生态环境学报 ›› 2024, Vol. 33 ›› Issue (5): 708-719.DOI: 10.16258/j.cnki.1674-5906.2024.05.005
卿彩霞1(), 陈圣宾1,*, 邓杰文2, 邓惺位1, 李喆3, 邱鹭4
收稿日期:
2024-03-14
出版日期:
2024-05-18
发布日期:
2024-06-27
通讯作者:
* 陈圣宾。作者简介:
卿彩霞(1999年生),女,硕士研究生,主要从事生物多样性研究。E-mail: 2570119219@qq.com
基金资助:
QING Caixia1(), CHEN Shengbin1,*, DENG Jiewen2, DENG Xingwei1, LI Zhe3, QIU Lu4
Received:
2024-03-14
Online:
2024-05-18
Published:
2024-06-27
摘要:
城市化是最具破坏性的土地利用形式之一,其带来的环境变化常导致生物多样性下降。探究环境因子(生境数量、生境质量、气象因子)对环境指示生物粪食性金龟物种多样性的影响对城市生物多样性保护具有重要意义。于2021年7月和9月在成都市不同城市化梯度(城区、近郊、远郊)内选取3种生境类型(林地、灌丛、草地)共18个样地,采用诱罐法采集粪食性金龟。结果表明,1)共采集粪食性金龟5属8种1149头,隶属于同一行为类型(直接掘洞型),且多为小体型(体长<13.0 mm)。嗡蜣螂属(Onthophagus)是研究区域的优势属(4种,1066头),巴氏驼嗡蜣螂(Onthophagus balthasari)总个体数最多(667头)。2)回归分析结果显示,生境数量和生境质量均能显著影响粪食性金龟物种多样性,但气象因子影响不显著。粪食性金龟总个体数与林地面积、灌丛面积显著正相关(p<0.05);物种丰富度与灌丛面积显著正相关(p<0.05);Hill-Shannon多样性与灌丛面积、草地面积、归一化植被指数(NDVI)显著正相关(p<0.05);Hill-Shannon均匀度与灌丛面积显著负相关(p<0.05)。3)基于Akaike信息量准则(AIC)和方差分解分析(Variance Partitioning Analysis)结果显示,生境数量解释粪食性金龟物种多样性相对重要性最高,对总个体数、物种丰富度、Hill-Shannon均匀度的独立效应最高,分别为21.3%、17.8%、15.6%。综上,灌丛面积、林地面积、草地面积、NDVI是影响粪食性金龟物种多样性的关键因子,生境数量相比于生境质量和气象因子更能影响其物种多样性。合理规划城市植被覆盖面积以及保护现有植被质量是保护粪食性金龟物种多样性的有效措施。
中图分类号:
卿彩霞, 陈圣宾, 邓杰文, 邓惺位, 李喆, 邱鹭. 生境数量和生境质量以及气象因子对成都市粪食性金龟物种多样性的影响[J]. 生态环境学报, 2024, 33(5): 708-719.
QING Caixia, CHEN Shengbin, DENG Jiewen, DENG Xingwei, LI Zhe, QIU Lu. The Effects of Habitat Amount, Habitat Quality and Meteorological Factors on the Species Diversity of Dung Beetles in Chengdu[J]. Ecology and Environment, 2024, 33(5): 708-719.
样地编号 | 经度 | 纬度 | 海拔/ m | 生境 类型 | 城市化 梯度 |
---|---|---|---|---|---|
CDE01 | 104.28063°E | 30.55139°N | 634 | 草地 | 远郊 |
CDE02 | 104.27712°E | 30.52407°N | 614 | 灌丛 | 远郊 |
CDE03 | 104.31222°E | 30.56341°N | 761 | 林地 | 远郊 |
CDE04 | 104.18059°E | 30.56388°N | 482 | 草地 | 近郊 |
CDE05 | 104.18292°E | 30.58606°N | 520 | 灌丛 | 近郊 |
CDE06 | 104.17698°E | 30.64725°N | 478 | 林地 | 近郊 |
CDE07 | 104.12016°E | 30.62305°N | 502 | 草地 | 城区 |
CDE08 | 104.12743°E | 30.65568°N | 492 | 灌丛 | 城区 |
CDE09 | 104.11922°E | 30.63935°N | 466 | 林地 | 城区 |
CDW10 | 103.85969°E | 30.78935°N | 524 | 草地 | 远郊 |
CDW11 | 103.90483°E | 30.79797°N | 550 | 灌丛 | 远郊 |
CDW12 | 103.88102°E | 30.81515°N | 536 | 林地 | 远郊 |
CDW13 | 103.96513°E | 30.73496°N | 478 | 草地 | 近郊 |
CDW14 | 103.98641°E | 30.73838°N | 518 | 灌丛 | 近郊 |
CDW15 | 103.92115°E | 30.72855°N | 532 | 林地 | 近郊 |
CDW16 | 104.02860°E | 30.69798°N | 460 | 草地 | 城区 |
CDW17 | 104.00225°E | 30.69010°N | 466 | 灌丛 | 城区 |
CDW18 | 104.05391°E | 30.68125°N | 497 | 林地 | 城区 |
表1 研究区样地基本情况
Table 1 Basic information about the sample plots in the study area
样地编号 | 经度 | 纬度 | 海拔/ m | 生境 类型 | 城市化 梯度 |
---|---|---|---|---|---|
CDE01 | 104.28063°E | 30.55139°N | 634 | 草地 | 远郊 |
CDE02 | 104.27712°E | 30.52407°N | 614 | 灌丛 | 远郊 |
CDE03 | 104.31222°E | 30.56341°N | 761 | 林地 | 远郊 |
CDE04 | 104.18059°E | 30.56388°N | 482 | 草地 | 近郊 |
CDE05 | 104.18292°E | 30.58606°N | 520 | 灌丛 | 近郊 |
CDE06 | 104.17698°E | 30.64725°N | 478 | 林地 | 近郊 |
CDE07 | 104.12016°E | 30.62305°N | 502 | 草地 | 城区 |
CDE08 | 104.12743°E | 30.65568°N | 492 | 灌丛 | 城区 |
CDE09 | 104.11922°E | 30.63935°N | 466 | 林地 | 城区 |
CDW10 | 103.85969°E | 30.78935°N | 524 | 草地 | 远郊 |
CDW11 | 103.90483°E | 30.79797°N | 550 | 灌丛 | 远郊 |
CDW12 | 103.88102°E | 30.81515°N | 536 | 林地 | 远郊 |
CDW13 | 103.96513°E | 30.73496°N | 478 | 草地 | 近郊 |
CDW14 | 103.98641°E | 30.73838°N | 518 | 灌丛 | 近郊 |
CDW15 | 103.92115°E | 30.72855°N | 532 | 林地 | 近郊 |
CDW16 | 104.02860°E | 30.69798°N | 460 | 草地 | 城区 |
CDW17 | 104.00225°E | 30.69010°N | 466 | 灌丛 | 城区 |
CDW18 | 104.05391°E | 30.68125°N | 497 | 林地 | 城区 |
类型 | 环境因子 | 分辨率 | 单位 | 来源 |
---|---|---|---|---|
生境数量 | 林地面积 | 30 m | km2 | 李喆, |
灌丛面积 | 30 m | km2 | 李喆, | |
草地面积 | 30 m | km2 | 李喆, | |
耕地面积 | 30 m | km2 | 李喆, | |
各生境类型面积总和 | 30 m | km2 | 李喆, | |
生境质量 | 归一化植被指数 | 30 m | ‒ | 董金玮等, |
植被净初级 生产力 | 500 m | g·m−2·a−1 | https://www.earthdata.nasa.gov/ | |
人类足迹 | 1 km | ‒ | Mu et al., | |
夜间灯光 | 1 km | Lm·m−2 | Chen et al., | |
气象指标 | 最热季平均温度 | 1 km | ℃ | https://www.worldclim.org/ |
最热季降水量 | 1 km | mm | https://www.worldclim.org/ | |
地表温度 | 30 m | ℃ | 李喆, | |
土壤湿度 | 1 km | 0.001 m3·m−3 | Li et al., |
表2 环境因子属性及来源
Table 2 The attributes and sources of environmental factor used in this study
类型 | 环境因子 | 分辨率 | 单位 | 来源 |
---|---|---|---|---|
生境数量 | 林地面积 | 30 m | km2 | 李喆, |
灌丛面积 | 30 m | km2 | 李喆, | |
草地面积 | 30 m | km2 | 李喆, | |
耕地面积 | 30 m | km2 | 李喆, | |
各生境类型面积总和 | 30 m | km2 | 李喆, | |
生境质量 | 归一化植被指数 | 30 m | ‒ | 董金玮等, |
植被净初级 生产力 | 500 m | g·m−2·a−1 | https://www.earthdata.nasa.gov/ | |
人类足迹 | 1 km | ‒ | Mu et al., | |
夜间灯光 | 1 km | Lm·m−2 | Chen et al., | |
气象指标 | 最热季平均温度 | 1 km | ℃ | https://www.worldclim.org/ |
最热季降水量 | 1 km | mm | https://www.worldclim.org/ | |
地表温度 | 30 m | ℃ | 李喆, | |
土壤湿度 | 1 km | 0.001 m3·m−3 | Li et al., |
序号 | 种 | 物种丰度 | 体长/ mm | 诱饵类型 | 行为类型 | |||
---|---|---|---|---|---|---|---|---|
草地 | 灌丛 | 林地 | 总计 | |||||
1 | 巴氏驼嗡蜣螂 Onthophagus balthasari | 282 | 157 | 228 | 667 | 6.61 | 牛粪、腐鱼 | 直接掘洞型 |
2 | 银衍亮嗡蜣螂 Onthophagus argyropygus | 2 | 7 | 368 | 377 | 5.61 | 牛粪、腐鱼 | 直接掘洞型 |
3 | 翅驼嗡蜣螂 Onthophagus atripennis | 0 | 2 | 16 | 18 | 7.49 | 腐鱼 | 直接掘洞型 |
4 | 黑亮嗡蜣螂 Onthophagus ater | 4 | 0 | 0 | 4 | 8.16 | 腐鱼 | 直接掘洞型 |
5 | 独角毛凯蜣螂 Caccobius unicornis | 0 | 61 | 5 | 66 | 3.32 | 腐鱼 | 直接掘洞型 |
6 | 神农洁蜣螂 Catharsius molossus | 0 | 1 | 0 | 1 | 34.44 | 腐鱼 | 直接掘洞型 |
7 | 近小粪蜣螂 Microcopris propinquus | 0 | 4 | 9 | 13 | 9.89 | 腐鱼 | 直接掘洞型 |
8 | 华武粪金龟 Enoplotrupes sinensis | 0 | 0 | 3 | 3 | 22.38 | 腐鱼 | 直接掘洞型 |
总计 | ‒ | 288 | 232 | 629 | 1149 | ‒ | ‒ | ‒ |
表3 成都市各生境类型粪食性金龟物种丰度及其特征
Table 3 Species abundance and traits of dung beetles by habitat type in Chengdu city
序号 | 种 | 物种丰度 | 体长/ mm | 诱饵类型 | 行为类型 | |||
---|---|---|---|---|---|---|---|---|
草地 | 灌丛 | 林地 | 总计 | |||||
1 | 巴氏驼嗡蜣螂 Onthophagus balthasari | 282 | 157 | 228 | 667 | 6.61 | 牛粪、腐鱼 | 直接掘洞型 |
2 | 银衍亮嗡蜣螂 Onthophagus argyropygus | 2 | 7 | 368 | 377 | 5.61 | 牛粪、腐鱼 | 直接掘洞型 |
3 | 翅驼嗡蜣螂 Onthophagus atripennis | 0 | 2 | 16 | 18 | 7.49 | 腐鱼 | 直接掘洞型 |
4 | 黑亮嗡蜣螂 Onthophagus ater | 4 | 0 | 0 | 4 | 8.16 | 腐鱼 | 直接掘洞型 |
5 | 独角毛凯蜣螂 Caccobius unicornis | 0 | 61 | 5 | 66 | 3.32 | 腐鱼 | 直接掘洞型 |
6 | 神农洁蜣螂 Catharsius molossus | 0 | 1 | 0 | 1 | 34.44 | 腐鱼 | 直接掘洞型 |
7 | 近小粪蜣螂 Microcopris propinquus | 0 | 4 | 9 | 13 | 9.89 | 腐鱼 | 直接掘洞型 |
8 | 华武粪金龟 Enoplotrupes sinensis | 0 | 0 | 3 | 3 | 22.38 | 腐鱼 | 直接掘洞型 |
总计 | ‒ | 288 | 232 | 629 | 1149 | ‒ | ‒ | ‒ |
多样性指数 | 生境类型 | 城市化梯度 | |||||
---|---|---|---|---|---|---|---|
草地 | 灌丛 | 林地 | 远郊 | 近郊 | 城区 | ||
总个体数 | 57.60±27.56a | 38.67±18.17a | 104.83±67.63a | 69.00±26.95a | 16.33±6.42a | 117.67±65.72a | |
物种丰富度 | 1.60±0.24a | 2.33±0.71a | 2.50±0.56a | 2.80±0.73a | 1.33±0.21a | 2.50±0.56a | |
Hill-Shannon多样性指数 | 1.04±0.02a | 1.21±0.12a | 1.23±0.07a | 1.27±0.14a | 1.06±0.04a | 1.18±0.08a | |
Hill-Shannon均匀度指数 | 0.72±0.12a | 0.71±0.13a | 0.59±0.10a | 0.56±0.12a | 0.86±0.09a | 0.56±0.10a |
表4 不同生境类型和不同城市化梯度间粪食性金龟的多样性差异
Table 4 Diversity differences of dung beetles among different habitat types and different urbanization gradient
多样性指数 | 生境类型 | 城市化梯度 | |||||
---|---|---|---|---|---|---|---|
草地 | 灌丛 | 林地 | 远郊 | 近郊 | 城区 | ||
总个体数 | 57.60±27.56a | 38.67±18.17a | 104.83±67.63a | 69.00±26.95a | 16.33±6.42a | 117.67±65.72a | |
物种丰富度 | 1.60±0.24a | 2.33±0.71a | 2.50±0.56a | 2.80±0.73a | 1.33±0.21a | 2.50±0.56a | |
Hill-Shannon多样性指数 | 1.04±0.02a | 1.21±0.12a | 1.23±0.07a | 1.27±0.14a | 1.06±0.04a | 1.18±0.08a | |
Hill-Shannon均匀度指数 | 0.72±0.12a | 0.71±0.13a | 0.59±0.10a | 0.56±0.12a | 0.86±0.09a | 0.56±0.10a |
图5 归一化植被指数、净初级产生力、人类足迹对粪食性金龟多样性的影响
Figure 5 The effects of normalized difference vegetation index, net primary productivity, and human footprint on the diversity of dung beetles (Statistically significant ones are represented by solid lines)
应变量 | 自变量 | 校正r | p值 | |
---|---|---|---|---|
总个体数 | 生境数量 | SHRL (0.695), GRAL (−0.339) | 0.541 | 0.003 |
生境质量 | NDVI (0.595), NPP (−0.670) | 0.459 | 0.009 | |
气象因子 | MTWQ (0.720), LST (−0.706) | 0.370 | 0.025 | |
物种丰富度 | 生境数量 | SHRL (0.611) | 0.374 | 0.009 |
生境质量 | NDVI (0.375), HFP (−0.322) | 0.274 | 0.067 | |
气象因子 | SMO (−0.375), LST (−0.452) | 0.156 | 0.195 | |
Hill-Shannon多样性指数 | 生境数量 | GRAL (0.470), SHRL (0.513) | 0.480 | 0.007 |
生境质量 | NDVI (0.532) | 0.283 | 0.028 | |
气象因子 | MTWQ (−0.879), SMO (−0.838) | 0.384 | 0.021 | |
Hill-Shannon均匀度指数 | 生境数量 | SHRL (−0.510) | 0.260 | 0.037 |
生境质量 | HFP (−0.373) | 0.139 | 0.140 | |
气象因子 | LST (0.172) | 0.029 | 0.510 |
表5 基于Akaike信息量准则(AIC)筛选出的粪食性金龟物种多样性最优模型
Table 5 The best models selected for dung beetle species diversity based on Akaike Information Criterion (AIC)
应变量 | 自变量 | 校正r | p值 | |
---|---|---|---|---|
总个体数 | 生境数量 | SHRL (0.695), GRAL (−0.339) | 0.541 | 0.003 |
生境质量 | NDVI (0.595), NPP (−0.670) | 0.459 | 0.009 | |
气象因子 | MTWQ (0.720), LST (−0.706) | 0.370 | 0.025 | |
物种丰富度 | 生境数量 | SHRL (0.611) | 0.374 | 0.009 |
生境质量 | NDVI (0.375), HFP (−0.322) | 0.274 | 0.067 | |
气象因子 | SMO (−0.375), LST (−0.452) | 0.156 | 0.195 | |
Hill-Shannon多样性指数 | 生境数量 | GRAL (0.470), SHRL (0.513) | 0.480 | 0.007 |
生境质量 | NDVI (0.532) | 0.283 | 0.028 | |
气象因子 | MTWQ (−0.879), SMO (−0.838) | 0.384 | 0.021 | |
Hill-Shannon均匀度指数 | 生境数量 | SHRL (−0.510) | 0.260 | 0.037 |
生境质量 | HFP (−0.373) | 0.139 | 0.140 | |
气象因子 | LST (0.172) | 0.029 | 0.510 |
应变量 | 独立效应/% | 交互效应/% | 解释的总方差/% | ||||||
---|---|---|---|---|---|---|---|---|---|
A | Q | M | A×Q | A×M | Q×M | A×Q×M | |||
总个体数 | 21.3 | 10.3 | 0.1 | 32.0 | 30.7 | 34.8 | 29.9 | 69.4 | |
物种丰富度 | 17.8 | 7.4 | 0.2 | 18.1 | 22.7 | 18.5 | 21.2 | 42.3 | |
Hill-Shannon多样性指数 | 9.7 | 6.0 | 7.1 | 29.4 | 20.4 | 13.4 | 11.5 | 63.0 | |
Hill-Shannon均匀度指数 | 15.6 | 3.9 | 0.1 | 0.4 | 7.6 | 0.0 | −2.4 | 32.4 |
表6 粪食性金龟物种多样性与三类环境因子的方差分解分析
Table 6 Variance partitioning analysis of dung beetle species diversity with three types of environmental factors
应变量 | 独立效应/% | 交互效应/% | 解释的总方差/% | ||||||
---|---|---|---|---|---|---|---|---|---|
A | Q | M | A×Q | A×M | Q×M | A×Q×M | |||
总个体数 | 21.3 | 10.3 | 0.1 | 32.0 | 30.7 | 34.8 | 29.9 | 69.4 | |
物种丰富度 | 17.8 | 7.4 | 0.2 | 18.1 | 22.7 | 18.5 | 21.2 | 42.3 | |
Hill-Shannon多样性指数 | 9.7 | 6.0 | 7.1 | 29.4 | 20.4 | 13.4 | 11.5 | 63.0 | |
Hill-Shannon均匀度指数 | 15.6 | 3.9 | 0.1 | 0.4 | 7.6 | 0.0 | −2.4 | 32.4 |
[1] | ALVARADO F, SALOMÃO R P, HERNANDEZ-RIVERA A, et al., 2020. Different responses of dung beetle diversity and feeding guilds from natural and disturbed habitats across a subtropical elevational gradient[J]. Acta Oecologica, 104: 103533. |
[2] | ANDRESEN E, 2005. Effects of season and vegetation type on community organization of dung beetles in a tropical dry forest[J]. Biotropica, 37(2): 291-300. |
[3] |
ASHA G, MANOJ K, RAJESH T P, et al., 2022. Dung beetles prefer used land over natural greenspace in urban landscape[J]. Scientific Reports, 12(1): 22179.
DOI PMID |
[4] | BERNARDINO G V D, MESQUITA V P, et al., 2024. Habitat loss reduces abundance and body size of forest-dwelling dung beetles in an Amazonian urban landscape[J]. Urban Ecosystems, 27(2): 439-452. |
[5] | BLAUM N, SEYMOUR C, ROSSMANITH E, et al., 2009. Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands: Identification of suitable indicators[J]. Biodiversity and Conservation, 18(5): 1187-1199. |
[6] | BOGONI J A, GRAIPEL M E, DE CASTILHO P V, et al., 2016. Contributions of the mammal community, habitat structure, and spatial distance to dung beetle community structure[J]. Biodiversity and Conservation, 25(9): 1661-1675. |
[7] | BUCHHOLZ S, SEITZ B, HILLER A, et al., 2021. Impacts of dogs on urban grassland ecosystems[J]. Landscape and Urban Planning, 215(3): 104201. |
[8] | CARPANETO G M, MAZZIOTTA A, VALERIO L, 2007. Inferring species decline from collection records: Roller dung beetles in Italy (Coleoptera, Scarabaeidae)[J]. Diversity and Distributions, 13(6): 903-919. |
[9] | CHAO A, CHIU C H, JOST L, 2014a. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers[J]. Annual Review of Ecology, Evolution, and Systematics, 45: 297-324. |
[10] | CHAO A, GOTELLI N J, HSIEH T C, et al., 2014b. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies[J]. Ecological Monographs, 84(1): 45-67. |
[11] | CHAO A, RICOTTA C, 2019. Quantifying evenness and linking it to diversity, beta diversity, and similarity[J]. Ecology, 100(12): e02852. |
[12] | CHEN Z, YU B, YANG C, et al., 2020. An extended time-series (2000-2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration[J]. Earth System Science Data, 13(3): 889-906. |
[13] |
CONOVER D, DUBEUX J, MARTINI X, 2019. Phenology, distribution, and diversity of dung beetles (Coleoptera: Scarabaeidae) in north Florida's pastures and forests[J]. Environmental Entomology, 48(4): 847-855.
DOI PMID |
[14] | CORREA C M A, SALOMÃO R P, ALVARADO F, et al., 2023. From green to grey: Unravelling the role of urbanization on diversity of dung beetles in Amazonian landscapes[J]. Urban Ecosystems, 23(13): 32-46. |
[15] | DANIEL G M, NORIEGA J A, DA SLIVA P G, et al., 2021. Soil type, vegetation cover and temperature determinants of the diversity and structure of dung beetle assemblages in a South African open woodland and closed canopy mosaic[J]. Austral Ecology, 47(1): 79-91. |
[16] | DE ANDRADE R B, BARLOW J, LOUZADA J, et al., 2011. Quantifying responses of dung beetles to fire disturbance in tropical forests: the importance of trapping method and seasonality[J]. PLoS ONE, 6(10): e26208. |
[17] | FAHRIG L, 2013. Rethinking patch size and isolation effects: the habitat amount hypothesis[J]. Journal of Biogeography, 40(9): 1649-1663. |
[18] | FIELD C B, BEHRENFELD M J, RANDERSON J T, et al., 1998. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 281(5374): 237-240. |
[19] | FORSYTH L A, 2005. Trap spacing and transect design for dung beetle biodiversity studies[J]. Biotropica, 37(2): 322-325. |
[20] | GARDINER R, BAIN G, HAMER R, et al., 2018. Habitat amount and quality, not patch size, determine persistence of a woodland-dependent mammal in an agricultural landscape[J]. Landscape Ecology, 33(11): 1837-1849. |
[21] | GOMEZ-CIFUENTES A, VESPA N, SEMMARTIN M, et al., 2020. Canopy cover is a key factor to preserve the ecological functions of dung beetles in the southern Atlantic Forest[J]. Applied Soil Ecology, 154: 103652. |
[22] | HALFFTER F, 1993. The Scarabaeinae (Insecta: Coleoptera), an animal group for analysing, inventorying and monitoring biodiversity in tropical rainforest and modified landscapes[J]. Biology International, 27: 15-21. |
[23] | HALL L S, KRAUSMAN P R, MORRISON M L, 1997. The habitat concept and a plea for standard terminology[J]. Wildlife Society Bulletin, 25(1): 173-182. |
[24] | HANSKI I, CAMBEFORT Y, 2014. Dung Beetle Ecology[M]. Princeton: Princeton University Press:33-54. |
[25] | HEINRICHS J A, 2010. The relative influence of habitat quality on population extinction[D]. Calgary: University of Calgary: 20-26. |
[26] | HEWAVITHANA D K, WIJESINGHE M R, DANGALLE C D, et al., 2016. Habitat and dung preferences of scarab beetles of the subfamily Scarabaeinae: A case study in a tropical monsoon forest in Sri Lanka[J]. International Journal of Tropical Insect Science, 36(2): 97-105. |
[27] |
HILLEBRAND H, BENNETT D M, CADOTTE M W, 2008. Consequences of dominance: A review of evenness effects on local and regional ecosystem processes[J]. Ecology, 89(6): 1510-1520.
PMID |
[28] | HOLLEY J M, ANDREW N R, 2020. Warming effects on dung beetle ecosystem services: brood production and dung burial by a tunnelling dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae), is reduced by experimental warming[J]. Austral Entomology, 59(2): 353-367. |
[29] | HORAK J, SAFAROVA L, TROMBIK J, et al., 2022. Patterns and determinants of plant, butterfly and beetle diversity reveal optimal city grassland management and green urban planning[J]. Urban Forestry & Urban Greening, 73(2): 127609. |
[30] | JANKIELSOHN A, SCHOLTZ C H, LOUW S V, 2001. Effect of habitat transformation on dung beetle assemblages: A comparison between a South African nature reserve and neighboring farms[J]. Environmental Entomology, 30(3): 474-483. |
[31] | JONES M S, WRIGHT S A, SMITH O M, et al., 2019. Organic farms conserve a dung beetle species capable of disrupting fly vectors of foodborne pathogens[J]. Biological Control, 137: 104020. |
[32] |
KAHONG, CHEUNG, MING, et al., 2018. Scarabaeinae (Coleoptera: Scarabaeidae) from Hong Kong[J]. Zoological Systematics, 43(3): 233-267.
DOI |
[33] | KLEIN B C, 1989. Effects of forest fragmentation on dung and carrion beetle communities in Central Amazonia[J]. Ecology, 70(6): 1715-1725. |
[34] |
KORASAKI V, LOPES J, BROWN G G, et al., 2013. Using dung beetles to evaluate the effects of urbanization on Atlantic Forest biodiversity[J]. Insect Science, 20(3): 393-406.
DOI PMID |
[35] | KUDAVIDANAGE E P, QIE L, LEE J S H, 2012. Linking biodiversity and ecosystem functioning of dung beetles in south and southeast Asian tropical rainforests[J]. Raffles Bulletin of Zoology, 102(25): 133-146. |
[36] | LI Q L, SHI G S, SHANGGUAN W, et al., 2022. A 1 km daily soil moisture dataset over China using in situ measurement and machine learning[J]. Earth System Science Data, 14(12): 5267-5286. |
[37] |
LUO L, DU W P, YAN H M, et al., 2017. Spatio-temporal patterns of vegetation change in Kazakhstan from 1982 to 2015[J]. Journal of Resources and Ecology, 8(4): 378-384.
DOI |
[38] | MAGURA T, LOVEI G L, TOTHMERESZ B, 2010. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages?[J]. Global Ecology and Biogeography, 19(1): 16-26. |
[39] | MARTÍNEZ M I, SUÁREZ M T, 2006. Phenology, trophic preferences, and reproductive activity in some dung-inhabiting beetles (Coleoptera: Scarabaeoidea) in El Llano de las Flores, Oaxaca, Mexico[J]. Proceedings of the Entomological Society of Washington, 108(4): 774-784. |
[40] |
MU H, LI X, WEN Y, et al., 2022. A global record of annual terrestrial human footprint dataset from 2000 to 2018[J]. Scientific Data, 9(1): 176.
DOI PMID |
[41] | NICHOLS E, SPECTOR S, LOUZADA J, et al., 2008. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles[J]. Biological Conservation, 141(6): 1461-1474. |
[42] | NIELSEN S T, 2007. Deforestation and biodiversity: effects of bushland cultivation on dung beetles in semi-arid Tanzania[J]. Biodiversity and Conservation, 16(10): 2753-2769. |
[43] | NUNES C A, BRAGA R F, RESENDE F D M, et al., 2018. Linking biodiversity, the environment and ecosystem functioning: Ecological functions of dung beetles along a tropical elevational gradient[J]. Ecosystems, 21(6): 1244-1254. |
[44] | OCKINGER E, DANNESTAM A, SMITH H G, 2009. The importance of fragmentation and habitat quality of urban grasslands for butterfly diversity[J]. Landscape and Urban Planning, 93(1): 31-37. |
[45] | PAPP D, MIZSER S, NAGY L, et al., 2020. Changes in morphometric traits of ground beetles along urbanization gradients[J]. Journal of Insect Science, 20(1): 5. |
[46] | RAINE E H, SLADE E M, 2019. Dung beetle - mammal associations: methods, research trends and future directions[J]. Proceedings of the Royal Society B-Biological Sciences, 286(1897): 1-9. |
[47] | RAMIREZ-RESTREPO L, HALFFTER G, 2016. Copro-necrophagous beetles (Coleoptera: Scarabaeinae) in urban areas: A global review[J]. Urban Ecosystems, 19(3): 1179-1195. |
[48] |
RIGHI C A, RODRIGUEZ C S, FERREIRA E N L, et al., 2018. Microclimatic conditions for dung beetle (Coleoptera: Scarabaeidae) occurrence: Land use system as a determining factor[J]. Environmental Entomology, 47(6): 1420-1430.
DOI PMID |
[49] | RIVERA J D, DE LOS MONTEROS A E, SALDANA-VAZQUEZ R A, et al., 2023. Beyond species loss: How anthropogenic disturbances drive functional and phylogenetic homogenization of Neotropical dung beetles[J]. Science of the Total Environment, 869: 161663. |
[50] |
SALOMÃO R P, ALVARADO F, BAENA-DIAZ F, et al., 2019. Urbanization effects on dung beetle assemblages in a tropical city[J]. Ecological Indicators, 103: 665-675.
DOI |
[51] | SALOMÃO R P, ALVARADO F, BAENA-DIAZ F, et al., 2020. Negative effects of urbanisation on the physical condition of an endemic dung beetle from a neotropical hotspot[J]. Ecological Entomology, 45(4): 886-895. |
[52] | SANCHEZ-HERNANDEZ G, GOMEZ B, CHAME-VAZQUEZ E R, et al., 2022. Dung beetle diversity and community composition along a fragmented landscape in an altitudinal gradient in southeastern Mexico[J]. Biologia, 77(4): 1027-1038. |
[53] | SANDERSON E W, JAITEH M, LEVY M A, et al., 2002. The Human Footprint and the Last of the Wild[J]. BioScience, 52(10): 891-904. |
[54] | SHIZUKUDA K, SAITO M U, 2021. Effects of human-dominated landscape on the community structure of silphid and dung beetles collected by carrion pitfall traps[J]. Entomological Science, 24(2): 157-168. |
[55] | SULLIVAN C, SLADE E, BAI M, et al., 2018. Evidence of forest restoration success and the conservation value of community-owned forests in Southwest China using dung beetles as indicators[J]. PLoS ONE, 13(11): e0204764. |
[56] | TENORIO-ESCANDÓN P, BARRAGÁN F, VÁSQUEZ-BOLAÑOS M, et al., 2023. What microhabitat variables affect ants and dung beetle assemblages using dung-baited traps in the Southern Chihuahuan Desert?[J]. Biologia, 78(10): 2793-2801 |
[57] | VINOD K V, SABU T K, 2007. Species composition and community structure of dung beetles attracted to dung of gaur and elephant in the moist forests of South Western Ghats[J]. Journal of Insect Science, 7(56): 1-14. |
[58] |
WATLING J I, ARROYO-RODRÍGUEZ V, PFEIFER M, et al., 2020. Support for the habitat amount hypothesis from a global synthesis of species density studies[J]. Ecology Letters, 23(4): 674-681.
DOI PMID |
[59] | 白明, 杨星科, 2008. 粪食性金龟的行为及其适应演化[J]. 昆虫知识 (3): 499-505. |
BAI M, YANG X K, 2008. Nesting behavior and adaptive evolution of dung beetle[J]. Chinese Bulletin of Entomology (3): 499-505. | |
[60] | 曹佳敏, 郭亚亚, 李娜娜, 等, 2021a. 绢蒿荒漠粪甲虫多样性特征及其对粪便内种子的二次分配[J]. 草业学报, 30(8): 137-145. |
CAO J M, GUO Y Y, LI N N, et al., 2021. Diversity characteristics of dung beetle of Seirphidium semidesert and its secondary distribution of seeds in the feces[J]. Acta Prataculturae Sinica, 30(8): 137-145. | |
[61] | 曹佳敏, 鲁为华, 郭亚亚, 等, 2021b. 绢蒿荒漠粪甲虫物种多样性特征及亲缘关系[J]. 生态学杂志, 40(4): 1107-1115. |
CAO J M, LU W H, GUO Y Y, et al., 2021. Species diversity and genetic relationship of dung beetle in Seirphidium-dominated desert[J]. Chinese Journal of Ecology, 40(4): 1107-1115. | |
[62] | 成都市人民政府, 2022. 成都年鉴(2022)[EB/OL]. 成都: 成都年鉴社, (2022-11-25) [2023-08-08]. https://www.chengduyearbook.com/. |
The people’s government of Chengdu municipal, 2022. Chengdu Yearbook (2022)[EB/OL]. Chengdu: Chengdu Yearbook, (2022-11-25) [2023-08-08]. https://www.chengduyearbook.com/. | |
[63] | 董金玮, 周岩, 尤南山, 等, 2021. 2000-2022年中国30米年最大NDVI数据集[DS/OL]. 国家生态科学数据中心, https://doi.org/10.12199/nesdc.ecodb.rs.2021.012. |
DONG J W, ZHOU Y, YOU N S, et al., 2021. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China [DS/OL]. Remote Sensing of Environment, https://doi.org/10.12199/nesdc.ecodb.rs.2021.012. | |
[64] |
郭亚亚, 曹佳敏, 车昭碧, 等, 2021. 粪甲虫对绢蒿荒漠春秋两季牛粪分解的影响[J]. 应用生态学报, 32(5): 1854-1862.
DOI |
GUO Y Y, CAO J M, CHE Z B, et al., 2021. Effects of dung beetles on decomposition of cattle dung in spring and autumn in a Seirphidium-dominated desert, China[J]. Chinese Journal of Applied Ecology, 32(5): 1854-1862. | |
[65] | 李春风, 2014. 嗡蜣螂属部分种类形态特征及DNA条形码研究[D]. 沈阳: 沈阳大学: 1-89. |
LI C F, 2014. The research of morphology and DNA barcoding of the partial species from Onthophagus[D]. Shenyang: Shenyang University: 1-89. | |
[66] | 李喆, 2022. 基于地表景观时空变化的城市热环境研究——以成都为例[D]. 成都: 成都理工大学: 1-96. |
LI Z, 2022. Study of urban thermal environment based on surface landscape change in Chengdu city[D]. Chengdu: Chengdu University of Technology: 1-96. | |
[67] |
李喆, 陈圣宾, 陈芝阳, 2022. 地表温度与土地利用类型间的空间尺度依赖性——以成都为例[J]. 生态环境学报, 31(5): 999-1007.
DOI |
LI Z, CHEN S B, CHEN Z Y, 2022. Spatial scale dependence between land surface temperature and land use types: A case study of Chengdu city[J]. Ecology and Environmental Sciences, 31(5): 999-1007. | |
[68] | 王亚东, 王昊, 程建伟, 等, 2021. 粪食性金龟功能群对草原牛粪分解过程中温室气体排放的影响[J]. 生态与农村环境学报, 37(1): 65-72. |
WANG Y D, WANG H, CHENG J W, et al., 2021. Effects of different functional groups of dung beetles on greenhouse gas emissions from cattle dung pats on steppe grassland[J]. Journal of Ecology and Rural Environment, 37(1): 65-72. | |
[69] |
周文婕, 罗媛媛, 仲磊, 等, 2017. 生境片段化对千岛湖地表甲虫物种多样性的影响[J]. 应用生态学报, 28(2): 509-518.
DOI |
ZHOU W J, LUO Y Y, ZHONG L, et al., 2017. Effects of habitat fragmentation on species diversity of ground dwelling beetles in the Thousand-Island Lake region, Zhejiang, China[J]. Chinese Journal of Applied Ecology, 28(2): 509-518. |
[1] | 卫玺玺, 晁鑫艳, 郑景明, 唐可欣, 万龙, 周金星. 贺兰山东、西侧典型植物群落物种多样性差异及其影响因子[J]. 生态环境学报, 2024, 33(4): 520-530. |
[2] | 宋思梦, 林冬梅, 周恒宇, 罗宗志, 张丽丽, 易超, 林辉, 林兴生, 刘斌, 苏德伟, 郑丹, 余世葵, 林占熺. 种植巨菌草对乌兰布和沙漠植物物种多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(9): 1595-1605. |
[3] | 郑箐舟, 何军, 李深智, 邓承之, 吴志鹏, 黄萧霖, 吴瑕. 重庆地区城郊人体舒适度变化特征差异及其影响因素分析[J]. 生态环境学报, 2023, 32(6): 1089-1097. |
[4] | 许静, 廖星凯, 甘崎旭, 周茅先. 基于MSPA与电路理论的黄河流域甘肃段生态安全格局构建[J]. 生态环境学报, 2023, 32(4): 805-813. |
[5] | 周世强, Vanessa HULL, 张晋东, 刘巅, 谢浩, 黄金燕, 张和民. 野生大熊猫与放牧家畜利用生境的特征比较[J]. 生态环境学报, 2023, 32(2): 309-319. |
[6] | 赵蔓, 张晓曼, 杨明洁. 林火干扰对栓皮栎-辽东栎混交林植物多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(10): 1732-1740. |
[7] | 丁胜杰, 徐香茹, 朱菲菲, 王仁霞, 潘纲, 崔溢, 胡新娟, 穆斯塔法, 霍书豪. 不同生境中土壤藻类的分布特征与生理生态学功能研究[J]. 生态环境学报, 2023, 32(10): 1873-1888. |
[8] | 张立进, 杜虎, 曾馥平, 黄国勤, 宋敏, 宋同清. 喀斯特峰丛洼地植被恢复过程中生产力与多样性关系探讨[J]. 生态环境学报, 2023, 32(1): 26-35. |
[9] | 肖以华, 付志高, 许涵, 史欣, 唐海明, 陈步峰. 城市化对珠江三角洲不同功能群植物叶片功能性状的影响[J]. 生态环境学报, 2022, 31(9): 1783-1793. |
[10] | 陈小南, 李琼雯, 余建平, 余顺海, 李双, 曹铭昌. 钱江源国家公园白颈长尾雉生境适宜性评价研究[J]. 生态环境学报, 2022, 31(9): 1832-1839. |
[11] | 陈乐, 卫伟. 西北旱区典型流域土地利用与生境质量的时空演变特征[J]. 生态环境学报, 2022, 31(9): 1909-1918. |
[12] | 阮惠华, 许剑辉, 张菲菲. 2001—2020年粤港澳大湾区植被和地表温度时空变化研究[J]. 生态环境学报, 2022, 31(8): 1510-1520. |
[13] | 袁春明, 杨国平, 耿云芬, 张珊珊. 基于积分投影模型预测濒危植物景东翅子树的种群动态[J]. 生态环境学报, 2022, 31(8): 1530-1536. |
[14] | 符裕红, 张代杰, 项蛟, 周焱, 黄宗胜, 喻理飞. 喀斯特不同地下生境剖面植物根系拓扑结构特征[J]. 生态环境学报, 2022, 31(5): 865-874. |
[15] | 冯凌, 喻理飞, 王阳, 张丽敏, 赵庆, 李方兵. 喀斯特地区植被不同恢复阶段功能冗余和功能多样性对群落稳定性的影响[J]. 生态环境学报, 2022, 31(4): 670-678. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||