生态环境学报 ›› 2025, Vol. 34 ›› Issue (9): 1386-1397.DOI: 10.16258/j.cnki.1674-5906.2025.09.006
刘卿1,2,3(), 龚雨顺4, 王伟1,*(
), 方贤滔2,3, 吴金水2,3, 沈健林2,3,*(
)
收稿日期:
2025-01-09
出版日期:
2025-09-18
发布日期:
2025-09-05
通讯作者:
*沈健林。E-mail: jlshen@isa.ac.cn;王伟。Email: 作者简介:
刘卿(1999年生),女,硕士研究生,研究方向为土壤碳循环。E-mail: 2111972814@qq.com
基金资助:
LIU Qing1,2,3(), GONG Yushun4, WANG Wei1,*(
), FANG Xiantao2,3, WU Jinshui2,3, SHEN Jianlin2,3,*(
)
Received:
2025-01-09
Online:
2025-09-18
Published:
2025-09-05
摘要: 土壤有机碳库是陆地生态系统中最大的碳库,其数量和质量决定土壤肥力状况,是评估土壤质量的重要指标。茶园是中国重要的土地利用类型,研究其土壤有机碳库组成与时空变化特征对精准评估区域碳汇具有重要意义。以位于亚热带区的湖南省12个典型植茶区为研究对象,采集不同种植年限(0-5、10-15、20年以上)茶园土壤,研究种植年限、土层深度、茶垄/茶行分布对茶园土壤有机碳质量分数及组成特征,以期为茶园土壤碳汇评估和茶园培肥提供科学依据。结果表明,湖南典型茶园在0-20 cm和20-40 cm土层土壤有机碳(SOC)质量分数分别为11-48.88 g·kg−1和1.79-33.08 g·kg−1,随种植年限的增加,土壤有机碳呈上升趋势,在0-5年茶园、10-15年茶园和20年以上茶园0-40 cm土层土壤有机碳平均质量分数分别为11.12、12.89、17.91 g·kg−1。茶垄土壤有机碳质量分数显著低于茶行,茶行0-40 cm土层土壤有机碳平均质量分数是茶垄的1.37倍。茶园土壤可溶性有机碳、微生物量碳、颗粒有机碳和矿物结合态质量分数分别占到土壤有机碳的1.21%、1.31%、25.71%和41.59%,各土壤有机碳组分的时空变化特征为随着种植年限的延长,土壤有机碳组分质量分数增加,但矿物结合态有机碳占土壤有机碳比例到20年以上茶园开始降低,茶行土壤有机碳组分质量分数显著高于茶垄。随机森林分析显示影响区域茶园土壤有机碳及其组分质量分数的因子中最关键的因子是海拔,估算得到湖南省茶园表层0-40 cm土壤有机碳储量达18.6×106 t。综上,随土层深度的增加,茶园土壤有机碳及其组分质量分数减少,植茶年限的增加有利于茶园土壤有机碳及其组分质量分数的累积,茶园具有一定的碳汇功能。
中图分类号:
刘卿, 龚雨顺, 王伟, 方贤滔, 吴金水, 沈健林. 湖南典型茶园土壤有机碳及其组分时空特征[J]. 生态环境学报, 2025, 34(9): 1386-1397.
LIU Qing, GONG Yushun, WANG Wei, FANG Xiantao, WU Jinshui, SHEN Jianlin. Spatio-temporal Characteristics of Soil Organic Carbon and Its Components in Typical tea Gardens in Hunan Province, China[J]. Ecology and Environmental Sciences, 2025, 34(9): 1386-1397.
地区 | 经纬度 | 成土母质 | 土壤类型 | 地形地貌 | 海拔/m | 年均降雨量/mm | 年均温度/℃ | |
---|---|---|---|---|---|---|---|---|
湘北 | 石门县 | 29.67697°N,111.13568°E | 板页岩风化物 | 黄壤 | 山地 | 800.0 | 1390.3 | 18.4 |
安化县 | 28.06293°N,110.94252°E | 板页岩风化物 | 红壤 | 山地 | 800.0 | 1622.0 | 16.2 | |
湘中 | 宁乡市 | 28.15858°N,112.17545°E | 第四纪红土 | 红壤 | 丘陵 | 500.0 | 1472.9 | 17.6 |
长沙县 | 28.16967°N,112.17417°E | 花岗岩风化物 | 红壤 | 丘陵 | 300.0 | 1577.0 | 17.2 | |
新化县 | 27.93049°N,111.62245°E | 板页岩风化物 | 红壤 | 山地 | 780.0 | 1455.9 | 17.0 | |
湘南 | 常宁市 | 26.18958°N,112.29028°E | 第四纪红土 | 红壤 | 山地 | 720.0 | 1440.0 | 18.1 |
零陵区 | 26.17587°N,111.47099°E | 第四纪红土 | 红壤 | 丘陵 | 169.4 | 1595.0 | 18.1 | |
汝城县 | 25.79194°N,112.90789°E | 花岗岩风化物 | 红壤 | 丘陵 | 330.0 | 1545.7 | 16.5 | |
湘西 | 沅陵县 | 28.66148°N,110.66289°E | 板页岩风化物 | 黄壤 | 山地 | 600.0 | 1440.0 | 17.0 |
古丈县 | 28.64958°N,109.97962°E | 板页岩风化物 | 黄壤 | 山地 | 640.0 | 1475.9 | 16.0 | |
吉首市 | 28.21581°N,109.82114°E | 花岗岩风化物 | 黄壤 | 丘陵 | 321.4 | 1440.5 | 16.4 | |
保靖县 | 28.73624°N,109.63897°E | 石灰岩风化物 | 黄壤 | 丘陵 | 450.0 | 1470.0 | 16.1 |
表1 湖南省茶叶主产区茶园基本信息
Table 1 Basic information of tea gardens in main tea producing areas of Hunan Province
地区 | 经纬度 | 成土母质 | 土壤类型 | 地形地貌 | 海拔/m | 年均降雨量/mm | 年均温度/℃ | |
---|---|---|---|---|---|---|---|---|
湘北 | 石门县 | 29.67697°N,111.13568°E | 板页岩风化物 | 黄壤 | 山地 | 800.0 | 1390.3 | 18.4 |
安化县 | 28.06293°N,110.94252°E | 板页岩风化物 | 红壤 | 山地 | 800.0 | 1622.0 | 16.2 | |
湘中 | 宁乡市 | 28.15858°N,112.17545°E | 第四纪红土 | 红壤 | 丘陵 | 500.0 | 1472.9 | 17.6 |
长沙县 | 28.16967°N,112.17417°E | 花岗岩风化物 | 红壤 | 丘陵 | 300.0 | 1577.0 | 17.2 | |
新化县 | 27.93049°N,111.62245°E | 板页岩风化物 | 红壤 | 山地 | 780.0 | 1455.9 | 17.0 | |
湘南 | 常宁市 | 26.18958°N,112.29028°E | 第四纪红土 | 红壤 | 山地 | 720.0 | 1440.0 | 18.1 |
零陵区 | 26.17587°N,111.47099°E | 第四纪红土 | 红壤 | 丘陵 | 169.4 | 1595.0 | 18.1 | |
汝城县 | 25.79194°N,112.90789°E | 花岗岩风化物 | 红壤 | 丘陵 | 330.0 | 1545.7 | 16.5 | |
湘西 | 沅陵县 | 28.66148°N,110.66289°E | 板页岩风化物 | 黄壤 | 山地 | 600.0 | 1440.0 | 17.0 |
古丈县 | 28.64958°N,109.97962°E | 板页岩风化物 | 黄壤 | 山地 | 640.0 | 1475.9 | 16.0 | |
吉首市 | 28.21581°N,109.82114°E | 花岗岩风化物 | 黄壤 | 丘陵 | 321.4 | 1440.5 | 16.4 | |
保靖县 | 28.73624°N,109.63897°E | 石灰岩风化物 | 黄壤 | 丘陵 | 450.0 | 1470.0 | 16.1 |
地区 | pH | 全氮质量分数/ (g·kg−1) | 全磷质量分数/ (g·kg−1) | 全钾质量分数/ (g·kg−1) | 土壤有机碳 质量分数/ (g·kg−1) | 可溶性有机碳质量分数/ (g·kg−1) | 微生物量碳 质量分数/ (g·kg−1) | 颗粒有机碳 质量分数/ (g·kg−1) | 矿物结合态有机碳质量分数/ (g·kg−1) |
---|---|---|---|---|---|---|---|---|---|
石门县 | 4.71±0.09bcd | 2.02±0.37ab | 1.24±0.26a | 15.14±0.52bc | 17.60±3.67ab | 0.20±0.02abcd | 0.25±0.06bc | 7.42±1.37ab | 6.29±1.00bc |
安化县 | 4.81±0.19bcd | 1.19±0.1cd | 0.56±0.07b | 13.50±0.37cde | 12.43±1.10b | 0.15±0.03cd | 0.15±0.02cd | 1.97±0.23de | 4.11±0.35c |
宁乡市 | 4.61±0.14cd | 1.08±0.37d | 0.46±0.14b | 15.48±1.61bc | 12.17±1.50b | 0.16±0.05bcd | 0.10±0.03d | 1.13±0.50e | 4.76±1.15c |
长沙县 | 4.73±0.13bcd | 0.81±0.14d | 0.41±0.05b | 17.45±1.34bc | 9.81±1.34b | 0.19±0.04abcd | 0.19±0.04bcd | 2.22±0.52de | 4.98±0.60bc |
新化县 | 4.93±0.11bcd | 1.57±0.15bcd | 0.38±0.06b | 12.64±2.25cde | 17.62±2.23ab | 0.20±0.03abcd | 0.20±0.03bcd | 4.30±0.90cd | 6.76±0.78bc |
常宁市 | 4.52±0.09d | 1.94±0.06abc | 1.27±0.06a | 16.66±2.00bc | 23.63±0.86a | 0.26±0.03abc | 0.11±0.02d | 3.23±0.18cde | 15.57±0.68a |
零陵区 | 5.82±0.21a | 1.06±0.07d | 0.40±0.05b | 8.62±0.37de | 13.20±0.82b | 0.28±0.03a | 0.28±0.03bc | 4.69±0.55bcd | 5.42±0.28bc |
汝城县 | 4.73±0.08bcd | 1.30±0.04bcd | 0.62±0.05b | 7.44±0.42e | 14.37±0.58b | 0.30±0.01a | 0.12±0.02d | 5.09±0.75abcd | 6.56±0.49bc |
沅陵县 | 5.30±0.28ab | 0.95±0.12d | 0.32±0.03b | 12.49±0.56cde | 11.30±1.41b | 0.10±0.01d | 0.16±0.03bcd | 2.40±0.69de | 5.89±0.59bc |
古丈县 | 4.41±0.07d | 2.41±0.17a | 1.07±0.19a | 14.48±0.56bcd | 24.70±2.65a | 0.27±0.02ab | 0.49±0.02a | 7.72±0.89a | 7.96±0.66bc |
吉首市 | 5.23±0.10abc | 1.16±0.09cd | 0.40±0.06b | 20.18±0.67ab | 12.25±0.90b | 0.13±0.01d | 0.15±0.02cd | 2.78±0.43cde | 5.39±0.36bc |
保靖县 | 5.57±0.21a | 1.49±0.12bcd | 0.40±0.05b | 23.66±3.04a | 13.52±1.02b | 0.11±0.01d | 0.29±0.03b | 5.57±0.53abc | 4.93±0.57bc |
表2 茶园土壤基本理化性质和有机碳及其组分质量分数
Table 2 Soil physicochemical properties, soil organic carbon and its components in tea garden
地区 | pH | 全氮质量分数/ (g·kg−1) | 全磷质量分数/ (g·kg−1) | 全钾质量分数/ (g·kg−1) | 土壤有机碳 质量分数/ (g·kg−1) | 可溶性有机碳质量分数/ (g·kg−1) | 微生物量碳 质量分数/ (g·kg−1) | 颗粒有机碳 质量分数/ (g·kg−1) | 矿物结合态有机碳质量分数/ (g·kg−1) |
---|---|---|---|---|---|---|---|---|---|
石门县 | 4.71±0.09bcd | 2.02±0.37ab | 1.24±0.26a | 15.14±0.52bc | 17.60±3.67ab | 0.20±0.02abcd | 0.25±0.06bc | 7.42±1.37ab | 6.29±1.00bc |
安化县 | 4.81±0.19bcd | 1.19±0.1cd | 0.56±0.07b | 13.50±0.37cde | 12.43±1.10b | 0.15±0.03cd | 0.15±0.02cd | 1.97±0.23de | 4.11±0.35c |
宁乡市 | 4.61±0.14cd | 1.08±0.37d | 0.46±0.14b | 15.48±1.61bc | 12.17±1.50b | 0.16±0.05bcd | 0.10±0.03d | 1.13±0.50e | 4.76±1.15c |
长沙县 | 4.73±0.13bcd | 0.81±0.14d | 0.41±0.05b | 17.45±1.34bc | 9.81±1.34b | 0.19±0.04abcd | 0.19±0.04bcd | 2.22±0.52de | 4.98±0.60bc |
新化县 | 4.93±0.11bcd | 1.57±0.15bcd | 0.38±0.06b | 12.64±2.25cde | 17.62±2.23ab | 0.20±0.03abcd | 0.20±0.03bcd | 4.30±0.90cd | 6.76±0.78bc |
常宁市 | 4.52±0.09d | 1.94±0.06abc | 1.27±0.06a | 16.66±2.00bc | 23.63±0.86a | 0.26±0.03abc | 0.11±0.02d | 3.23±0.18cde | 15.57±0.68a |
零陵区 | 5.82±0.21a | 1.06±0.07d | 0.40±0.05b | 8.62±0.37de | 13.20±0.82b | 0.28±0.03a | 0.28±0.03bc | 4.69±0.55bcd | 5.42±0.28bc |
汝城县 | 4.73±0.08bcd | 1.30±0.04bcd | 0.62±0.05b | 7.44±0.42e | 14.37±0.58b | 0.30±0.01a | 0.12±0.02d | 5.09±0.75abcd | 6.56±0.49bc |
沅陵县 | 5.30±0.28ab | 0.95±0.12d | 0.32±0.03b | 12.49±0.56cde | 11.30±1.41b | 0.10±0.01d | 0.16±0.03bcd | 2.40±0.69de | 5.89±0.59bc |
古丈县 | 4.41±0.07d | 2.41±0.17a | 1.07±0.19a | 14.48±0.56bcd | 24.70±2.65a | 0.27±0.02ab | 0.49±0.02a | 7.72±0.89a | 7.96±0.66bc |
吉首市 | 5.23±0.10abc | 1.16±0.09cd | 0.40±0.06b | 20.18±0.67ab | 12.25±0.90b | 0.13±0.01d | 0.15±0.02cd | 2.78±0.43cde | 5.39±0.36bc |
保靖县 | 5.57±0.21a | 1.49±0.12bcd | 0.40±0.05b | 23.66±3.04a | 13.52±1.02b | 0.11±0.01d | 0.29±0.03b | 5.57±0.53abc | 4.93±0.57bc |
图2 植茶年限对茶园土壤有机碳及其组分质量分数的影响 不同小写字母表示在0.05水平上差异显著(p<0.05)。下同
Figure 2 Effects of tea planting years on soil organic carbon and its components in tea garden
指标 | SOC | DOC | MBC | POC | MAOC |
---|---|---|---|---|---|
SOC | 1 | ||||
DOC | 0.83** | 1 | |||
MBC | 0.87** | 0.96** | 1 | ||
POC | 0.58 | 0.53 | 0.63* | 1 | |
MAOC | 0.94** | 0.87** | 0.87** | 0.68* | 1 |
表3 土壤有机碳及其组分之间的相关性
Table 3 Correlation between soil organic carbon and its components
指标 | SOC | DOC | MBC | POC | MAOC |
---|---|---|---|---|---|
SOC | 1 | ||||
DOC | 0.83** | 1 | |||
MBC | 0.87** | 0.96** | 1 | ||
POC | 0.58 | 0.53 | 0.63* | 1 | |
MAOC | 0.94** | 0.87** | 0.87** | 0.68* | 1 |
图5 土壤有机碳及其组分与土壤环境因子的冗余分析 图中非数值型因子转化为数值型进行计算,茶行/茶垄位置因子中茶行赋值为1,茶垄赋值为2;土壤类型中把成土母质板页岩、第四纪红土、花岗岩和石灰岩赋值为1、2、3、4,把黄壤赋值为1,红壤赋值为2,成土母质和类型组合;地形中把山地赋值为1,丘陵赋值为2。下同
Figure 5 Redundancy analysis of soil organic carbon and its components with soil environmental factors
图6 土壤环境因子对茶园土壤有机碳质量分数影响的相对重要性 TN:全氮;TP:全磷:TK:全钾;MAT:年均温度;MAP:年均降雨;pH:酸碱度
Figure 6 The relative importance of soil environmental factors on soil organic carbon content in tea garden
[1] | AWALE R, EMESON A M, MACHADO S, 2017. Soil organic carbon pools as early indicators for soil organic matter stock changes under different tillage practices in inland pacific northwest[J]. Frontiers in Ecology and Evolution, 5: 00096. |
[2] | CAMBARDELLA C A, ELLIOTT E T, 1992. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 56(3): 777-783. |
[3] | CARVALHAIS N, FORKEL M, KHOMIK M, et al., 2014. Global covariation of carbon turnover times with climate in terrestrial ecosystems[J]. Nature, 514(7521): 213-217. |
[4] | ESTEBAN G, JOBBÁGY, JACKSON R B, 2001. The distribution of soil nutrients with depth: Global patterns and the imprint of plants[J]. Biogeochemistry, 53(1): 51-77. |
[5] | GHOSH B N, MEENA V S, SINGH R J, et al., 2019. Effects of fertilization on soil aggregation, carbon distribution and carbon management index of maize-wheat rotation in the north-western Indian Himalayas[J]. Ecological Indicators, 105: 415-424. |
[6] | HIGASHI T, MU Y H, KOMATSUZAKI M, et al., 2014. Tillage and cover crop species affect soil organic carbon in Andosol, Kanto, Japan[J]. Soil and Tillage Research, 138: 64-72. |
[7] |
MAHECHA M D, REICHSTEIN M, CARVALHAIS N, et al., 2010. Global convergence in the temperature sensitivity of respiration at ecosystem level[J]. Science, 329(5993): 838-840.
DOI PMID |
[8] | MISHRA G, GIRI K, JANGIR A, et al., 2020. Projected trends of soil organic carbon stocks in Meghalaya state of Northeast Himalayas, India. Implications for a policy perspective[J]. Science of the Total Environment, 698: 134266. |
[9] | PANG D B, CUI M, LIU Y G, et al., 2019. Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of southwest China[J]. Ecological Engineering, 138: 391-402. |
[10] |
PUTZ S, GROENEVELD J, HENLE K, et al., 2014. Long-term carbon loss in fragmented Neotropical forests[J]. Nature Communications, 5: 5037.
DOI PMID |
[11] |
TAVARES M L R, NAHAS E, 2014. Humic fractions of forest, pasture and maize crop soils resulting from microbial activity[J]. Brazilian Journal of Microbiology, 45(3): 963-969.
PMID |
[12] | WANG S Q, LI T X, ZHENG Z C, 2016. Effect of tea plantation age on the distribution of soil organic carbon and nutrient within micro-aggregates in the hilly region of western Sichuan, China[J]. Ecological Engineering, 90: 113-119. |
[13] | WANG S Q, LI T X, ZHENG Z C, et al., 2019. Soil organic carbon and nutrients associated with aggregate fractions in a chrono sequence of tea plantations[J]. Ecological Indicators, 101: 444-452. |
[14] | WIESMEIER M, SPÖRLEIN P, GEUß U, et al., 2012. Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth[J]. Global Change Biology, 18(7): 2233-2245. |
[15] | WU J S, JOERGENSEN R G, POMMERENING B, et al., 1990. Measurement of soil microbial biomass C by fumigation-extraction: an automated procedure[J]. Acta Agrestia Sinica, 22(8): 1167-1169. |
[16] | XU R K, ZHAO A Z, LI Q M, et al., 2003. Acidity regime of the Red Soils in a subtropical region of southern China under field conditions[J]. Geoderma, 115(1-2): 75-84. |
[17] |
白潇, 张世熔, 钟钦梅, 等, 2018. 中国东部区域土壤活性有机碳分布特征及其影响因素[J]. 生态环境学报, 27(9): 1625-1631.
DOI |
BAI X, ZHANG S R, ZHONG Q M, et al., 2018. Distribution and influencing factors of soil labile organic carbon among the east area of China[J]. Ecology and Environmental Sciences, 27(9): 1625-1631. | |
[18] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 2000. Soil agrochemical analysis[M]. Beijing: China Agriculture Press. | |
[19] |
常博然, 陈茹岚, 王彪, 等, 2024. 藏东南折拉山不同林分类型土壤有机碳及其组分分布特征[J]. 生态环境学报, 33(10): 1495-1505.
DOI |
CHANG B R, CHEN R L, WANG B, et al., 2024. Characteristics of soil organic carbon and its component distribution in different forest stand types on mount zola in southeastern Tibet[J]. Ecology and Environmental Sciences, 33(10): 1495-1505. | |
[20] | 陈仕栋, 2011. 湖南省土壤有机碳密度、储量的空间分布格局及其影响因子分析[D]. 长沙: 中南林业科技大学. |
CHEN S D, 2011. Spatial distribution pattern and influencing factors of soil organic carbon density and storage in Hunan Province[D]. Changsha: Central South University of Forestry and Technology. | |
[21] | 陈新邦, 唐光木, 张云舒, 等, 2023. 不同类型外源碳添加对灰漠土土壤碳储量的影响[J]. 水土保持学报, 37(3): 330-335. |
CHEN X B, TANG G M, ZHANG Y S, et al., 2023. Effects of different types of exogenous carbon addition on soil carbon storage in grey desert soil[J]. Journal of Soil and Water Conservation, 37(3): 330-335. | |
[22] | 杜磊, 2023. 川西低山丘陵区不同品种植茶土壤有机碳库稳定机制研究[D]. 雅安: 四川农业大学. |
DU L, 2023. Research on the stabilization mechanism of soil organic carbon pool of different tea varieties in the low hilly area of western Sichuan[D]. Ya’an: Sichuan Agricultural University. | |
[23] |
杜雪, 王海燕, 邹佳何, 等, 2022. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 31(4): 663-669.
DOI |
DU X, WANG H Y, ZOU J H, et al., 2022. Distribution characteristics and influencing factors of soil organic carbon in spruce-fir broad-leaved mixed forest on north slope of Changbai Mountains[J]. Ecology and Environmental Sciences, 31(4): 663-669. | |
[24] | 范利超, 韩文炎, 李鑫, 等, 2015. 茶园与相邻林地土壤有机碳及基础呼吸的垂直分布特征[J]. 农业环境科学学报, 34(6): 1149-1157. |
FAN L C, HAN W Y, LI X, et al., 2015. Vertical distribution of soil organic carbon and soil basal respiration in tea soil and adjacent woodland soil[J]. Journal of Agro-Environment Science, 34(6): 1149-1157. | |
[25] | 高福丽, 夏建国, 2009. 不同种植年限茶园土壤有机无机复合状况及有机碳分布特征[J]. 水土保持学报, 23(1): 50-53, 72. |
GAO F L, XIA J G, 2009. Soil Organic-mineral complex status and distribution of organic carbon in tea gardens of different planting-year[J]. Journal of Soil and Water Conservation, 23(1): 50-53, 72. | |
[26] | 韩文炎, 阮建云, 林智, 等, 2002. 茶园土壤主要营养障碍因子及系列茶树专用肥的研制[J]. 茶叶科学, 22(1): 70-74. |
HAN W Y, YUAN J Y, LIN Z, et al., 2002. The major nutritional limiting factors in tea soils and development of tea specialty fertilizer series[J]. Journal of Tea Science, 22(1): 70-74. | |
[27] | 何平, 刘健, 余坤勇, 等, 2016. 南方竹林地土壤有机碳空间异质性研究[J]. 土壤通报, 47(2): 278-286. |
HE P, LIU J, YU K Y, et al., 2016. Research on spatial heterogeneity of soil organic carbon in the southern bamboo Forest[J]. Chinese Journal of Soil Science, 47(2): 278-286. | |
[28] | 李世玉, 2010. 中国茶园生态系统碳平衡研究[D]. 杭州: 浙江大学. |
LI S Y, 2010. Carbon balance of tea plantation ecosystem in China[D]. Hangzhou: Zhejiang University. | |
[29] | 李玮, 2015. 茶园土壤有机碳动态及其矿化特征研究[D]. 雅安: 四川农业大学. |
LI W, 2015. Research on the dynamics and mineralization characteristics of soil organic carbon in tea gardens[D]. Ya’an: Sichuan Agricultural University. | |
[30] | 李亚, 张黎明, 陈瀚阅, 等, 2019. 基于Landsat遥感影像和1꞉50000土壤数据库的福州市耕地有机碳动态变化研究[J]. 中国生态农业学报(中英文), 27(4): 581-590. |
LI Y, ZHANG L M, CHEN H Y, et al., 2019. Research on the dynamic changes of cultivated land organic carbon in fuzhou city based on landsat remote sensing images and a 1꞉50000 soil database[J]. Chinese Journal of Eco-Agriculture (Chinese & English), 27(4): 581-590. | |
[31] | 刘杰云, 邱虎森, 汤宏, 等, 2019. 生物质炭对双季稻水稻土微生物生物量碳、氮及可溶性有机碳氮的影响[J]. 环境科学, 40(8): 3799-3807. |
LIU J Y, QIU H S, TANG H, et al., 2019. Effects of biochar amendment on soil microbial biomass carbon, nitrogen and dissolved organic carbon, nitrogen in paddy soils[J]. Research of Environmental Sciences, 40(8): 3799-3807. | |
[32] | 刘敏英, 2012. 植茶年限对土壤团聚体组成及其有机碳组分影响[D]. 雅安: 四川农业大学. |
LIU M Y, 2012. Effects of tea planting years on soil aggregate composition and organic carbon fractions[D]. Ya’an: Sichuan Agricultural University. | |
[33] | 马红亮, 陈灿灿, 尹云锋, 等, 2024. 森林土壤不同粒径颗粒的碳矿化研究[J]. 土壤学报, 61(5): 1247-1259. |
MA H L, CHEN C C, YIN Y F, et al., 2024. Experimental study on carbon mineralization of different sizes particle in forest soils[J]. Acta Pedologica Sinica, 61(5): 1247-1259. | |
[34] | 马维伟, 刘强, 李广, 等, 2024. 甘肃尕海湿地不同植被退化阶段土壤颗粒有机碳含量及动态[J/OL]. 土壤学报, 1-13 [2024-12-11]. http://kns.cnki.net/kcms/detail/32.1119.P.20240710.1259.006.html. |
MA W W, LIU Q, LI G, et al., 2024. Temporal dynamics and content of soil particulate organic of gahai wetland in gansu province during vegetation degradation succession[J/OL]. Acta Pedologica Sinica, 1-13 [2024-12-11]. http://kns.cnki.net/kcms/detail/32.1119.P.20240710.1259.006.html. | |
[35] | 梅宇, 梁晓, 2024. 2023年我国茶叶产销及进出口形势分析[J]. 中国茶叶, 46(4): 18-26. |
MEI Y, LIANG X, 2024. Analysis of China’s Tea Production, Sales, Import and Export Situation in 2023[J]. China Tea Marketing Association, 46(4): 18-26. | |
[36] | 申玲芝, 2024. 福建省安溪县茶园生态系统碳储量及碳汇潜力评估[D]. 福州: 福建农林大学. |
SHEN L Z, 2024. Carbon storage and carbon sink potential assessment of tea garden ecosystem in Anxi County, Fujian Province[D]. Fuzhou: Fujian Agriculture and Forestry University. | |
[37] | 沈艳, 傅瓦利, 蓝家程, 等, 2012. 岩溶山地不同土地利用方式土壤颗粒有机碳和矿物结合态有机碳的分布特征[J]. 水土保持研究, 19(6): 1-6. |
SHEN Y, FU W L, LAN J C, et al., 2012. Distribution characteristics of soil particulate organic carbon and mineral-associated organic carbon of different land use in karst mountain[J]. Journal of Soil and Water Conservation, 19(6): 1-6. | |
[38] | 汤宏, 沈健林, 刘杰云, 等, 2017. 稻秸的不同组分对水稻土微生物量碳氮及可溶性有机碳氮的影响[J]. 水土保持学报, 31(4): 264-271. |
TANG H, SHEN J L, LIU J Y, et al., 2017. Effects of different ingredients of rice straw incorporation on soil microbial biomass carbon, nitrogen and dissolved organic carbon, nitrogen in rice paddy soil[J]. Journal of Soil and Water Conservation, 31(4): 264-271. | |
[39] | 王峰, 陈玉真, 尤志明, 等, 2015. 菌渣施用对茶园土壤有机碳含量及腐殖质组成的影响[J]. 福建农业学报, 30(2): 198-203. |
WANG F, CHEN Y Z, YOU Z M, et al., 2015. Effect of applying spent mushroom culture residues to tea garden on soil organic carbon content and humus composition[J]. Fujian Journal of Agricultural Sciences, 30(2): 198-203. | |
[40] |
王晟强, 杜磊, 叶绍明, 2020. 桂南茶园土壤团聚体有机碳和养分对植茶年限的响应[J]. 应用生态学报, 31(3): 837-844.
DOI |
WANG S Q, DU L, YE S M, et al., 2020. Responses of soil aggregate-associated organic carbon and nutrients to tea cultivation age in southern Guangxi, China[J]. Chinese Journal of Applied Ecology, 31(3): 837-844.
DOI |
|
[41] | 王诗旖, 姚惠婷, 黄欣, 等, 2024. 茶园土壤有机碳库组分、影响因素及其稳定性研究进展[J]. 环境科学研究, 37(5): 1104-1115. |
WANG S Y, YAO H T, HUANG X, et al., 2024. Research progress on soil organic carbon pools components, influencing factors and stability of tea plantation[J]. Research of Environmental Sciences, 37(5): 1104-1115. | |
[42] | 王义祥, 叶菁, 王成己, 等, 2014. 不同经营年限对柑橘果园土壤有机碳及其组分的影响[J]. 生态环境学报, 23(10): 1574-1580. |
WANG Y X, YE J, WANG C J, et al., 2014. Effect of different cultivation years on soil organic carbon pools in citrus orchards[J]. Ecology and Environmental Sciences, 23(10): 1574-1580. | |
[43] |
吴彬, 徐晶晶, 成艳红, 等, 2021. 石灰施用对酸性土壤矿物结合有机碳形成的影响[J]. 中国农学通报, 37(21): 98-105.
DOI |
WU B, XU J J, CHENG H Y, et al., 2021. Effects of lime application on the formation of mineral - associated organic carbon in acidic soils[J]. Chinese Agricultural Science Bulletin, 37(21): 98-105. | |
[44] | 吴铭, 郑子成, 李廷轩, 等, 2014. 不同植茶年限土壤微团聚体及有机碳分布特征[J]. 长江流域资源与环境, 23(7): 1041-1047. |
WU M, ZHENG Z C, LI T X, et al., 2014. Distribution characteristics of soil micro - aggregates and organic carbon under different tea - planting durations[J]. Resources and Environment in the Yangtze Basin, 23(7): 1041-1047. | |
[45] | 冼海英, 肖波, 姚小萌, 等, 2024. 黄土高原生物结皮覆盖下表层土壤有机碳组分对模拟气候暖湿化的响应[J]. 应用生态学报, 36(1): 132-140. |
XIAN H Y, XIAO B, YAO X M, et al., 2024. Responses of organic carbon fractions in biocrust-covered surface soil to simulated warming and wetting on the Loess Plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 36(1): 132-140. | |
[46] | 辛宜静, 刘方, 陈祖拥, 等, 2024. 贵州区域茶园土壤有机碳空间分布的异质性及其主导因素[J]. 长江流域资源与环境, 33(7): 1589-1598. |
XIN Y J, LIU F, CHEN Z Y, et al., 2024. Spatial distribution and influencing factors of soil organic carbon in tea plantations in Guizhou province[J]. Resources and Environment in the Yangtze Basin, 33(7): 1589-1598. | |
[47] | 谢珊, 2024. 不同种植年限茶树生长对土壤碳氮组分及微生物多样性的影响[D]. 贵阳: 贵州大学. |
XIE S, 2024. Effects of tea tree growth with different planting durations on soil carbon and nitrogen components and microbial diversity[D]. Guizhou: Guizhou University. | |
[48] |
白龙龙, 盛雅琪, 徐丽丽, 等, 2024. “双碳”背景下我国稻田生态系统土壤固碳潜力分析[J]. 中国工程科学, 26(6): 246-256.
DOI |
BAI L L, SHNEG Y Q, XU L L, et al., 2024. Carbon sequestration potential of paddy soil in China under the carbon peaking and carbon neutrality goals[J]. Strategic Study of CAE, 26(6): 246-256.
DOI |
|
[49] | 余健, 房莉, 卞正富, 等, 2014. 土壤碳库构成研究进展[J]. 生态学报, 34(17): 4829-4838. |
YU J, FANG L, BIAN Z F, et al., 2014. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica, 34(17): 4829-4838. | |
[50] | 于君宝, 刘景双, 王金达, 等, 2004. 不同开垦年限黑土有机碳变化规律[J]. 水土保持学报, 18(1): 27-30. |
YU J B, LIU J S, WANG J D, et al., 2004. Organic carbon variation law of black soil during different tillage period[J]. Journal of Soil and Water Conservation, 18(1): 27-30. | |
[51] | 章晓芳, 郑生猛, 夏银行, 等, 2020. 红壤丘陵区土壤有机碳组分对土地利用方式的响应特征[J]. 环境科学, 41(3): 1466-1473. |
ZHANG X F, ZHENG S M, XIA Y H, et al., 2020. Responses of soil organic carbon fractions to land use types in hilly red soil[J]. Research of Environmental Sciences, 41(3): 1466-1473. | |
[52] | 张彦军, 郁耀闯, 牛俊杰, 等, 2020. 秦岭太白山北坡土壤有机碳储量的海拔梯度格局[J]. 生态学报, 40(2): 629-639. |
ZHANG Y J, YU Y C, NIU J J, et al., 2020. The altitudinal gradient pattern of soil organic carbon storage on the north slope of Taibai Mountain in the Qinling Mountains[J]. Acta Ecologica Sinica, 40(2): 629-639. | |
[53] | 赵秀婷, 辉朝茂, 朱书红, 等, 2022. 土壤有机质含量及其红外光谱特征对甜龙竹不同种植年限的响应[J]. 江西农业大学学报, 44(6): 1448-1456. |
ZHAO X T, HUI Z M, ZHU S H, et al., 2022. Response of soil organic matter content and its infrared spectral characteristics to different planting durations of Dendrocalamus brindisi[J]. Acta Agriculture Universitatis Jiangxiensis, 44(6): 1448-1456. |
[1] | 申佳龙, 吴栎宏, 李林霜, 周远芳, 杨孝民. 典型喀斯特山地小流域土地利用类型对土壤有机碳组分及其固碳效应的影响[J]. 生态环境学报, 2025, 34(3): 358-367. |
[2] | 石含之, 熊振乾, 曹怡然, 吴志超, 文典, 李富荣, 李冬琴, 王旭. 外源秸秆添加对红壤及黑土有机碳固定的影响[J]. 生态环境学报, 2024, 33(9): 1372-1383. |
[3] | 李建付, 黄志霖, 和成忠, 姜昕, 宋琳, 刘佳鑫, 陈利顶. 滇东喀斯特断陷盆地土壤有机碳空间分布特征及其关键影响因子[J]. 生态环境学报, 2024, 33(9): 1339-1352. |
[4] | 林丹丹, 毕华兴, 赵丹阳, 管凝, 韩金丹, 郭艳杰. 晋西黄土区不同密度刺槐林土壤有机碳组分及碳库特征[J]. 生态环境学报, 2024, 33(3): 379-388. |
[5] | 罗庆, 何清, 吴慧秋, 寇力月, 方旭, 张鑫雨, 李缘, 柴育廷, 张瑞生, 代文举. 辽河口湿地土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2024, 33(3): 333-340. |
[6] | 常博然, 陈茹岚, 王彪, 蓝天, 邓琳, 薛会英. 藏东南折拉山不同林分类型土壤有机碳及其组分分布特征[J]. 生态环境学报, 2024, 33(10): 1495-1505. |
[7] | 梁鑫, 韩亚峰, 郑柯, 王旭刚, 陈志怀, 杜鹃. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 2023, 32(9): 1615-1622. |
[8] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[9] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[10] | 秦佳琪, 肖指柔, 明安刚, 朱豪, 滕金倩, 梁泽丽, 陶怡, 覃林. 针阔人工混交林及其纯林对土壤微生物碳循环功能基因丰度的影响[J]. 生态环境学报, 2023, 32(10): 1719-1731. |
[11] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
[12] | 钱莲文, 余甜甜, 梁旭军, 王义祥, 陈永山. 茶园土壤酸化改良中生物炭应用5 a后的稳定性研究[J]. 生态环境学报, 2022, 31(7): 1442-1447. |
[13] | 龚玲玄, 王丽丽, 赵建宁, 刘红梅, 杨殿林, 张贵龙. 不同覆盖作物模式对茶园土壤理化性质及有机碳矿化的影响[J]. 生态环境学报, 2022, 31(6): 1141-1150. |
[14] | 王超, 杨倩楠, 张池, 李祥东, 陈静, 张晓龙, 陈金洁, 刘科学. 东南湿润区典型丹霞地貌土壤有机碳组分及其敏感性研究[J]. 生态环境学报, 2022, 31(6): 1132-1140. |
[15] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||