生态环境学报 ›› 2024, Vol. 33 ›› Issue (6): 869-876.DOI: 10.16258/j.cnki.1674-5906.2024.06.004
王梓晗1(), 吕世杰1, 王忠武1,*(
), 刘红梅2,*(
)
收稿日期:
2024-01-03
出版日期:
2024-06-18
发布日期:
2024-07-30
通讯作者:
刘红梅。E-mail: liuhongmei_123@126.com作者简介:
王梓晗(1998年生),女,博士研究生,研究方向为草地资源管理。E-mail: 530919415@qq.com
基金资助:
WANG Zihan1(), LÜ Shijie1, WANG Zhongwu1,*(
), LIU Hongmei2,*(
)
Received:
2024-01-03
Online:
2024-06-18
Published:
2024-07-30
摘要:
研究不同放牧强度所引起的优势种群重要值和物种多样性相互关系之间的变化过程,可为放牧草地保护和退化植被恢复提供理论依据。以内蒙古短花针茅(Stipa breviflora)荒漠草原为研究对象,采用单因素随机区组试验设计(CK,对照区;MG,中度放牧区;HG,重度放牧区)对植物群落的高度、盖度和密度进行调查,计算优势种群重要值和物种多样性后,结合对比分析和典型相关分析研究方法来探究二者之间的关系,结果表明,伴随放牧强度增加,短花针茅的重要值增大,丰富度指数下降。MG处理区下的优势度指数最高,多样性指数最低。对优势种群重要值和物种多样性进行典型相关分析表明,其累计贡献率在MG处理区最大(96.1%),CK处理区最小(90.2%)。放牧强度增加会降低优势种群的重要值与物种多样性相互关系的复杂性和维度(由2个典型相关变为1个典型相关)。在CK区,各优势种群重要值增加均会导致植物群落多样性指数下降,无芒隐子草(Cleistogenes songorica)和碱韭(Allium polyrhizum)重要值增加会导致植物群落均匀度指数增大。在MG区,短花针茅重要值增加会导致植物群落优势度指数下降。在HG区,短花针茅和无芒隐子草的重要值增加会降低多样性指数。各优势种群重要值和各物种多样性指数与自身典型变量的相关性之间较为复杂,与对应典型变量的相关性之间较为简单。CK、MG和HG处理区存在显著相关系数的个数分别为15、20和12个,MG处理区下优势种群重要值和物种多样性的相互关系最复杂。综上,中度放牧处理区下的植物群落不易受外界环境的干扰,重牧处理区下的植物群落更容易受外界环境干扰,草地植物群落退化后相对困难恢复到原有状态。
中图分类号:
王梓晗, 吕世杰, 王忠武, 刘红梅. 放牧强度对优势种群重要值和物种多样性及其二者典型关系的影响[J]. 生态环境学报, 2024, 33(6): 869-876.
WANG Zihan, LÜ Shijie, WANG Zhongwu, LIU Hongmei. Effects of Grazing Intensity on Dominant Population and Species Diversity and Their Typical Relationships[J]. Ecology and Environment, 2024, 33(6): 869-876.
试验处理 | 编码 | 载畜率/(sheep∙hm−2∙a−1) | 实际放牧绵羊/只 | 重复数 |
---|---|---|---|---|
对照 | CK | 0 | 0 | 3 |
中度放牧 | MG | 0.96 | 5 | 3 |
重度放牧 | HG | 1.54 | 8 | 3 |
表1 随机区组试验设计
Table 1 Randomized block experimental design
试验处理 | 编码 | 载畜率/(sheep∙hm−2∙a−1) | 实际放牧绵羊/只 | 重复数 |
---|---|---|---|---|
对照 | CK | 0 | 0 | 3 |
中度放牧 | MG | 0.96 | 5 | 3 |
重度放牧 | HG | 1.54 | 8 | 3 |
图1 不同放牧强度下优势种群重要值和物种多样性指数的差异 S. breviflora:短花针茅;C. songorica:无芒隐子草;A. polyrhizum:碱韭;S:丰富度指数;Sp:优势度指数;SW:多样性指数;PL:均匀度指数。下同
Figure 1 Differences in the importance value of dominant populations and species diversity index under different grazing intensities
试验处理 | 典型相关对 | 相关系数 | 贡献率/% | 累计贡献率/% | 检验结果 |
---|---|---|---|---|---|
CK | 1 | 0.610 | 64.890 | 64.890 | <0.001 |
2 | 0.433 | 25.270 | 90.160 | 0.012 | |
MG | 1 | 0.703 | 78.630 | 78.630 | <0.001 |
2 | 0.422 | 17.430 | 96.060 | 0.037 | |
HG | 1 | 0.851 | 93.840 | 93.840 | <0.001 |
表2 不同放牧强度下优势种群和物种多样性典型相关参数
Table 2 Canonical correlation parameters of dominant population and species diversity under different grazing intensities
试验处理 | 典型相关对 | 相关系数 | 贡献率/% | 累计贡献率/% | 检验结果 |
---|---|---|---|---|---|
CK | 1 | 0.610 | 64.890 | 64.890 | <0.001 |
2 | 0.433 | 25.270 | 90.160 | 0.012 | |
MG | 1 | 0.703 | 78.630 | 78.630 | <0.001 |
2 | 0.422 | 17.430 | 96.060 | 0.037 | |
HG | 1 | 0.851 | 93.840 | 93.840 | <0.001 |
组变量 | 基础变量 | CK | MG | HG | |||
---|---|---|---|---|---|---|---|
第1对 典型 变量 | 第2对 典型 变量 | 第1对 典型 变量 | 第2对 典型 变量 | 第1对 典型 变量 | |||
优势种群重要值变量 | S. breviflora | −1.004 | 0.238 | 0.735 | 0.965 | 0.602 | |
C. songorica | −0.091 | 0.612 | 0.677 | 0.642 | 0.528 | ||
A. polyrhizum | 0.079 | 0.853 | 0.645 | −0.765 | 0.418 | ||
物种多样性 变量 | S | −2.992 | 0.688 | 0.604 | −0.325 | 3.174 | |
Sp | 3.546 | 0.332 | −3.600 | −1.926 | −2.654 | ||
SW | 6.479 | −1.029 | −4.149 | −1.415 | −5.861 | ||
PL | −0.133 | 1.467 | −0.442 | −1.802 | 0.915 |
表3 不同放牧强度下优势种群与物种多样性的典型相关结构关系
Table 3 Canonical correlation structure between dominant populations and species diversity under different grazing intensities
组变量 | 基础变量 | CK | MG | HG | |||
---|---|---|---|---|---|---|---|
第1对 典型 变量 | 第2对 典型 变量 | 第1对 典型 变量 | 第2对 典型 变量 | 第1对 典型 变量 | |||
优势种群重要值变量 | S. breviflora | −1.004 | 0.238 | 0.735 | 0.965 | 0.602 | |
C. songorica | −0.091 | 0.612 | 0.677 | 0.642 | 0.528 | ||
A. polyrhizum | 0.079 | 0.853 | 0.645 | −0.765 | 0.418 | ||
物种多样性 变量 | S | −2.992 | 0.688 | 0.604 | −0.325 | 3.174 | |
Sp | 3.546 | 0.332 | −3.600 | −1.926 | −2.654 | ||
SW | 6.479 | −1.029 | −4.149 | −1.415 | −5.861 | ||
PL | −0.133 | 1.467 | −0.442 | −1.802 | 0.915 |
相对性 | 试验处理 | 典型变量 | 优势种群重要值变量 | 物种多样性变量 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
S. breviflora | C. songorica | A. polyrhizum | S | Sp | SW | PL | ||||
基础变量与自身 典型变量的相关性 | CK | 1 | −0.992** | 0.125 | 0.187 | 0.376* | −0.317* | 0.507** | 0.263* | |
2 | 0.016 | 0.516** | 0.797** | −0.633** | −0.060 | −0.243* | 0.817** | |||
MG | 1 | 0.405* | 0.307* | 0.768** | −0.822** | 0.166 | −0.548** | 0.400* | ||
2 | 0.526** | 0.0240 | −0.624** | −0.107 | 0.807** | −0.618** | −0.913** | |||
HG | 1 | 0.720** | 0.634** | 0.554** | −0.702** | 0.228 | −0.563** | 0.582** | ||
基础变量与对应 典型变量的相关性 | CK | 1 | −0.605** | 0.076 | 0.114 | 0.229 | −0.193 | 0.309* | 0.160 | |
2 | 0.007 | 0.223 | 0.345* | −0.274* | −0.026 | −0.105 | 0.353* | |||
MG | 1 | 0.284* | 0.216 | 0.540** | −0.577** | 0.117 | −0.385* | 0.281* | ||
2 | 0.222 | 0.010 | −0.263* | −0.045 | 0.340* | −0.261* | −0.385* | |||
HG | 1 | 0.613** | 0.540* | 0.472* | −0.597** | 0.194 | −0.479* | 0.495* |
表4 基础变量与自身典型变量和对应典型变量之间的相关关系
Table 4 Correlation between basic variables and their own typical variables and corresponding typical variables
相对性 | 试验处理 | 典型变量 | 优势种群重要值变量 | 物种多样性变量 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
S. breviflora | C. songorica | A. polyrhizum | S | Sp | SW | PL | ||||
基础变量与自身 典型变量的相关性 | CK | 1 | −0.992** | 0.125 | 0.187 | 0.376* | −0.317* | 0.507** | 0.263* | |
2 | 0.016 | 0.516** | 0.797** | −0.633** | −0.060 | −0.243* | 0.817** | |||
MG | 1 | 0.405* | 0.307* | 0.768** | −0.822** | 0.166 | −0.548** | 0.400* | ||
2 | 0.526** | 0.0240 | −0.624** | −0.107 | 0.807** | −0.618** | −0.913** | |||
HG | 1 | 0.720** | 0.634** | 0.554** | −0.702** | 0.228 | −0.563** | 0.582** | ||
基础变量与对应 典型变量的相关性 | CK | 1 | −0.605** | 0.076 | 0.114 | 0.229 | −0.193 | 0.309* | 0.160 | |
2 | 0.007 | 0.223 | 0.345* | −0.274* | −0.026 | −0.105 | 0.353* | |||
MG | 1 | 0.284* | 0.216 | 0.540** | −0.577** | 0.117 | −0.385* | 0.281* | ||
2 | 0.222 | 0.010 | −0.263* | −0.045 | 0.340* | −0.261* | −0.385* | |||
HG | 1 | 0.613** | 0.540* | 0.472* | −0.597** | 0.194 | −0.479* | 0.495* |
[1] |
BEZEMER T M, FOUNTAIN M T, BAREA J M, et al., 2010. Divergent composition but similar function of soil food webs of individual plants: plant species and community effects[J]. Ecology, 91(10): 3027-3036.
PMID |
[2] | CLEMENTS F E, 1936. Nature and Structure of the Climax[J]. Journal of Ecology, 24(1): 252-284. |
[3] |
DONOHUE I, PETCHEY O L, MONTOYA J M, et al., 2013. On the dimensionality of ecological stability[J]. Ecology Letters, 16(4): 421-429.
DOI PMID |
[4] | ELTON C S, 1958. The ecology of invasions by animals and plants[M]. London: Methuen: 405-410. |
[5] |
GRIMM V, WISSEL C, 1997. Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion[J]. Oecologia, 109(3): 323-334.
DOI PMID |
[6] |
HADDAD N M, CRUTSINGER G M, GROSS K, et al., 2011. Plant diversity and the stability of foodwebs[J]. Ecology Letters, 14(1): 42-46.
DOI PMID |
[7] | JOSEPH S, ANITHA K, 2008. Disturbance, diversity and stability of ecological systems-The need for a uniform hypothesis[J]. Current Science, 97(2): 142-143. |
[8] | KUITERS A T, 2013. Diversity-stability relationships in plant communities of contrasting habitats[J]. Journal of Vegetation Science, 24(3): 453-462. |
[9] | LÜ S J, YAN B L, WANG Z W, et al., 2019. Grazing intensity enhances spatial aggregation of dominant species in a desert steppe[J]. Ecology and Evolution, 9(10): 6138-6147. |
[10] | LÜ S J, YAN B L, WANG Z W, et al., 2020. Dominant species’ dominant role and spatial stability are enhanced with increasing stocking rate[J]. Science of The Total Environment, 730: 138900. |
[11] | MCNAUGHTON S J, 1978. Stability and diversity of ecological communities[J]. Nature, 274(5668): 251-253. |
[12] | MERCIER K P, VASCONCELLOS M M, Martins E G A, et al., 2023. Linking environmental stability with genetic diversity and population structure in two Atlantic Forest palm trees[J]. Journal of Biogeography, 50(1): 197-208. |
[13] | SMITH B, WILSON J B, 1996. A consumer’s guide to evenness indices[J]. Oikos, 76(1): 70-82. |
[14] | SOLE R V, MONTOYA J M, 2001. Complexity and fragility in ecological networks[J]. Proceedings Biological Sciences, 268(1480): 2039-2045. |
[15] | TILMAN D, 1999. The ecological consequences of changes in biodiversity: A search for general principles[J]. Ecology, 80(5): 1455-1474. |
[16] | TILMAN D, REICH P B, KNOPS J M, 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment[J]. Nature, 441(7093): 629-632. |
[17] | WANG Y X, WU Z, WANG Z F, et al., 2022. Ecosystem coupling and ecosystem multifunctionality may evaluate the plant succession induced by Grazing in Alpine Meadow[J]. Frontiers in Plant Science, 13: 839920. |
[18] | 白永飞, 邢雪荣, 许志信, 等, 2000. 内蒙古高原针茅草原群落β多样性研究[J]. 应用生态学报, 11(3): 408-412. |
BAI Y F, XING X R, XU Z X, et al., 2000. β-diversity of Stipa communities in Inner Mongolia Plateau[J]. Chinese Journal of Applied Ecology, 11(3): 408-412. | |
[19] | 韩朝炜, 宝音贺希格, 2021. 放牧强度对无芒隐子草空间分布的多重分形结构影响[J]. 草业科学, 38(7): 1231-1239. |
HAN C W, BAO Y H X G, 2021. The effect of grazing intensity on the multifractal structure of the spatial distribution of Cleistogenes songorica[J]. Pratacultural Science, 38(7): 1231-1239. | |
[20] | 何晓群, 2015. 多元统计分析[M]. 第4版. 北京: 中国人民大学出版社: 55-59. |
HE X Q, 2015. Multivariate Statistical Analysis[M]. 4th Edition. Beijing: Renmin University of China Press: 55-59. | |
[21] | 贾利娟, 桑雪颖, 李慧娟, 等, 2014. 短花针茅荒漠草原物种数空间变化特点及其与取样方法的关系[J]. 草原与草业, 26(4): 30-34. |
JIA L J, SANG X Y, LI H J, et al., 2014. Stipa breviflora desert steppe species number spatial variation characteristics and its relationship with sampling methods[J]. Grassland and Prataculture, 26(4): 30-34. | |
[22] | 李博, 2000. 生态学[M]. 北京: 高等教育出版社: 5-9. |
LI B, 2000. Ecology[M]. Beijing: Higher Education Press: 5-9. | |
[23] | 刘红梅, 郭淑晶, 卫智军, 等, 2021. 荒漠草原主导种群与植物群落地上现存量的关系[J]. 中国草地学报, 43(3): 44-51. |
LIU H M, GUO S J, WEI Z J, et al., 2021. Relationship between dominant population and above-ground standing crop of the plant communities in the desert steppe[J]. Chinese Journal of Grassland, 43(3): 44-51. | |
[24] | 刘红梅, 卫智军, 杨静, 等, 2011. 不同放牧制度对荒漠草原短花针茅空间异质性的影响[J]. 干旱区资源与环境, 25(8): 138-143. |
LIU H M, WEI Z J, YANG J, et al., 2011. Effect of different grazing systems on spatial heterogeneity of Stipa breviflora desert steppe[J]. Journal of Arid Land Resources and Environment, 25(8): 138-143. | |
[25] | 刘菊红, 张军, 吕世杰, 等, 2019. 荒漠草原主要植物种间关系对降水年型变化的响应[J]. 西北植物学报, 39(7): 1289-1297. |
LIU J H, ZHANG J, LÜ S J, et al., 2019. Response of interspecific relationships among main plant species to the change of precipitation years in desert steppe[J]. Acta Botanica Boreali-Occidentalia Sinica, 39(7): 1289-1297. | |
[26] |
刘文亭, 卫智军, 吕世杰, 等, 2016. 荒漠草地植物多样性对草食动物采食的响应机制[J]. 植物生态学报, 40(6): 564-573.
DOI |
LIU W T, WEI Z J, LÜ S J, et al., 2016. Response mechanism of plant diversity to herbivore foraging in desert grassland[J]. Chinese Journal of Plant Ecology, 40(6): 564-573. | |
[27] | 吕世杰, 刘红梅, 吴艳玲, 等, 2014. 放牧对短花针茅荒漠草原建群种与优势种空间分布关系的影响[J]. 应用生态学报, 25(12): 3469-3474. |
LÜ S J, LIU H M, WU Y L, et al., 2014. Effects of grazing on spatial distribution relationships between constructive and dominant species in Stipa breviflora desert steppe[J]. Chinese Journal of Applied Ecology, 25(12): 3469-3474. | |
[28] |
门欣洋, 吕世杰, 侯东杰, 等, 2022. 放牧强度对荒漠草原无芒隐子草密度及空间分布的影响[J]. 草地学报, 30(11): 3106-3112.
DOI |
MEN X Y, LÜ S J, HOU D J, et al., 2022. Effects of grazing intensity on the density and spatial distribution of Cleistogenes songorica in desert steppe[J]. Acta Agrestia Sinica, 30(11): 3106-3112. | |
[29] |
任继周, 2012. 放牧, 草原生态系统存在的基本方式——兼论放牧的转型[J]. 自然资源学报, 27(8): 1259-1275.
DOI |
REN J Z, 2012. Grazing, the basic form of grassland ecosystem and its transformation[J]. Journal of Natural Resources, 27(8): 1259-1275. | |
[30] | 王珏, 2014. 内蒙古荒漠草原沙生针茅群落及土壤化学计量学特征[D]. 呼和浩特: 内蒙古大学: 78-84. |
WANG J, 2014. Stipa psammophila community and soil stoichiometric characteristics in Inner Mongolia desert steppe[D]. Hohhot: Inner Mongolia University: 78-84. | |
[31] | 王琪, 郑佳华, 张峰, 等, 2022. 放牧强度对短花针茅荒漠草原植物种群生态位的影响[J]. 中国草地学报, 44(10): 1-9. |
WANG Q, ZHENG J H, ZHANG F, et al., 2022. Effects of grazing intensity on the ecological niche of plant population in Stipa breviflora desert steppe[J]. Chinese Journal of Grassland, 44(10): 1-9. | |
[32] |
王兴, 宋乃平, 杨新国, 等, 2013. 放牧扰动下草地植物多样性对土壤因子的响应[J]. 草业学报, 22(5): 27-36.
DOI |
WANG X, SONG N P, YANG X G, et al., 2013. The response of grassland plant diversity to soil factors under grazing disturbance[J]. Acta Prataculturae Sinica, 22(5): 27-36.
DOI |
|
[33] | 卫智军, 韩国栋, 赵钢, 等, 2013. 中国荒漠草原生态系统研究[M]. 北京: 科学出版社:1-28. |
WEI Z J, HAN G D, ZHAO G, et al., 2013. Desert steppe ecosystem research in China[M]. Beijing: Science Press: 1-28. | |
[34] |
向明学, 郭应杰, 古桑群宗, 等, 2019. 不同放牧强度对拉萨河谷温性草原植物群落和物种多样性的影响[J]. 草地学报, 27(3): 668-674.
DOI |
XIANG M X, GUO Y J, GU S Q Z, et al., 2019. Effects of grazing intensity on plant community and species diversity of temperate steppe in Lhasa River Valley[J]. Acta Agrestia Sinica, 27(3): 668-674. | |
[35] | 杨晶晶, 吐尔逊娜依∙热依木, 张青青, 等, 2019. 放牧强度对天山北坡中段山地草甸植被群落特征的影响[J]. 草业科学, 36(8): 1953-1961. |
YANG J J, TUERXUNNAYI R Y M, ZHANG Q Q, et al., 2019. Effects of grazing intensity on plant community characteristics in mountain meadows in the middle section of the northern slope of the Tianshan Mountains[J]. Pratacultural Science, 36(8): 1953-1961. | |
[36] |
张璐璐, 王孝安, 朱志红, 等, 2018. 模拟放牧强度与施肥对青藏高原高寒草甸群落特征和物种多样性的影响[J]. 生态环境学报, 27(3): 406-415.
DOI |
ZHANG L L, WANG X A, ZHU Z H, et al., 2018. The effects of simulated grazing intensity and fertilizing on the community characteristics and diversity in alpine meadow of Qinghai-Tibet Plateau[J]. Ecology and Environmental Sciences, 27(3): 406-415. | |
[37] | 张爽, 吕世杰, 丁莉君, 等, 2019. 荒漠草原主要植物种群数量特征对群落数量特征的影响[J]. 草原与草业, 31(3): 38-46. |
ZHANG S, LÜ S J, DING L J, et al., 2019. Effects of quantitative characteristics of main plant populations on quantitative characteristics of community in desert steppe[J]. Grassland and Prataculture, 31(3): 38-46. | |
[38] | 张爽, 卫智军, 吕世杰, 等, 2017. 放牧对短花针茅荒漠草原主要植物种群及群落地上现存量稳定性的影响[J]. 中国草地学报, 39(6): 26-32. |
ZHANG S, WEI Z J, LÜ S J, et al., 2017. Study on aboveground biomass and vegetation stability of main plant populations and community in Stipa breviflora desert steppe[J]. Chinese Journal of Grassland, 39(6): 26-32. | |
[39] | 张振超, 2020. 青藏高原典型高寒草地地上-地下的退化过程和禁牧恢复效果研究[D]. 北京: 北京林业大学: 21-27. |
ZHANG Z C, 2020. The above- and below- ground processes of degradation and restoring efficiency of grazing exclusion in typical alpine grasslands on the Tibetan plateau[D]. Beijing: Beijing Forestry University: 21-27. | |
[40] | 郑伟, 董全民, 李世雄, 等, 2013. 放牧对环青海湖高寒草原主要植物种群生态位的影响[J]. 草业科学, 30(12): 2040-2046. |
ZHENG W, DONG Q M, LI S X, et al., 2013. Effects of grazing on niche of major plant populations in alpine steppe in Qinghai Lake region[J]. Pratacultural Science, 30(12): 2040-2046. | |
[41] |
周道玮, 孙海霞, 钟荣珍, 等, 2016. 草地畜牧理论与实践[J]. 草地学报, 24(4): 718-725.
DOI |
ZHOU D W, SUN H X, ZHONG R Z, et al., 2016. Principles and Practice of Grassland Framing[J]. Acta Agrestia Sinica, 24(4): 718-725. | |
[42] | 朱建平, 2016. 应用多元统计分析[M]. 第3版. 北京: 科学出版社: 109-116. |
ZHU J P, 2016. Application of multivariate statistical analysis[M]. Third edition. Beijing: Science Press: 109-116. |
[1] | 关玉亮, 甘先华, 殷祚云, 黄钰辉, 陶玉柱, 李宽, 张卫强, 邓彩琼, 曾祥尧, 黄芳芳. 南岭自然保护区不同海拔梯度植物多样性分布格局[J]. 生态环境学报, 2024, 33(6): 877-887. |
[2] | 卿彩霞, 陈圣宾, 邓杰文, 邓惺位, 李喆, 邱鹭. 生境数量和生境质量以及气象因子对成都市粪食性金龟物种多样性的影响[J]. 生态环境学报, 2024, 33(5): 708-719. |
[3] | 卫玺玺, 晁鑫艳, 郑景明, 唐可欣, 万龙, 周金星. 贺兰山东、西侧典型植物群落物种多样性差异及其影响因子[J]. 生态环境学报, 2024, 33(4): 520-530. |
[4] | 宋思梦, 林冬梅, 周恒宇, 罗宗志, 张丽丽, 易超, 林辉, 林兴生, 刘斌, 苏德伟, 郑丹, 余世葵, 林占熺. 种植巨菌草对乌兰布和沙漠植物物种多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(9): 1595-1605. |
[5] | 赵蔓, 张晓曼, 杨明洁. 林火干扰对栓皮栎-辽东栎混交林植物多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(10): 1732-1740. |
[6] | 张立进, 杜虎, 曾馥平, 黄国勤, 宋敏, 宋同清. 喀斯特峰丛洼地植被恢复过程中生产力与多样性关系探讨[J]. 生态环境学报, 2023, 32(1): 26-35. |
[7] | 冯凌, 喻理飞, 王阳, 张丽敏, 赵庆, 李方兵. 喀斯特地区植被不同恢复阶段功能冗余和功能多样性对群落稳定性的影响[J]. 生态环境学报, 2022, 31(4): 670-678. |
[8] | 陈瑶, 李云红, 邵英男, 刘玉龙, 刘延坤. 阔叶红松林物种多样性与土壤理化特征研究[J]. 生态环境学报, 2022, 31(4): 679-687. |
[9] | 洪文君, 莫罗坚, 张浩. 华南地区马占相思人工林不同改造模式对林分结构的影响[J]. 生态环境学报, 2021, 30(7): 1360-1367. |
[10] | 何斌, 李青, 陈群利, 李望军, 游萍. 黔西北黄杉群落物种多样性的海拔梯度格局[J]. 生态环境学报, 2021, 30(6): 1111-1120. |
[11] | 潘红丽, 李慧超, 余志祥, 蔡蕾, 李旭华, 刘兴良. 攀枝花市入侵植物马缨丹群落的物种组成与多样性研究[J]. 生态环境学报, 2021, 30(6): 1177-1182. |
[12] | 王琪, 张峰, 赵萌莉, 张新宇, 张军. 放牧强度对短花针茅荒漠草原植物群落组成及种间关系的影响[J]. 生态环境学报, 2021, 30(10): 1961-1967. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||