生态环境学报 ›› 2024, Vol. 33 ›› Issue (9): 1339-1352.DOI: 10.16258/j.cnki.1674-5906.2024.09.002
李建付1(), 黄志霖2, 和成忠3, 姜昕3, 宋琳3, 刘佳鑫1,5, 陈利顶1,4,5,6,*(
)
收稿日期:
2024-01-22
出版日期:
2024-09-18
发布日期:
2024-10-18
通讯作者:
*陈利顶。E-mail: liding@ynu.edu.cn作者简介:
李建付(1996年生),男,硕士研究生,研究方向为生态学和土壤碳平衡研究。E-mail: 2093658255@qq.com
基金资助:
LI Jianfu1(), HUANG Zhilin2, HE Chengzhong3, JIANG Xin3, SONG Lin3, LIU Jiaxin1,5, CHEN Liding1,4,5,6,*(
)
Received:
2024-01-22
Online:
2024-09-18
Published:
2024-10-18
摘要:
滇东喀斯特地区作为典型的生态脆弱区,土地石漠化和水土流失严重、景观空间异质性高,这些因素强烈影响着土壤性质和碳循环过程,为评估该地区土壤有机碳储量动态变化带来巨大困难。通过探究喀斯特地区土壤有机碳空间分布特征及其关键影响因素,进而提升喀斯特土壤碳汇能力,对实现碳中和目标以及减缓全球气候变暖具有重要意义。基于滇东喀斯特地区典型区域土壤调查数据,利用地统计学方法、随机森林模型(RF)和SHAP解释方法(SHAP),分析了土壤有机碳空间分布特征和关键影响因子及其影响效应。结果表明,1)研究区表层土壤有机碳质量分数为1.45-56.0 g∙kg−1,变异系数为46.7%,空间变异较大。2)不同土地利用类型、土壤类型之间土壤有机碳含量差异显著(p<0.010),随着海拔上升,表层土壤有机碳含量呈现先下降后上升的趋势。3)土壤有机碳空间分布具有中等程度的空间自相关性(块金系数:48.4%),空间变异主要由总氮、总磷、降水量、海拔和pH主导,土壤氮、磷等关键因子解释了土壤有机碳88.5%的空间变异。4)关键影响因子对土壤有机碳的影响存在阈值或峰值效应。当总氮超过阈值点1.75 g∙kg−1后,其对土壤有机碳的影响由负转正;总磷对土壤有机碳的正向贡献在1.50 g∙kg−1左右时达到峰值,侧面证明了过度施磷肥并不能起到增加土壤肥力的作用,而可能会造成资源浪费和土地生态污染问题;海拔对土壤有机碳的正向贡献在1750 m左右时达到最大值;pH对土壤有机碳的正向贡献在4.45左右达到峰值。研究表明需要考虑关键因子的阈值或峰值效应,以便了解土壤有机碳积累的潜在过程。
中图分类号:
李建付, 黄志霖, 和成忠, 姜昕, 宋琳, 刘佳鑫, 陈利顶. 滇东喀斯特断陷盆地土壤有机碳空间分布特征及其关键影响因子[J]. 生态环境学报, 2024, 33(9): 1339-1352.
LI Jianfu, HUANG Zhilin, HE Chengzhong, JIANG Xin, SONG Lin, LIU Jiaxin, CHEN Liding. Spatial Distribution and Key Factors Affecting Soil Organic Carbon Within the Karst Fault Basin in Eastern Yunnan, China[J]. Ecology and Environment, 2024, 33(9): 1339-1352.
土地利用类型 | 面积/km2 | 面积比例/% | 采样点个数 |
---|---|---|---|
耕地 | 162.37 | 62.38 | 1704 |
园地 | 0.43 | 0.17 | 39 |
林地 | 71.24 | 27.37 | 162 |
草地 | 12.42 | 4.77 | 78 |
建设用地 | 12.14 | 4.66 | 0 |
水域 | 1.69 | 0.66 | 0 |
表1 土地利用类型及采样点分布情况
Table 1 Area of land use type and distribution of sampling points
土地利用类型 | 面积/km2 | 面积比例/% | 采样点个数 |
---|---|---|---|
耕地 | 162.37 | 62.38 | 1704 |
园地 | 0.43 | 0.17 | 39 |
林地 | 71.24 | 27.37 | 162 |
草地 | 12.42 | 4.77 | 78 |
建设用地 | 12.14 | 4.66 | 0 |
水域 | 1.69 | 0.66 | 0 |
变量类型 | 基本变量 | 变量简写与常用表达/单位 |
---|---|---|
气候因素 | 年均降水量 | MAP/mm |
年均温 | MAT/℃ | |
地形因素 | 海拔 | Altitude/m |
坡度 | Slope/(°) | |
地形湿润度指数 | TWI | |
坡向 | Aspect | |
成土因素 | 成土母质 | PM |
人类活动因素 | 土地利用类型 | LU |
土壤性质 | 总氮含量 | TN/(g∙kg−1) |
总磷含量 | TP/(g∙kg−1) | |
土壤pH值 | pH | |
黏粒含量 | Clay/% | |
砂粒含量 | Sand/% | |
土壤含水量 | SWC/% | |
土壤类型 | Subgroup | |
土地石漠化 | 岩石裸露率 | Rer |
表2 本研究中采用的环境因子
Table 2 The affecting factors of soil organic carbon used in this study
变量类型 | 基本变量 | 变量简写与常用表达/单位 |
---|---|---|
气候因素 | 年均降水量 | MAP/mm |
年均温 | MAT/℃ | |
地形因素 | 海拔 | Altitude/m |
坡度 | Slope/(°) | |
地形湿润度指数 | TWI | |
坡向 | Aspect | |
成土因素 | 成土母质 | PM |
人类活动因素 | 土地利用类型 | LU |
土壤性质 | 总氮含量 | TN/(g∙kg−1) |
总磷含量 | TP/(g∙kg−1) | |
土壤pH值 | pH | |
黏粒含量 | Clay/% | |
砂粒含量 | Sand/% | |
土壤含水量 | SWC/% | |
土壤类型 | Subgroup | |
土地石漠化 | 岩石裸露率 | Rer |
变量类型 | 变量 | 单位 | 最小值 | 最大值 | 均值 | 标准差 | 偏度 | 峰度 | 变异系数/% |
---|---|---|---|---|---|---|---|---|---|
因变量 | w(土壤有机碳) | g∙kg−1 | 1.45 | 56.0 | 22.5 | 10.5 | 0.91 | 0.48 | 46.7 |
自变量 | w(土壤总氮) | g∙kg−1 | 0.25 | 3.48 | 1.78 | 0.57 | −0.27 | 0.35 | 32.2 |
w(土壤总磷) | g∙kg−1 | 0.30 | 4.98 | 1.31 | 0.47 | 1.74 | 5.72 | 35.7 | |
土壤pH | ‒ | 4.27 | 8.18 | 5.89 | 0.95 | 0.77 | −0.48 | 16.1 | |
土壤黏粒百分比 | % | 22.0 | 47.0 | 31.19 | 5.76 | −0.44 | −1.45 | 18.5 | |
土壤砂粒百分比 | % | 25.0 | 51.0 | 39.18 | 5.74 | 0.99 | 0.27 | 14.7 | |
年均降水量 | mm | 1047.80 | 1110.36 | 1076.37 | 15.8 | 0.39 | −1.00 | 1.47 | |
年均气温 | ℃ | 13.1 | 15.6 | 14.6 | 0.52 | −0.48 | −0.63 | 3.57 | |
海拔 | m | 1632.00 | 2297.00 | 1917.83 | 124.9 | 0.37 | −0.32 | 6.51 | |
坡度 | ° | 4.27 | 8.18 | 5.89 | 0.95 | 0.77 | −0.48 | 16.1 | |
地形湿度指数 | ‒ | 0.42 | 9.07 | 7.77 | 2.46 | −1.81 | 1.45 | 31.6 | |
曲率 | ‒ | −0.71 | 0.75 | 0.16 | 0.02 | 0.23 | 0.44 | 11.9 | |
岩石裸露率 | ‒ | 0 | 1.00 | 0.54 | 0.26 | −0.04 | −0.76 | 47.5 |
表3 变量描述性统计特征
Table 3 Descriptive statistical characteristics of variables
变量类型 | 变量 | 单位 | 最小值 | 最大值 | 均值 | 标准差 | 偏度 | 峰度 | 变异系数/% |
---|---|---|---|---|---|---|---|---|---|
因变量 | w(土壤有机碳) | g∙kg−1 | 1.45 | 56.0 | 22.5 | 10.5 | 0.91 | 0.48 | 46.7 |
自变量 | w(土壤总氮) | g∙kg−1 | 0.25 | 3.48 | 1.78 | 0.57 | −0.27 | 0.35 | 32.2 |
w(土壤总磷) | g∙kg−1 | 0.30 | 4.98 | 1.31 | 0.47 | 1.74 | 5.72 | 35.7 | |
土壤pH | ‒ | 4.27 | 8.18 | 5.89 | 0.95 | 0.77 | −0.48 | 16.1 | |
土壤黏粒百分比 | % | 22.0 | 47.0 | 31.19 | 5.76 | −0.44 | −1.45 | 18.5 | |
土壤砂粒百分比 | % | 25.0 | 51.0 | 39.18 | 5.74 | 0.99 | 0.27 | 14.7 | |
年均降水量 | mm | 1047.80 | 1110.36 | 1076.37 | 15.8 | 0.39 | −1.00 | 1.47 | |
年均气温 | ℃ | 13.1 | 15.6 | 14.6 | 0.52 | −0.48 | −0.63 | 3.57 | |
海拔 | m | 1632.00 | 2297.00 | 1917.83 | 124.9 | 0.37 | −0.32 | 6.51 | |
坡度 | ° | 4.27 | 8.18 | 5.89 | 0.95 | 0.77 | −0.48 | 16.1 | |
地形湿度指数 | ‒ | 0.42 | 9.07 | 7.77 | 2.46 | −1.81 | 1.45 | 31.6 | |
曲率 | ‒ | −0.71 | 0.75 | 0.16 | 0.02 | 0.23 | 0.44 | 11.9 | |
岩石裸露率 | ‒ | 0 | 1.00 | 0.54 | 0.26 | −0.04 | −0.76 | 47.5 |
样点数 | 理论模型 | 块金值 (C0) | 偏基 台值 (C) | 变程 A/m | 块金系数 [C0/(C0+C)]/ % | 决定系数(R2) | 残差 (RSS) |
---|---|---|---|---|---|---|---|
1983 | 指数模型 | 0.15 | 0.16 | 79.4 | 48.4 | 0.91 | 2.5210−3 |
1983 | 高斯模型 | 0.11 | 0.15 | 69.9 | 42.3 | 0.87 | 3.6710−3 |
1983 | 球状模型 | 0.09 | 0.12 | 82.3 | 42.9 | 0.69 | 4.1210−3 |
1983 | 线性模型 | 0.13 | 0.11 | 76.3 | 54.2 | 0.74 | 4.8810−3 |
表4 土壤表层有机碳含量半方差函数模型及参数
Table 4 Semi-variance function model and parameters of soil organic carbon content
样点数 | 理论模型 | 块金值 (C0) | 偏基 台值 (C) | 变程 A/m | 块金系数 [C0/(C0+C)]/ % | 决定系数(R2) | 残差 (RSS) |
---|---|---|---|---|---|---|---|
1983 | 指数模型 | 0.15 | 0.16 | 79.4 | 48.4 | 0.91 | 2.5210−3 |
1983 | 高斯模型 | 0.11 | 0.15 | 69.9 | 42.3 | 0.87 | 3.6710−3 |
1983 | 球状模型 | 0.09 | 0.12 | 82.3 | 42.9 | 0.69 | 4.1210−3 |
1983 | 线性模型 | 0.13 | 0.11 | 76.3 | 54.2 | 0.74 | 4.8810−3 |
图4 随机森林(RF)预测土壤有机碳含量(SOC)模型表现 此处n为RF模型训练集样本数,n=396,红色实线表示土壤有机碳实测值与预测值实际的线性拟合线,而1?1虚线表示理论上能达到的拟合情况,用以对比分析
Figure 4 Performance of the random forest (RF) model for predicting soil organic carbon content (SOC)
图5 基于RF-SHAP模型的影响因子重要性排序 (a)每个变量的总体重要性,y轴表示影响因子重要性排名;x轴表示各影响因子SHAP值的平均值;(b)变量的整体重要性和影响方向,特征排名(y轴)表示影响因子的重要性;SHAP值(x轴)表征模型中某个因素影响的统一索引;红(蓝)点表示影响因子的值,SHAP>0表示正向贡献,随着SHAP值增加,则该因子对土壤有机碳含量的正向影响效应越高,SHAP <0表示负向贡献,随着SHAP值减小,则该因子对土壤有机碳含量的负向影响效应越高。PM_sd:坡积物;LU_fl:林地;Aspect_shady_slope:阴坡;Subgroup_rs:红壤;Aspect_semi_shady_slope:半阴坡;PM_eld:残坡积物;PM_rd:残积物;Aspect_semi_sunny_slope:半阳坡,其余影响因子注释参照表2
Figure 5 Importance ranking of the affecting factors based on RF-SHAP model
图6 土壤有机碳关键影响因子的影响程度变化 灰色竖线表示关键影响因子对土壤有机碳影响的阈值或者正向贡献峰值点。SHAP>0表示正向贡献,随着SHAP值增加,则该因子对土壤有机碳含量的正向影响效应越高,SHAP<0表示负向贡献,随着SHAP值减小,则该因子对土壤有机碳含量的负向影响效应越高
Figure 6 The degree of influence of key affecting factors
[1] | BEUCHER A, RASMUSSEN C B, MOESLUND T B, et al., 2022. Interpretation of convolutional neural networks for acid sulfate soil classification[J]. Frontiers in Environmental Science, 9(1): 809995. |
[2] | CHEN F Z, FENG P Y, HARRISON M T, et al., 2023. Cropland carbon stocks driven by soil characteristics, rainfall and elevation[J]. Science of the Total Environment, 862(5): 160602. |
[3] | DAI L J, GE J S, WANG L Q, et al., 2022. Influence of soil properties, topography, and land cover on soil organic carbon and total nitrogen concentration: A case study in Qinghai-Tibet Plateau based on random forest regression and structural equation modeling[J]. Science of the Total Environment, 821(5): 153440. |
[4] | DIELEMAN W I J, VENTER M, RAMACHANDRA A, et al., 2013. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage[J]. Geoderma, 204(8): 59-67. |
[5] | DIJKSTRA F A, CARRILLO Y, PENDALL E, et al., 2013. Rhizosphere priming: A nutrient perspective[J]. Frontiers in Microbiology, 4(7): 8. |
[6] | DING W L, CONG W F, LAMBERS H, 2021. Plant phosphorus-acquisition and-use strategies affect soil carbon cycling[J]. Trends in Ecology & Evolution, 36(10): 899-906. |
[7] | GROMPING U, 2009. Variable importance assessment in regression: Linear regression versus random forest[J]. American Statistician, 63(4): 308-319. |
[8] | GUO H B, DU E, TERRER C, et al., 2024. Global distribution of surface soil organic carbon in urban greenspaces[J]. Nature Communications, 15(1): 9. |
[9] | GUO Z, HAN J C, LI J, et al., 2019. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure[J]. Plos One, 14(1): e0216006. |
[10] | HEUNG B, HO H C, ZHANG J, et al., 2016. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping[J]. Geoderma, 265(5): 62-77. |
[11] | HOBLEY E, WILSON B, WILKIE A, et al., 2015. Drivers of soil organic carbon storage and vertical distribution in eastern Australia[J]. Plant and Soil, 390(1): 111-127. |
[12] | HU J, HARTEMINK A E, DESAI A R, et al., 2023. A continental-scale estimate of soil organic carbon change at neon sites and their environmental and edaphic controls[J]. Journal of Geophysical Research-Biogeosciences, 128(5): e2022JG006981. |
[13] | HU P L, LIU S J, YE Y Y, et al., 2018. Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration[J]. Land Degradation & Development, 29(3): 387-397. |
[14] | JIANG B Z, XU W Y, ZHANG D, et al., 2022. Contrasting multiple deterministic interpolation responses to different spatial scale in prediction soil organic carbon: A case study in mollisols regions[J]. Ecological Indicators, 134(1): 108472. |
[15] | JOSHI S R, MORRIS J W, TFAILY M M, et al., 2021. Low soil phosphorus availability triggers maize growth stage specific rhizosphere processes leading to mineralization of organic[J]. Plant and Soil, 459(2): 423-440. |
[16] |
LAL R, 2004. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 304(5677): 1623-1627.
DOI PMID |
[17] | LAWRENCE B A, ZEDLER J B, 2013. Carbon storage by carex stricta tussocks: A restorable ecosystem service?[J]. Wetlands, 33(3): 483-493. |
[18] | LU X K, MAO Q G, WANG Z H, et al., 2021. Long-term nitrogen addition decreases soil carbon mineralization in an n-rich primary tropical forest[J]. Forests, 12(6): 734. |
[19] | LUNDBERG S M, LEE S I, 2017. A unified approach to interpreting model predictions[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM. |
[20] | MAHMOUDZADEH H, MATINFAR H R, TAGHIZADEH M R, et al., 2020. Spatial prediction of soil organic carbon using machine learning techniques in western Iran[J]. Geoderma Regional, 21(6): e00260. |
[21] |
PROMMER J, WALKER T W N, WANEK W, et al., 2020. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity[J]. Global Change Biology, 26(2): 669-681.
DOI PMID |
[22] | RUMPEL C, AMIRASLAN F, KOUTIKA L S, et al., 2018. Put more carbon in soils to meet Paris climate pledges[J]. Nature, 564(7734): 32-34. |
[23] | SOKOL N W, BRADFORD M A, 2019. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input[J]. Nature Geoscience, 12(1): 46-53. |
[24] | WADOUX A M J C, MOLNAR C, 2022. Beyond prediction: Methods for interpreting complex models of soil variation[J]. Geoderma, 422(9): 14. |
[25] | WANG S, PENG H, HU Q, et al., 2022. Analysis of runoff generation driving factors based on hydrological model and interpretable machine learning method[J]. Journal of Hydrology-Regional Studies, 42(8): 101139. |
[26] | WANG Y, HUANG L M, JIA X X, et al., 2021. Distribution characteristics and controls of soil organic carbon at different spatial scales in China’s loess plateau[J]. Journal of Environmental Management, 293(9): 112943. |
[27] |
WIESMEIER M, MUNRO S, BARTHOLD F, et al., 2015. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China[J]. Global Change Biology, 21(10): 3836-3845.
DOI PMID |
[28] | WU Z H, CHEN Y Y, ZHU Y L, et al., 2023. Mapping soil organic carbon in floodplain farmland: Implications of effective range of environmental variables[J]. Land, 12(6): 1198. |
[29] | XIN Z B, QIN Y B, YU X X, et al., 2016. Spatial variability in soil organic carbon and its influencing factors in a hilly watershed of the Loess Plateau, China[J]. Catena, 137(2): 660-669. |
[30] | XU H F, ZHANG C S, 2021. Investigating spatially varying relationships between total organic carbon contents and pH values in european agricultural soil using geographically weighted regression[J]. Science of The Total Environment, 752(1): 141977. |
[31] | YU H Y, ZHA T G, ZHANG X X, et al., 2020. Spatial distribution of soil organic carbon may be predominantly regulated by topography in a small revegetated watershed[J]. Catena, 188(5): 104459. |
[32] | ZHANG S H, ZHOU X B, CHEN Y S, et al., 2024. Soil organic carbon fractions in China: Spatial distribution, drivers, and future changes[J]. The Science of the total environment, 919(4): 170890. |
[33] | ZHANG X D, SONG Z L, ZHANG D B, et al., 2024. Soil properties and anthropogenic influences control the distribution of soil organic carbon in grasslands of northern China[J]. Land Degradation & Development, 35(1): 33-45. |
[34] | ZHANG X M, GUO J H, VOGT R D, et al., 2020. Soil acidification as an additional driver to organic carbon accumulation in major Chinese croplands[J]. Geoderma, 366(5): 114234. |
[35] | ZHANG X, LI X, JI X D, et al., 2021. Elevation and total nitrogen are the critical factors that control the spatial distribution of soil organic carbon content in the shrubland on the Bashang Plateau, China[J]. Catena, 204(9): 105415. |
[36] | ZHANG Z X, HAO M, LI Y Q, et al., 2022. Effects of vegetation and terrain changes on spatial heterogeneity of soil c-n-p in the coastal zone protected forests at northern China[J]. Journal of Environmental Management, 317(9): 115472. |
[37] | ZHAO D, DONG J Y, JI S P, et al., 2020. Effects of contemporary land use types and conversions from wetland to paddy field or dry land on soil organic carbon fractions[J]. Sustainability, 12(5): 2094. |
[38] | ZHU M, FENG Q, QIN Y Y, et al., 2019. The role of topography in shaping the spatial patterns of soil organic carbon[J]. Catena, 176(5): 296-305. |
[39] | 鲍丽然, 周皎, 李瑜, 等, 2017. 渝西北土壤有机质空间变异及影响因素分析[J]. 西南农业学报, 30(11): 2541-2547. |
BAO L R, ZHOU J, LI Y, et al., 2017. Spatial variability of soil organic matter and its influence factors of hilly area in northwest Chongqing[J]. Southwest China Journal of Agricultural Sciences, 30(11): 2541-2547. | |
[40] |
蔡岸冬, 张文菊, 杨品品, 等, 2015. 基于meta-analysis研究施肥对中国农田土壤有机碳及其组分的影响[J]. 中国农业科学, 48(15): 2995-3004.
DOI |
CAI A D, ZHANG W J, YANG P P, et al., 2015. Effect degree of fertilization practices on soil organic carbon and fraction of croplands in China-Based on meta-analysis[J]. Scientia Agricultura Sinica, 48(15): 2995-3004. | |
[41] | 曹建华, 邓艳, 杨慧, 等, 2016. 喀斯特断陷盆地石漠化演变及治理技术与示范[J]. 生态学报, 36(22): 7103-7108. |
CAO J H, DENG Y, YANG H, et al., 2016. Rocky desertification evolution, treatment technology and demonstration in karst faulted basins, southwest China[J]. Acta Ecologica Sinica, 36(22): 7103-7108. | |
[42] |
陈洋, 齐雁冰, 王茵茵, 等, 2016. 多重密度布点对土壤有机质空间特性的解析[J]. 自然资源学报, 31(12): 2099-2110.
DOI |
CHEN Y, QI Y B, WANG Y Y, et al., 2016. Analysis of spatial characteristics of soil organic matter by multiple density distribution[J]. Journal of Natural Resources, 31(12): 2099-2110.
DOI |
|
[43] | 陈志林, 强浪浪, 向安民, 等, 2022. 地形因子对青海祁连圆柏林土壤有机碳空间分布的影响[J]. 西北林学院学报, 37(6): 68-74. |
CHEN Z L, QIANG L L, XIANG A M, et al., 2022. Effects of topographical factors on the spatial distribution of soil organic carbon of Juniperus przewalskii forest in Qinghai province[J]. Journal of Northwest Forestry University, 37(6): 68-74. | |
[44] | 程浩, 张厚喜, 黄智军, 等, 2018. 武夷山不同海拔高度土壤有机碳含量变化特征[J]. 森林与环境学报, 38(2): 135-141. |
CHENG H, ZHANG H X, HUANG Z J, et al., 2018. Variations of soil organic carbon content along an altitudinal gradient in Wuyi Mountain[J]. Journal of Forest and Environment, 38(2): 135-141. | |
[45] |
丁倩, 张弛, 2021. 基于地理探测器的中国陆地生态系统土壤有机碳空间异质性影响因子分析[J]. 生态环境学报, 30(1): 19-28.
DOI |
DING Q, ZHANG C, 2021. Influential factors analysis for spatial heterogeneity of soil organic carbon in Chinese terrestrial ecosystems with geographical detector[J]. Ecology and Environmental Sciences, 30(1): 19-28. | |
[46] | 方华军, 耿静, 程淑兰, 等, 2019. 氮磷富集对森林土壤碳截存的影响研究进展[J]. 土壤学报, 56(1): 1-11. |
FANG H J, GENG J, CHENG S L, et al., 2019. Effects of nitrogen and phosphorus enrichment on carbon sequestration in forest soils: A review[J]. Acta Pedologica Sinica, 56(1): 1-11. | |
[47] | 冯晓琳, 闫雨阳, 张欣然, 等, 2024. 近30年陕西土壤有机碳的时空变化特征及影响因素[J/OL]. 环境科学: 1-13 [2024-03-20]. https://doi.org/10.13227/j.hjkx.202311169. |
FENG X L, YAN Y Y, ZHANG X R, et al., 2024. The spatiotemporal variation characteristics and influencing factors of soil organic carbon in Shanxi Province over the past 30 years[J/OL]. Environmental Science: 1-13 [2024-03-20]. https://doi.org/10.13227/j.hjkx.202311169. | |
[48] |
郭月峰, 祁伟, 姚云峰, 等, 2020. 小流域梯田土壤有机碳与土壤物理性质的关系研究[J]. 生态环境学报, 29(4): 748-756.
DOI |
GUO Y F, QI W, YAO Y F, et al., 2020. Soil organic carbon in small watershed terraces and association with physical properties[J]. Ecology and Environmental Sciences, 29(4): 748-756. | |
[49] | 蒋勇军, 袁道先, 谢世友, 等, 2007. 典型岩溶流域土壤有机质空间变异——以云南小江流域为例[J]. 生态学报, 27(5): 2040-2047. |
JIANG Y J, YUAN D X, XIE S Y, et al., 2007. Spatial variation of soil organic matter in typical karst watersheds: A case study of Xiaojiang watershed in Yunnan province[J]. Acta Ecologica Sinica, 27(5): 2040-2047. | |
[50] | 李艾雯, 冉敏, 宋靓颖, 等, 2023. 四川盆地耕地表层土壤有机碳含量空间分布特征及其影响因素[J]. 长江流域资源与环境, 32(5): 1102-1112. |
LI A W, RAN M, SONG L Y, et al., 2023. Spatial distribution characteristics and influencing factors of cropland topsoil organic carbon content in the Sichuan Basin[J]. Resources and Environment in the Yangtze Basin, 32(5): 1102-1112. | |
[51] | 李丛笑, 张彦, 覃茜瑾, 等, 2023. 黄河三角洲不同植物群落土壤有机碳特征及其影响因子[J/OL]. 环境科学: 1-13. [2024-01-20]. https://doi.org/10.13227/j.hjkx.202308141. |
LI C X, ZHANG Y, QIN Q J, et al., 2023. Characteristics of soil organic carbon and its influencing factors of different plant communities in the Yellow River Delta[J/OL]. Environmental Science: 1-13. [2024-01-20]. https://doi.org/10.13227/j.hjkx.202308141. | |
[52] | 李硕, 刘汉粮, 孙少波, 等, 2024. 海河平原典型区表层土壤有机碳库变化及影响因素——以天津市津南区为例[J/OL]. 农业资源与环境学报:1-11 [2024-03-20]. https://doi.org/10.13254/j.jare.2023.0496. |
LI S, LIU H L, SUN S B, et al., 2024. Changes and influencing factors of surface soil organic carbon pool in typical areas of Haihe Plain: A case study of Jinnan District, Tianjin[J/OL]. Journal of Agricultural Resources and Environment. https://doi.org/10.13254/j.jare.2023.0496. | |
[53] | 刘鑫铭, 饶惠玲, 丁新新, 等, 2021. 不同混交类型对毛竹林土壤有机碳和土壤呼吸的影响[J]. 应用与环境生物学报, 27(1): 71-80. |
LIU X M, RAO H L, DING X X, et al., 2021. Effects of different mixed forest types on soil organic carbon and soil respiration in Phyllostachys edulis J. Houz forest[J]. Chinese Journal of Applied and Environmental Biology, 27(1): 71-80. | |
[54] | 陆太伟, 蔡岸冬, 徐明岗, 等, 2018. 施用有机肥提升不同土壤团聚体有机碳含量的差异性[J]. 农业环境科学学报, 37(10): 2183-2193. |
LU T W, CAI A D, XU M G, et al., 2018. Variation in sequestration of organic carbon associated with differently sized aggregates after organic manure application[J]. Journal of Agro-Environment Science, 37(10): 2183-2193. | |
[55] | 邱虎森, 苏以荣, 陈香碧, 等, 2012. 喀斯特高原典型小流域土壤有机碳及其组分的分布特征[J]. 农业环境科学学报, 31(10): 1956-1964. |
QIU H S, SU Y R, CHEN X B, et al., 2012. Characteristics of the distributions of soil organic carbon and main components in a typical catchment in the Karst Plateau[J]. Journal of Agro-Environment Science, 31(10): 1956-1964. | |
[56] | 秦红, 李昌晓, 任庆水, 等, 2017. 土地利用方式对三峡库区消落带土壤细菌和真菌多样性的影响[J]. 生态学报, 37(10): 3494-3504. |
QIN H, LI C X, REN Q S, et al., 2017. Effects of different land use patterns on soil bacterial and fungal biodiversity in the hydro-fluctuation zone of the Three Gorges Reservoir region[J]. Acta Ecological Sinica, 37(10): 3494-3504. | |
[57] | 阮长明, 唐国勇, 杜寿康, 等, 2023. 金沙江干热河谷不同海拔土壤碳氮磷化学计量和酶活性研究[J]. 西南农业学报, 36(11): 2464-2472. |
RUAN C M, TANG G Y, DU S K, et al., 2023. Stoichiometry of soil carbon, nitrogen, and phosphorus, and enzyme activities at various elevations in the Dry-Hot Valley of the Jinsha River[J]. Southwest China Journal of Agricultural Sciences, 36(11): 2464-2472. | |
[58] | 上官微, 戴永久, 2019. 中国土壤特征数据集(2010)[Z]. 时空三极环境大数据平台, DOI: 10.11888/Soil.tpdc.270466. CSTR: 18406.11.Soil.tpdc.270466. |
SHANG G W, DAI Y J, 2019. A China soil characteristics dataset(2010)[Z]. A big earth data platform for three poles, DOI: 10.11888/Soil.tpdc.270466. CSTR: 18406.11.Soil.tpdc.270466. | |
[59] | 沈琛琛, 肖文发, 朱建华, 等, 2023. 基于机器学习算法的华中天然林土壤有机碳特征与关键影响因子[J]. 林业科学: 1-14. [2024-04-03]. http://kns.cnki.net/kcms/detail/11.1908.S.20230925.0931.002.html. |
SHEN C C, XIAO W F, ZHU J H, et al., 2023. Characterization of soil organic carbon and key influencing factors of natural forests in Central China based on machine learning algorithms[J]. Scientia Silvae Sinicae: 1-14. [2024-04-03]. http://kns.cnki.net/kcms/detail/11.1908.S.20230925.0931.002.html. | |
[60] | 沈佳丽, 陈颂超, 胡碧峰, 等, 2023. 基于机器学习的江汉平原土壤有机碳预测及制图[J]. 农业资源与环境学报, 40(3): 644-650. |
SHEN J L, CHEN S C, HU B F, et al., 2023. Prediction and mapping soil organic carbon in Jianghan Plain by machine learning[J]. Journal of Agricultural Resoyrces and Environment, 40(3) :644-650. | |
[61] | 史晨璐, 吴秀芹, 2020. 喀斯特断陷盆地土地利用对生态系统生产力的影响[J]. 北京大学学报(自然科学版), 56(2): 341-351. |
SHI C L, WU X Q, 2020. Impact of land use on ecosystem productivity in karst faulted basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 56(2): 341-351. | |
[62] | 王军广, 王鹏, 赵志忠, 等, 2023. 海南岛东部地区土地利用方式对土壤有机碳含量的影响[J]. 广西师范大学学报(自然科学版), 41(5): 171-179. |
WANG J G, WANG P, ZHAO Z Z, et al., 2023. Effects of land use types on soil organic carbon content in eastem Hainan Island[J]. Journal of Guangxi Normal University (Natural Science Edition), 41(5): 171-179. | |
[63] | 王霖娇, 李瑞, 盛茂银, 等, 2017. 典型喀斯特石漠化生态系统土壤有机碳时空分布格局及其与环境的相关性[J]. 生态学报, 37(5): 1367-1378. |
WANG L J, LI R, SHENG M Y, 2017. Distribution of soil organic carbon related to environmental factors in typical rocky desertification ecosystems[J]. Acta Ecologica Sinica, 37(5): 1367-1378. | |
[64] | 王明明, 王世杰, 白晓永, 等, 2019. 典型小流域喀斯特石漠化演变特征及其关键表征因子与驱动因素[J]. 生态学报, 39(16): 6083-6097. |
WANG M M, WANG S J, BAI X Y, et al., 2019. Evolution characteristics of karst rocky desertification in typical small watershed and the key characterization factor and driving factor[J]. Acta Ecologica Sinica, 39(16): 6083-6097. | |
[65] | 王娜, 李乐, 勾蒙蒙, 等, 2023. 基于gwr模型的秭归县柑橘园土壤有机碳空间异质性分析[J]. 长江流域资源与环境, 32(4): 751-763. |
WANG N, LI L, GOU M M, et al., 2023. Spatial heterogeneity analysis of soil organic carbon in citrus orchards in Zigui County based on GWR model[J]. Resources and Environment in the Yangtze Basin, 32(4): 751-763. | |
[66] | 王晓玉, 何方, 2015. 黄山市土壤主要养分含量空间分布特征及影响因素[J]. 安徽农学通报, 21(8): 73-77. |
WANG X Y, HE F, 2015. Spatial distribution and influencing factors of soil nutrient index in Huangshan City[J]. Anhui Agricultural Science Bulletin, 21(8): 73-77. | |
[67] | 王艳杰, 付华, 2005. 雾灵山地区土壤有机质全氮及碱解氮的关系[J]. 农业环境科学学报, 24(增刊): 85-90. |
WANG Y J, FU H, 2005. The relationship between soil organic matter total nitrogen and alkaline nitrogen in the Wuling Mountain area[J]. Journal of Agro-Environment Science, 24(Z1): 85-90. | |
[68] | 吴鹏博, 李立军, 张艳丽, 等, 2020. 轮作结合施肥对土壤有机碳及其组分和土壤养分的影响[J]. 土壤通报, 51(2): 416-422. |
WU P B, LI L J, ZHANG Y L, et al., 2020. Effects of rotation and fertilization on soil organic carbon and its fractions and soil nutrients[J]. Chinese Journal of Soil Science, 51(2): 416-422. | |
[69] | 杨桦, 彭小瑜, 杨淑琪, 等, 2022. 滇南喀斯特断陷盆地土地利用方式对土壤有机碳及其活性组分的影响[J]. 生态学报, 42(17): 7105-7117. |
YANG H, PENG X Y, YANG S Q, et al., 2022. Effects of land use types on soil oranic carbon and soil labile organic carbon in karst faultelbasin of southern Yunnan[J]. Acta Ecologica Sinica, 42(17): 7105-7117. | |
[70] |
张超飞, 马素萍, 何晓波, 等, 2023. 长江源区布曲流域土壤有机碳分布特征及其影响因素[J]. 冰川冻土, 45(1): 233-242.
DOI |
ZHANG C F, MA S P, HE X B, et al., 2023. Distribution characteristics and influencing factors of soil organic carbon in Buqu catchment in the source region of the Yangtze River, China[J]. Journal of Glaciology and Geocryology, 45(1): 233-242. | |
[71] |
张美兰, 崔增团, 顿志恒, 等, 2022. 近40年甘肃省耕层土壤有机碳时空分异及影响因素[J]. 中国沙漠, 42(6): 295-303.
DOI |
ZHANG M L, CUI Z T, DUN Z H, et al., 2022. The Spatial-temporal variance characteristic of soil organic carbon in cultivated land of Gansu province and its influencing factors in the 40 years from 1980 to 2020[J]. Journal of Desert Research, 42 (6): 295-303. | |
[72] | 张旭梦, 张吴平, 黄明镜, 等, 2022. 晋南农作区耕地有机质空间分布特征及影响因素研究[J]. 江苏农业科学, 50(2): 219-225. |
ZHANG X M, ZHANG W P, HUANG M J, et al., 2022. Spatial distribution characteristics of soil organic matter in cultivated land and influencing factors in the southern agricultural area of Shanxi province, China[J]. Jiangsu Agricultural Sciences, 50(2), 219-225. | |
[73] | 张帅, 许明祥, 张亚锋, 等, 2014. 黄土丘陵区土地利用变化对深层土壤有机碳储量的影响[J]. 环境科学学报, 34(12): 3094-3101. |
ZHANG S, XU M X, ZHANG Y F, et al., 2014. Effects of land use change on storage of soil organic carbon in deep soil layers in the hilly Loess Plateau region, China[J]. Acta Scientiae Circumstantiae, 34(12):3094-3101. | |
[74] | 赵芳, 欧阳勋志, 2016. 飞播马尾松林土壤有机碳空间分布及其影响因子[J]. 生态学报, 36(9): 2637-2645. |
ZHAO F, OU Y X Z, 2016. Assessing relative contributions of various influencing factors to soil organic carbon in aerially-seeded Pinus massoniana plantations[J]. Acta Ecologica Sinica, 36(9): 2637-2645. | |
[75] | 赵晗, 王海燕, 胡兴国, 等, 2023. 基于结构方程的云冷杉阔叶混交林土壤有机碳影响因子[J/OL]. 生态学杂志: 1-13. [2024-01-20]. http://kns.cnki.net/kcms/detail/21.1148.Q.20230625.1644.002.html. |
ZHAO H, WANG H Y, HU X G, et al., 2023. Influencing factors of soil organic carbon in mixed spruce-fir-broadleaf forest based on structural equation[J/OL]. Chinese Journal of Ecology: 1-13. [2024-01-20]. http://kns.cnki.net/kcms/detail/21.1148.Q.20230625.1644.002.html. | |
[76] | 赵明松, 张甘霖, 李德成, 等, 2013a. 江苏省土壤有机质变异及其主要影响因素[J]. 生态学报, 33(16): 5058-5066. |
ZHAO M S, ZHANG G L, LI D C, et al., 2013a. Variability of soil organic matter and its main factors in Jiangsu province[J]. Acta Ecologica Sinica, 33(16): 5058-5066. | |
[77] | 赵明松, 张甘霖, 王德彩, 等, 2013b. 徐淮黄泛平原土壤有机质空间变异特征及主控因素分析[J]. 土壤学报, 50(1): 1-11. |
ZHAO M S, ZHANG G L, WANG D C, et al., 2013b. Spatial variation characteristics of soil organic matter and analysis of main controlling factors in the Xu-Huai Yellow Floodplain[J]. Acta Pedologica Sinica, 50(1): 1-11. | |
[78] | 周晓宇, 张称意, 郭广芬, 等, 2010. 气候变化对森林土壤有机碳贮藏影响的研究进展[J]. 应用生态学报, 21(7): 1867-1874. |
ZHOU X Y, ZHANG C Y, GUO G F, et al., 2010. Research progress on the impact of climate change on forest soil organic carbon storage[J]. Chinese Journal of Applied Ecology, 21(7): 1867-1874. | |
[79] | 左启林, 于洋, 查同刚, 2024. 晋西黄土小流域土壤有机碳空间分布特征及其影响因素[J]. 生态学杂志, 43(5): 1373-1380. |
ZUO Q L, YU Y, CHA T G, 2024. Spatial distribution and influencing factors of soil organic carbon in loess small watershed in western Shanxi province[J]. Chinese Journal of Ecology, 43(5): 1373-1380.
DOI |
[1] | 石含之, 熊振乾, 曹怡然, 吴志超, 文典, 李富荣, 李冬琴, 王旭. 外源秸秆添加对红壤及黑土有机碳固定的影响[J]. 生态环境学报, 2024, 33(9): 1372-1383. |
[2] | 林丹丹, 毕华兴, 赵丹阳, 管凝, 韩金丹, 郭艳杰. 晋西黄土区不同密度刺槐林土壤有机碳组分及碳库特征[J]. 生态环境学报, 2024, 33(3): 379-388. |
[3] | 罗庆, 何清, 吴慧秋, 寇力月, 方旭, 张鑫雨, 李缘, 柴育廷, 张瑞生, 代文举. 辽河口湿地土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2024, 33(3): 333-340. |
[4] | 梁鑫, 韩亚峰, 郑柯, 王旭刚, 陈志怀, 杜鹃. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 2023, 32(9): 1615-1622. |
[5] | 潘昱伶, 璩向宁, 李琴, 王磊, 王筱平, 谭鹏, 崔庚, 安雨, 佟守正. 黄河宁夏段典型滩涂湿地土壤理化因子空间分布特征及其对微地形的响应[J]. 生态环境学报, 2023, 32(4): 668-677. |
[6] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[7] | 秦佳琪, 肖指柔, 明安刚, 朱豪, 滕金倩, 梁泽丽, 陶怡, 覃林. 针阔人工混交林及其纯林对土壤微生物碳循环功能基因丰度的影响[J]. 生态环境学报, 2023, 32(10): 1719-1731. |
[8] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[9] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
[10] | 龚玲玄, 王丽丽, 赵建宁, 刘红梅, 杨殿林, 张贵龙. 不同覆盖作物模式对茶园土壤理化性质及有机碳矿化的影响[J]. 生态环境学报, 2022, 31(6): 1141-1150. |
[11] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
[12] | 杜雪, 王海燕, 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 2022, 31(4): 663-669. |
[13] | 胡靓达, 周海菊, 黄永珍, 姚贤宇, 叶绍明, 喻素芳. 不同杉木林分类型植物多样性及其土壤碳氮关系的研究[J]. 生态环境学报, 2022, 31(3): 451-459. |
[14] | 王浩, 陈永金, 刘加珍, 万波, 张丽. 黄河三角洲新生湿地3种柽柳灌丛对土壤有机碳空间分布的影响研究[J]. 生态环境学报, 2022, 31(1): 9-16. |
[15] | 史利江, 高杉, 姚晓军, 张晓龙, 李文刚, 高峰. 晋西北黄土丘陵区不同植被恢复下的土壤碳氮累积特征[J]. 生态环境学报, 2021, 30(9): 1787-1796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||