生态环境学报 ›› 2023, Vol. 32 ›› Issue (10): 1719-1731.DOI: 10.16258/j.cnki.1674-5906.2023.10.001
• 研究论文 •
下一篇
秦佳琪1(), 肖指柔1, 明安刚2,3, 朱豪1, 滕金倩1, 梁泽丽1, 陶怡2,4, 覃林1,*(
)
收稿日期:
2023-08-23
出版日期:
2023-10-18
发布日期:
2024-01-16
通讯作者:
*覃林。E-mail: nilniq@gxu.edu.cn作者简介:
秦佳琪(1998年生),女(壮族),硕士研究生,主要研究方向为森林生态学。E-mail: 18176721617@163.com
基金资助:
QIN Jiaqi1(), XIAO Zhirou1, MING Angang2,3, ZHU Hao1, TENG Jinqian1, LIANG Zeli1, TAO Yi2,4, QIN Lin1,*(
)
Received:
2023-08-23
Online:
2023-10-18
Published:
2024-01-16
摘要:
探究土壤微生物碳循环功能基因丰度对深刻理解土壤碳循环机制具有重要作用,然而土壤微生物碳循环功能基因丰度对不同人工林类型的响应特征尚不清楚。以南亚热带马尾松 (Pinus massoniana)-格木(Erythrophleum fordii)人工混交林及其纯林为研究对象,基于林地不同土层(0-20、20-40、40-60 cm)土壤样品的宏基因组测序数据以及土壤理化性质和有机碳组分,解析不同林分不同土层间土壤微生物碳循环(碳固定、碳降解和甲烷代谢)功能基因丰度的差异特征及其主导的土壤环境因子。结果表明:马尾松林土壤微生物碳固定功能基因(rcbL、MUT和PCCA)丰度显著高于其他2个林分,这与其土壤总磷(TP)含量较高且微生物生物量碳(MBC)、易氧化有机碳(EOC)、颗粒有机碳(POC)和惰性有机碳(ROC)含量显著较低的影响有关;土壤微生物碳降解功能基因(MAN2C1和bglB)丰度在马尾松林中显著高于混交林(P<0.05),主要受到马尾松林土壤有机碳(SOC)、MBC、可溶性有机碳(DOC)、EOC和ROC含量低的显著影响;马尾松林甲烷代谢功能基因(pmoA-amoA、pmoB-amoB和pmoC-amoC)丰度显著最高,这与土壤SOC、MBC、DOC、EOC和ROC的显著负作用有关。另外,3个人工林土壤微生物碳循环功能基因丰度基本随土壤深度增加而增加,主要与土壤SOC、C/N、MBC、DOC、EOC和ROC含量随土壤深度加深而降低密切相关。总之,马尾松林土壤微生物具有较高碳循环潜力,但3个林分土壤微生物碳循环潜力均随土壤深度增加而增强,土壤有机碳组分是主导3个人工林土壤微生物碳循环功能基因丰度差异的重要因素。
中图分类号:
秦佳琪, 肖指柔, 明安刚, 朱豪, 滕金倩, 梁泽丽, 陶怡, 覃林. 针阔人工混交林及其纯林对土壤微生物碳循环功能基因丰度的影响[J]. 生态环境学报, 2023, 32(10): 1719-1731.
QIN Jiaqi, XIAO Zhirou, MING Angang, ZHU Hao, TENG Jinqian, LIANG Zeli, TAO Yi, QIN Lin. Effect of Monoculture and Mixed Plantation with Coniferous and Broadleaved Tree Species on Soil Microbial Carbon Cycle Functional Gene Abundance[J]. Ecology and Environment, 2023, 32(10): 1719-1731.
碳循环功能基因 | 基因 | KO编号 |
---|---|---|
碳固定 | ||
卡尔文循环 | ||
核酮糖-二磷酸羧化酶大链 | rbcL | K01601 |
核糖5-磷酸异构酶 | rpiA | K01807 |
磷酸甘油酸激酶 | PGK | K00927 |
还原乙酰辅酶A途径 | ||
乙酰辅酶a合成酶 | acs | K01895 |
乙酰乙酰辅酶a合成酶 | acsA | K01907 |
还原三羧酸循环 | ||
2-氧代戊二酸/2-氧酸铁氧还蛋白 氧化还原酶亚单位 | korA | K00174 |
2-氧代戊二酸/2-氧代酸铁氧还蛋白 氧化还原酶亚基 | korB | K00175 |
3-烃基丙酸双循环 | ||
乙酰辅酶a羧化酶羧基转移酶亚单位 | accA | K01962 |
丙酰辅酶a羧化酶α链 | PCCA | K01965 |
3-烃基丙酸/4-烃基丁酸循环 | ||
甲基丙二酰辅酶a变位酶 | MUT | K01847 |
二羧酸/4-烃基丁酸循环 | ||
磷酸烯醇丙酮酸羧化酶 | ppc | K01595 |
丙酮酸,正磷酸二激酶 | ppdK | K01006 |
碳降解 | ||
淀粉 | ||
Α-淀粉酶 | amyA | K01176 |
支链淀粉酶 | pulA | K01200 |
4-α-葡聚糖转移酶 | malQ | K00705 |
果胶 | ||
果胶酯酶 果胶裂解酶 | pectinesterase pel | K01051 K01728 |
半纤维素 | ||
Α-L-阿拉伯呋喃糖苷酶 | abfA | K01209 |
木酮糖激酶 | xylB | K00854 |
Α-甘露糖苷酶 | MAN2C1 | K01191 |
木糖异构酶 | xylA | K01805 |
纤维素 | ||
内切葡聚糖酶 | endoglucanase | K01179 |
Β-葡萄糖苷酶 | bglB | K05350 |
Β-葡萄糖苷酶 | bglX | K05349 |
几丁质 | ||
几丁质酶 | chitinase | K01183 |
N-乙酰氨基葡萄糖-6-磷酸脱乙酰酶 | nagA | K01443 |
木质素 | ||
儿茶酚2, 3-双加氧酶 甲烷代谢 | catE | K07104 |
甲烷氧化 | ||
甲烷/氨单加氧酶亚单位 | pmoA-amoA | K10944 |
甲烷/氨单加氧酶亚单位 | pmoB-amoB | K10945 |
甲烷/氨单加氧酶亚单位 | pmoC-amoC | K10946 |
甲烷生成 | ||
四氢甲蝶呤S-甲基转移酶亚基 | mtrA | K00577 |
表1 3个林分全部土壤样品的微生物碳循环功能基因
Table 1 Microbial carbon cycle functional genes in all soil samples from 3 studied plantations
碳循环功能基因 | 基因 | KO编号 |
---|---|---|
碳固定 | ||
卡尔文循环 | ||
核酮糖-二磷酸羧化酶大链 | rbcL | K01601 |
核糖5-磷酸异构酶 | rpiA | K01807 |
磷酸甘油酸激酶 | PGK | K00927 |
还原乙酰辅酶A途径 | ||
乙酰辅酶a合成酶 | acs | K01895 |
乙酰乙酰辅酶a合成酶 | acsA | K01907 |
还原三羧酸循环 | ||
2-氧代戊二酸/2-氧酸铁氧还蛋白 氧化还原酶亚单位 | korA | K00174 |
2-氧代戊二酸/2-氧代酸铁氧还蛋白 氧化还原酶亚基 | korB | K00175 |
3-烃基丙酸双循环 | ||
乙酰辅酶a羧化酶羧基转移酶亚单位 | accA | K01962 |
丙酰辅酶a羧化酶α链 | PCCA | K01965 |
3-烃基丙酸/4-烃基丁酸循环 | ||
甲基丙二酰辅酶a变位酶 | MUT | K01847 |
二羧酸/4-烃基丁酸循环 | ||
磷酸烯醇丙酮酸羧化酶 | ppc | K01595 |
丙酮酸,正磷酸二激酶 | ppdK | K01006 |
碳降解 | ||
淀粉 | ||
Α-淀粉酶 | amyA | K01176 |
支链淀粉酶 | pulA | K01200 |
4-α-葡聚糖转移酶 | malQ | K00705 |
果胶 | ||
果胶酯酶 果胶裂解酶 | pectinesterase pel | K01051 K01728 |
半纤维素 | ||
Α-L-阿拉伯呋喃糖苷酶 | abfA | K01209 |
木酮糖激酶 | xylB | K00854 |
Α-甘露糖苷酶 | MAN2C1 | K01191 |
木糖异构酶 | xylA | K01805 |
纤维素 | ||
内切葡聚糖酶 | endoglucanase | K01179 |
Β-葡萄糖苷酶 | bglB | K05350 |
Β-葡萄糖苷酶 | bglX | K05349 |
几丁质 | ||
几丁质酶 | chitinase | K01183 |
N-乙酰氨基葡萄糖-6-磷酸脱乙酰酶 | nagA | K01443 |
木质素 | ||
儿茶酚2, 3-双加氧酶 甲烷代谢 | catE | K07104 |
甲烷氧化 | ||
甲烷/氨单加氧酶亚单位 | pmoA-amoA | K10944 |
甲烷/氨单加氧酶亚单位 | pmoB-amoB | K10945 |
甲烷/氨单加氧酶亚单位 | pmoC-amoC | K10946 |
甲烷生成 | ||
四氢甲蝶呤S-甲基转移酶亚基 | mtrA | K00577 |
图1 不同林分不同土层之间土壤理化性质的比较 PMP:马尾松 (Pinus massoniana) 林;EFP:格木 (Erythrophleum fordii) 林;MPE:马尾松-格木混交 (Pinus massoniana- Erythrophleum fordii) 林。图中数据为平均值±标准差(n=3);不同大写字母表示同一土层不同林分类型间差异显著,不同小写字母表示同一林分不同土层间差异显著(P<0.05)。*:P<0.05;***:P<0.001;NS:P≥0.05
Figure 1 Comparison of soil physicochemical properties between different soil layers and forest stands
土层 | 林分类型 | w(MBC)/(mg∙kg−1) | w(DOC)/(mg∙kg−1) | w(EOC)/(mg∙kg−1) | w(POC)/(mg∙kg−1) | w(ROC)/(mg∙kg−1) |
---|---|---|---|---|---|---|
0-20 cm | PMP | 11.80±1.80Ab | 17.67±3.68Aa | 301.45±38.14Aa | 1091.00±86.09ABb | 12802.03±1472.29Ab |
EFP | 19.01±3.99Bb | 22.51±11.12Aa | 586.24±28.39Cb | 1235.58±210.61Bb | 13574.62±1225.81Ab | |
MPE | 16.36±0.74ABb | 21.29±4.50Aa | 436.65±65.99Bb | 837.25±96.56Ab | 13238.25±611.61Aab | |
20-40 cm | PMP | 11.56±2.03Ab | 14.45±4.24Aa | 266.81±43.12Aa | 573.92±122.68Aa | 7761.56±1254.92Aa |
EFP | 14.55±6.30Aab | 15.69±3.26Aa | 282.44±58.75Aa | 1296.46±101.68Bb | 10663.02±1148.89Ba | |
MPE | 13.73±3.99Ab | 17.17±4.99Aa | 175.81±50.45Aa | 478.28±32.78Aa | 13611.27±417.10Cb | |
40-60 cm | PMP | 6.37±0.83Aa | 15.47±3.28Aa | 265.60±44.39Aa | 677.66±43.70Aa | 8484.44±464.20Aa |
EFP | 9.03±0.59Ba | 10.79±2.30Aa | 260.93±44.75Aa | 878.92±143.22Ba | 10793.59±1019.76Aa | |
MPE | 6.18±0.77Aa | 13.56±6.45Aa | 210.74±59.12Aa | 588.06±53.65Aa | 10879.13±2044.52Aa | |
双因素方差 分析 | 林分 | 0.025* 1) | NS | 0.000** | 0.000** | 0.000** |
土层 | 0.000** 2) | 0.035* | 0.000** | 0.000** | 0.000** | |
林分×土层 | NS 3) | NS | 0.001** | 0.001** | 0.013* |
表2 不同林分不同土层土壤有机碳组分的比较
Table 2 Comparison of soil organic carbon components between different soil layers and forest stands
土层 | 林分类型 | w(MBC)/(mg∙kg−1) | w(DOC)/(mg∙kg−1) | w(EOC)/(mg∙kg−1) | w(POC)/(mg∙kg−1) | w(ROC)/(mg∙kg−1) |
---|---|---|---|---|---|---|
0-20 cm | PMP | 11.80±1.80Ab | 17.67±3.68Aa | 301.45±38.14Aa | 1091.00±86.09ABb | 12802.03±1472.29Ab |
EFP | 19.01±3.99Bb | 22.51±11.12Aa | 586.24±28.39Cb | 1235.58±210.61Bb | 13574.62±1225.81Ab | |
MPE | 16.36±0.74ABb | 21.29±4.50Aa | 436.65±65.99Bb | 837.25±96.56Ab | 13238.25±611.61Aab | |
20-40 cm | PMP | 11.56±2.03Ab | 14.45±4.24Aa | 266.81±43.12Aa | 573.92±122.68Aa | 7761.56±1254.92Aa |
EFP | 14.55±6.30Aab | 15.69±3.26Aa | 282.44±58.75Aa | 1296.46±101.68Bb | 10663.02±1148.89Ba | |
MPE | 13.73±3.99Ab | 17.17±4.99Aa | 175.81±50.45Aa | 478.28±32.78Aa | 13611.27±417.10Cb | |
40-60 cm | PMP | 6.37±0.83Aa | 15.47±3.28Aa | 265.60±44.39Aa | 677.66±43.70Aa | 8484.44±464.20Aa |
EFP | 9.03±0.59Ba | 10.79±2.30Aa | 260.93±44.75Aa | 878.92±143.22Ba | 10793.59±1019.76Aa | |
MPE | 6.18±0.77Aa | 13.56±6.45Aa | 210.74±59.12Aa | 588.06±53.65Aa | 10879.13±2044.52Aa | |
双因素方差 分析 | 林分 | 0.025* 1) | NS | 0.000** | 0.000** | 0.000** |
土层 | 0.000** 2) | 0.035* | 0.000** | 0.000** | 0.000** | |
林分×土层 | NS 3) | NS | 0.001** | 0.001** | 0.013* |
图2 不同林分不同土层碳固定功能基因丰度 PMP:马尾松林 Pinus massoniana plantation;EFP:格木 (Erythrophleum fordii) 林;MPE:马尾松-格木混交 (Pinus massoniana-Erythrophleum fordii) 林。图中数据为平均值±标准差(n=3);不同大写字母表示同一土层不同林分类型间差异显著,不同小写字母表示同一林分不同土层间差异显著性(P<0.05)。*:P<0.05;**:P<0.01;NS:P≥0.05。下同
Figure 2 Abundance of carbon fixation genes in different stands and soil layers
图5 土壤微生物碳固定、碳降解和甲烷代谢功能基因丰度与土壤环境因子的Pearson相关分析 蓝色和红色分别表示两个变量间正相关和负相关关系,颜色越深关系越紧密。*、**和***分别表示P<0.05、P<0.01和P<0.001
Figure 5 Pearson correlation analysis of soil microbial carbon fixation (a), carbon degradation (b), methane metabolism (c) functional gene abundance with soil environmental factors
[1] |
BANI A, PIOLI S, VENTURA M, et al., 2018. The role of microbial community in the decomposition of leaf litter and deadwood[J]. Applied Soil Ecology, 126: 75-84.
DOI URL |
[2] |
COOLEN M J, ORSI W D, 2015. The transcriptional response of microbial communities in thawing Alaskan permafrost soils[J]. Frontiers in Microbiology, 6: 197.
DOI PMID |
[3] |
CUI L L, LI X, LIN J, et al., 2022. The mineralization and sequestration of soil organic carbon in relation to gully erosion[J]. Catena, 214: 106218.
DOI URL |
[4] |
DENG J J, ZHU W X, ZHOU Y B, et al., 2019. Soil organic carbon chemical functional groups under different revegetation types are coupled with changes in the microbial community composition and the functional genes[J]. Forests, 10(3): 240.
DOI URL |
[5] |
DENG L, SHANGGUAN Z-P, 2017. Afforestation drives soil carbon and nitrogen changes in China[J]. Land Degradation and Development, 28(1): 151-165.
DOI URL |
[6] |
DING J J, ZHANG Y, WANG M, et al., 2015. Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests[J]. Molecular Ecology, 24(20): 5175-5185.
DOI PMID |
[7] |
HU Y G, ZHANG Z S, HUANG L, et al., 2019. Shifts in soil microbial community functional gene structure across a 61-year desert revegetation chronosequence[J]. Geoderma, 347: 126-134
DOI URL |
[8] |
HUANG J X, LIN T C, XIONG D C, et al., 2019. Organic carbon mineralization in soils of a natural forest and a forest plantation of southeastern China[J]. Geoderma, 344: 119-126.
DOI URL |
[9] |
KUYPERS M M M, MARCHANT H K, KARTAL B, 2018. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 16(5): 263-276.
DOI PMID |
[10] |
KOSUGI Y, MATSUURA N, LIANG Q C, et al., 2020. Wastewater treatment using the “sulfate reduction, denitrification anammox and partial nitrification (SRDAPN)” process[J]. Chemosphere, 256: 127092.
DOI URL |
[11] |
LI H, YANG S, XU Z W, et al., 2017. Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation[J]. Soil Biology and Biochemistry, 104: 18-29.
DOI URL |
[12] |
LIAO C, LI D, HUANG L, et al., 2020. Higher carbon sequestration potential and stability for deep soil compared to surface soil regardless of nitrogen addition in a subtropical forest[J]. Peer Journal, 8: e9128.
DOI URL |
[13] |
LIAO J J, DOU Y X, YANG X, et al., 2023. Soil microbial community and their functional genes during grassland restoration[J]. Journal of Environmental Management, 325(Part A): 116488.
DOI URL |
[14] |
LUO X Z, WEN D Z, HOU E Q, et al., 2022. Changes in the composition of soil microbial communities and their carbon-cycle genes following the conversion of primary broadleaf forests to plantations and secondary forests[J]. Land Degradation and Development, 33(6): 974-985.
DOI URL |
[15] |
LYNN T M, GE T D, YUAN H Z, et al., 2017. Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems[J]. Microbial Ecology, 73(3): 645-657.
DOI PMID |
[16] |
MA X Y, WANG T X, SHI Z, et al., 2022. Long-term nitrogen deposition enhances microbial capacities in soil carbon stabilization but reduces network complexity[J]. Microbiome, 10(1): 144.
DOI |
[17] |
PAN Y D, BIRDSEY R A, FANG J Y, et al., 2011. A large and persistent carbon sink in the world’s forests[J]. Science, 333(6045): 988-993.
DOI URL |
[18] |
PENG X Q, WANG W, 2016. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China[J]. Soil Biology and Biochemistry, 98: 74-84.
DOI URL |
[19] |
ROVIRA P, VALLEEJO V R, 2000. Examination of thermal and acid hydrolysis procedures in characterization of soil organic matter[J]. Communications in Soil Science and Plant Analysis, 31(1-2): 81-100.
DOI URL |
[20] |
SOKOL N W, SANDERMAN J, BRADFORD M A, 2019. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry[J]. Global Change Biology, 25(1): 12-24.
DOI PMID |
[21] |
TAN J L, WANG R, 2021. Research on evaluation and influencing factors of regional ecological efficiency from the perspective of carbon neutrality[J]. Journal of Environmental Management, 294: 113030.
DOI URL |
[22] |
TRIVEDI P, DELGADO-BAQUERIZO M, TRIVEDI C, et al., 2016. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships[J]. Isme Journal, 10(11): 2593-2604.
DOI PMID |
[23] |
WU H Q, DU S Y, ZHANG Y L, et al., 2019. Effects of irrigation and nitrogen fertilization on greenhouse soil organic nitrogen fractions and soil-soluble nitrogen pools[J]. Agricultural Water Management, 216: 415-424.
DOI URL |
[24] |
WANG X Y, LI W, XIAO Y T, et al., 2021. Abundance and diversity of carbon-fixing bacterial communities in karst wetland soil ecosystems[J]. Catena, 204: 105418.
DOI URL |
[25] |
WANG Y, ZHENG H, CHEN F L, et al., 2019. Forest restoration approaches affect soil compositions of lignin, substituted fatty acids, and lignin degradation-associated genes[J]. Applied Soil Ecology, 138: 213-219.
DOI URL |
[26] |
WANG Y, ZHENG H, CHEN F L, et al., 2020. Stabilities of soil organic carbon and carbon cycling genes are higher in natural secondary forests than in artificial plantations in southern China[J]. Land Degradation and Development, 31(18): 2986-2995.
DOI URL |
[27] |
XUE K, YUAN M M, SHI Z J, et al., 2016. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming[J]. Nature Climate Change, 6(6): 595-600.
DOI |
[28] |
YAN B S, SUN L P, LI J J, et al., 2020. Change in composition and potential functional genes of soil bacterial and fungal communities with secondary succession in Quercus liaotungensis forests of the Loess Plateau, western China[J]. Geoderma, 364: 114199.
DOI URL |
[29] |
YANG X D, NI K, SHI Y Z, et al., 2023. Metagenomics reveals N-induced changes in carbon-degrading genes and microbial communities of tea (Camellia sinensis L.) plantation soil under long-term fertilization[J]. Science of the Total Environment, 856: 159231.
DOI URL |
[30] |
YUE H W, WANG M M, WANG S P, et al., 2015. The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands[J]. Isme Journal, 9(9): 2012-2020.
DOI PMID |
[31] |
ZHANG M K, HE Z L, 2004. Long-term changes in organic carbon and nutrients of an Ultisol under rice cropping in southeast China[J]. Geoderma, 118(3-4): 167-179.
DOI URL |
[32] |
ZHENG Y, LIU X Z, ZHANG L M, et al., 2010. Do land utilization patterns affect methanotrophic communities in a Chinese upland red soil?[J]. Journal of Environmental Sciences, 22(12): 1936-1943.
PMID |
[33] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社: 1-120. |
BAO S D, 2000. Analysis for soil agriculture chemistry[M]. Beijing: China Agriculture Press: 1-120. | |
[34] |
陈科屹, 王建军, 何友均, 等, 2022. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估[J]. 生态环境学报, 31(9): 1725-1734.
DOI |
CHEN K Y, WANG J J, HE Y J, et al., 2022. Estimations of forest carbon storage and carbon sequestration potential of key state-owned forest region in Daxing’anling, Heilongjiang Province[J]. Ecology and Environmental Sciences, 31(9): 1725-1734. | |
[35] | 陈晓娟, 吴小红, 简燕, 等, 2014. 农田土壤自养微生物碳同化潜力及其功能基因数量、关键酶活性分析[J]. 环境科学, 35(3): 1144-1150. |
CHEN X J, WU X H, JIAN Y, et al., 2014. Carbon dioxide assimilation potential, functional gene amount and RubisCO activity of autotrophic microorganisms in agricultural soils[J]. Environmental Science, 35(3): 1144-1150. | |
[36] | 胡明慧, 赵建琪, 王玄, 等, 2022. 自然增温对南亚热带森林土壤微生物群落与有机碳代谢功能基因的影响[J]. 生态学报, 42(1): 359-369. |
HU M H, ZHAO J Q, WANG X, et al., 2022. Effects of natural warming on soil microorganisms communities and functional genes of soil organic carbon metabolism in subtropical forests[J]. Acta Ecologicala Sinica, 42(1): 359-369. | |
[37] | 李毳, 乔沙沙, 刘晋仙, 等, 2020. 温带亚高山针叶林土壤碳循环微生物群落的时空动态[J]. 中国环境科学, 40(10): 4540-4548. |
LI Q, QIAO S S, LIU J X, et al., 2020. Spatiotemporal dynamics of microbial communities involved in soil carbon cycling of subalpine temperate coniferous forest[J]. China Environmental Science, 40(10): 4540-4548. | |
[38] |
梁艳, 明安刚, 何友均, 等, 2021. 南亚热带马尾松-红椎混交林及其纯林土壤细菌群落结构与功能[J]. 应用生态学报, 32(3): 878-886.
DOI |
LIANG Y, MING A G, HE Y J, et al., 2021. Structure and function of soil bacterial communities in the monoculture and mixed plantation of Pinus massoniana and Castanopsis hystrix in southern subtropical China[J]. Chinese Journal of Applied Ecology, 32(3): 878-886.
DOI |
|
[39] | 刘合明, 杨志新, 刘树庆, 2008. 不同粒径土壤活性有机碳测定方法的探讨[J]. 生态环境, 17(5): 2046-2049. |
LIU H M, YANG Z X, LIU S Q, 2008. Methods for determining labile orange matter in different sized soil particles of different soils[J]. Ecology and Environment, 17(5): 2046-2049. | |
[40] | 刘茗, 曹林桦, 刘彩霞, 等, 2021. 亚热带4种典型森林植被土壤固碳细菌群落结构及数量特征[J]. 土壤学报, 58(4): 1028-1039. |
LIU M, CAO L H, LIU C X, et al., 2021. Characterization of population and community structure of carbon sequestration bacteria in soils under four types of forest vegetations typical of subtropical zone[J]. Acta Pedologica Sinica, 58(4): 1028-1039. | |
[41] | 刘世荣, 代力民, 温远光, 等, 2015. 面向生态系统服务的森林生态系统经营: 现状、挑战与展望[J]. 生态学报, 35(1): 1-9. |
LIU S R, DAI L M, WEN Y G, et al., 2015. A review on forest ecosystem management towards ecosystem services: Status, challenges, and future perspectives[J]. Acta Ecologica Sinica, 35(1): 1-9. | |
[42] | 刘世荣, 杨予静, 王晖, 2018. 中国人工林经营发展战略与对策: 从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营[J]. 生态学报, 38(1): 1-10. |
LIU S R, YANG Y J, WANG H, 2018. Development strategy and management countermeasures of planted forests in China: Transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services[J]. Acta Ecologica Sinica, 38(1): 1-10.
DOI URL |
|
[43] | 刘洋荧, 王尚, 厉舒祯, 等, 2017. 基于功能基因的微生物碳循环分子生态学研究进展[J]. 微生物学通报, 44(7): 1676-1689. |
LIU Y Y, WANG S, LI S Z, et al., 2017. Advances in molecular ecology on microbial functional genes of carbon cycle[J]. Microbiology China, 44(7): 1676-1689. | |
[44] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社:60-73. |
LU R K, 2000. Methods of agrochemical analysis of soil[M]. 北Beijing: China Agricultural Science and Technology Press:60-73. | |
[45] | 罗达, 史作民, 唐敬超, 等, 2014. 南亚热带乡土树种人工纯林及混交林土壤微生物群落结构[J]. 应用生态学报, 25(9): 2543-2550. |
LUO D, SHI Z M, TANG J C, et al., 2014. Soil microbial community structure of monoculture and mixed plantation stands of native tree species in south subtropical China[J]. Chinese Journal of Applied Ecology, 25(9): 2543-2550. | |
[46] |
宋瑞朋, 杨起帆, 郑智恒, 等, 2022. 3种林下植被类型对杉木人工林土壤有机碳及其组分特征的影响[J]. 生态环境学报, 31(12): 2283-2291.
DOI |
SONG R P, YANG Q F, ZHENG Z H, et al., 2022. Effects of three understory vegetation types on soil organic carbon and its components in Cunninghamia lanceolata plantation[J]. Ecology and Environmental Sciences, 31(12): 2283-2291. | |
[47] | 王芸, 郑华, 陈法霖, 等, 2012. 湿地松和马尾松人工林土壤甲烷代谢微生物群落的结构特征[J]. 生态学报, 32(8): 2458-2465. |
WANG Y, ZHENG H, CHEN F L, et al., 2012. Research of methane metabolic microbial community in soils of slash pine plantation and masson pine plantation[J]. Acta Ecologica Sinica, 32(8): 2458-2465.
DOI URL |
|
[48] | 吴金水, 林启美, 黄巧云, 等, 2006. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社:57-60. |
WU J S, LIN Q M, HUANG Q Y, et al., 2006. Methods for determination of soil microbial biomass and their applications[M]. Beijing: China Agricultural Science and Technology Press: 57-60. | |
[49] |
袁红朝, 秦红灵, 刘守龙, 等, 2011. 固碳微生物分子生态学研究[J]. 中国农业科学, 44(14): 2951-2958.
DOI |
YUAN H C, QIN H L, LIU S L, et al., 2011. Advances in research of molecular ecology of carbon fixation microorganism[J]. Scientia Agricultura Sinica, 44(14): 2951-2958. | |
[50] | 赵姣, 马静, 朱燕峰, 等, 2023. 植被类型对黄土高原露采矿山复垦土壤碳循环功能基因的影响[J]. 环境科学, 44(6): 3386-3395. |
ZHAO J, MA J, ZHU Y F, et al., 2023. Effects of vegetation types on carbon cycle functional genes in reclaimed soil from open pit mines in the Loess Plateau[J]. Environmental Science, 44(6): 3386-3395. |
[1] | 喻阳华, 吴银菇, 宋燕平, 李一彤. 不同林龄顶坛花椒林地土壤微生物浓度与生物量化学计量特征[J]. 生态环境学报, 2022, 31(6): 1160-1168. |
[2] | 段文军, 李达, 李冲. 5种不同林龄尾巨桉人工林林下植物多样性及其影响因素分析[J]. 生态环境学报, 2022, 31(5): 857-864. |
[3] | 温智峰, 魏识广, 李林, 叶万辉, 练琚愉. 南亚热带常绿阔叶林植物不同分类水平上的空间分布格局及空间关联[J]. 生态环境学报, 2022, 31(3): 440-450. |
[4] | 梁蕾, 马秀枝, 韩晓荣, 李长生, 张志杰. 模拟增温下凋落物对大青山油松人工林土壤温室气体通量的影响[J]. 生态环境学报, 2022, 31(3): 478-486. |
[5] | 宋瑞朋, 杨起帆, 郑智恒, 习丹. 3种林下植被类型对杉木人工林土壤有机碳及其组分特征的影响[J]. 生态环境学报, 2022, 31(12): 2283-2291. |
[6] | 肖军, 雷蕾, 曾立雄, 李肇晨, 马成功, 肖文发. 不同经营模式对华北油松人工林碳储量的影响[J]. 生态环境学报, 2022, 31(11): 2134-2142. |
[7] | 张天霖, 蔡章林, 赵厚本, 吴仲民, 周光益, 邱治军. 13C脉冲标记法研究非正常凋落物对土壤有机碳的激发效应[J]. 生态环境学报, 2021, 30(9): 1797-1804. |
[8] | 王玄, 熊鑫, 张慧玲, 赵梦頔, 胡明慧, 褚国伟, 孟泽, 张德强. 模拟酸雨对南亚热带森林凋落物分解和土壤呼吸的影响[J]. 生态环境学报, 2021, 30(9): 1805-1813. |
[9] | 宋贤冲, 蔡雪梅, 陈韬, 潘文, 石媛媛, 唐健, 曹继钊. 不同萌芽代次桉树根际和非根际土壤养分的变化特征[J]. 生态环境学报, 2021, 30(9): 1814-1820. |
[10] | 祁雪连, 葛晓敏, 钱壮壮, 张康, 郑旭, 钱琦, 丁晖, 唐罗忠. 武夷山天然针阔混交林与毛竹人工林土壤性质差异[J]. 生态环境学报, 2021, 30(8): 1599-1606. |
[11] | 王一荃, 周璋, 李意德, 陈德祥, 张涛, 杨繁. 不同热带森林空气负离子浓度评价研究[J]. 生态环境学报, 2021, 30(5): 898-906. |
[12] | 周笛轩, 林永标, 汪雁佳, 刘占锋, 周丽霞. 南亚热带不同人工林生态系统服务功能评估[J]. 生态环境学报, 2021, 30(5): 907-919. |
[13] | 王皓月, 郭月峰, 徐雅洁, 祁伟, 卜繁靖, 祁慧娟. 九峰山不同林分类型生态恢复植被-土壤系统耦合关系评价[J]. 生态环境学报, 2021, 30(12): 2309-2316. |
[14] | 张洋洋, 周清慧, 许骄阳, 魏鸣, 陈继豪, 何伟, 王鹏程, 晏召贵. 林龄对马尾松人工林林下植物与土壤种子库多样性的影响[J]. 生态环境学报, 2021, 30(11): 2121-2129. |
[15] | 张莎莎, 李爱琴, 王会荣, 王晶晶, 徐小牛. 不同海拔杉木人工林土壤碳氮磷生态化学计量特征[J]. 生态环境学报, 2020, 29(1): 97-104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||