岩羊主要活动区植物群落特征的影响[J]. 草业学报, 31(6): 79-90.
DOI |
ZHAO P B, QIU K Y, XIE Y Z, et al., 2022. The impact of altitude gradient on the characteristics of plant communities in the main activity areas of Helan Mountains blue sheep[J]. Acta Prataculturae Sinica, 31(6): 79-90. | |
[38] |
郑成洋, 刘增力, 方精云, 2004. 福建黄岗山东南坡和西北坡乔木物种多样性及群落特征的垂直变化[J]. 生物多样性, 12(1): 63-74.
DOI |
ZHENG C Y, LIU Z L, FANG J Y, 2004. Tree species diversity and vertical variation of community characteristics on the southern and northwestern slopes of Huanggang Mountain in Fujian Province[J]. Biodiversity Science, 12(1): 63-74. | |
[39] |
朱源, 康慕谊, 江源, 等, 2008. 贺兰山木本植物群落物种多样性的海拔格局[J]. 植物生态学报, 32(3): 574-581.
DOI |
ZHU Y, KANG M Y, JIANG Y, et al., 2008. Altitude pattern of species diversity of woody plant community in Helan Mountains[J]. Chinese Journal of Plant Ecology, 32(3): 574-581. | |
[40] | 朱源, 康慕谊, 江源, 2010. 贺兰山针叶林结构与多样性的海拔格局[J]. 东北林业大学学报, 38(9): 44-46. |
ZHU Y, KANG M Y, JIANG Y, 2010. Altitude pattern of structure and diversity of coniferous forests in Helan Mountains[J]. Journal of Northeast Forestry University, 38(9): 44-46. | |
[41] | 朱源, 康慕谊, 刘全儒, 等, 2007. 贺兰山针叶林结构特征与种类组成的比较[J]. 地理研究, 26(2): 305-313. |
ZHU Y, KANG M Y, LIU Q R, et al., 2007. Comparison of structural characteristics and species composition of coniferous forests in Helan Mountain[J]. Geographical Research, 26(2): 305-313. |
[1] | 李佳婧, 梁咏亮, 李静尧, 李小伟, 杨君珑. 基于叶片功能性状的贺兰山西坡植物生态策略分析[J]. 生态环境学报, 2024, 33(1): 45-53. |
[2] | 房园, 梁中, 张毓涛, 师庆东, 孙雪娇, 李吉玫, 李翔, 董振涛. 天山云杉森林生态系统的水源涵养能力海拔梯度变化特征[J]. 生态环境学报, 2023, 32(9): 1574-1584. |
[3] | 宋思梦, 林冬梅, 周恒宇, 罗宗志, 张丽丽, 易超, 林辉, 林兴生, 刘斌, 苏德伟, 郑丹, 余世葵, 林占熺. 种植巨菌草对乌兰布和沙漠植物物种多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(9): 1595-1605. |
[4] | 李虎, 赵沙, 黄福义, 苏建强. 不同程度人为干扰土壤中病毒组成及分布差异[J]. 生态环境学报, 2023, 32(8): 1433-1439. |
[5] | 秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468. |
[6] | 宋志斌, 周佳诚, 谭路, 唐涛. 高原河流着生藻类群落沿海拔梯度的变化特征--以西藏黑曲、雪曲为例[J]. 生态环境学报, 2023, 32(2): 274-282. |
[7] | 赵蔓, 张晓曼, 杨明洁. 林火干扰对栓皮栎-辽东栎混交林植物多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(10): 1732-1740. |
[8] | 张立进, 杜虎, 曾馥平, 黄国勤, 宋敏, 宋同清. 喀斯特峰丛洼地植被恢复过程中生产力与多样性关系探讨[J]. 生态环境学报, 2023, 32(1): 26-35. |
[9] | 黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89. |
[10] | 曹晓云, 祝存兄, 陈国茜, 孙树娇, 赵慧芳, 朱文彬, 周秉荣. 2000—2021年柴达木盆地地表绿度变化及地形分异研究[J]. 生态环境学报, 2022, 31(6): 1080-1090. |
[11] | 冯凌, 喻理飞, 王阳, 张丽敏, 赵庆, 李方兵. 喀斯特地区植被不同恢复阶段功能冗余和功能多样性对群落稳定性的影响[J]. 生态环境学报, 2022, 31(4): 670-678. |
[12] | 陈瑶, 李云红, 邵英男, 刘玉龙, 刘延坤. 阔叶红松林物种多样性与土壤理化特征研究[J]. 生态环境学报, 2022, 31(4): 679-687. |
[13] | 王小娜, 徐当会, 王谢军, 方向文. 祁连山灌丛群落结构特征随海拔梯度和经度的变化[J]. 生态环境学报, 2022, 31(2): 231-238. |
[14] | 蔡锡安, 黄娟, 吴彤, 刘菊秀, 蒋芬, 王森浩. 植物叶片排放甲烷的初步研究[J]. 生态环境学报, 2021, 30(9): 1842-1847. |
[15] | 闫东锋, 张妍妍, 吕康婷, 周梦丽, 王婷, 赵宁. 太行山南麓不同海拔梯度天然林优势树种生态位特征[J]. 生态环境学报, 2021, 30(8): 1571-1580. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||