生态环境学报 ›› 2024, Vol. 33 ›› Issue (3): 333-340.DOI: 10.16258/j.cnki.1674-5906.2024.03.001
• 研究论文【生态学】 •
下一篇
罗庆*(), 何清, 吴慧秋, 寇力月, 方旭, 张鑫雨, 李缘, 柴育廷, 张瑞生, 代文举
收稿日期:
2023-09-15
出版日期:
2024-03-18
发布日期:
2024-05-08
通讯作者:
*作者简介:
罗庆(1984年生),男,教授,博士,博士研究生导师,研究方向为污染土壤生态修复。E-mail: luoqingyt@126.com
基金资助:
LUO Qing*(), HE Qing, WU Huiqiu, KOU Liyue, FANG Xu, ZHANG Xinyu, LI Yuan, CHAI Yuting, ZHANG Ruisheng, DAI Wenju
Received:
2023-09-15
Online:
2024-03-18
Published:
2024-05-08
摘要:
湿地生态系统碳汇潜力巨大,但不同的气候条件及植被类型,导致湿地土壤有机碳库组分有较大的差异,进而导致不同类型的湿地土壤有机碳受土壤理化性质的影响也有差异。深入了解土壤有机碳组分特征对滨海湿地生态系统开发及保护具有重要意义。以辽河口湿地为对象,选取5种土地覆盖类型(翅碱蓬群落、芦苇群落、光滩裸地、油井区和农耕区),分析不同土地覆盖类型下土壤有机碳组分及土壤基本理化性质,对所得数据进行相关性和差异性分析,以期探明辽河口湿地土壤有机碳组分特征,并确定土壤理化性质对辽河口湿地有机碳储量的影响。结果表明:辽河口湿地在不同土地利用类型下土壤总有机碳(Soil organic carbon,SOC)含量差异显著,其中芦苇群落碳储量最丰富,达 (52.6±3.80) g∙kg−1,光滩裸地碳储量最少,为 (28.2±7.05) g∙kg−1;在植物覆盖下土壤有充沛的碳输入而有利于土壤有机碳的固定,这一现象随土层深度的加深而减弱。轻组分有机碳(Light fraction organic carbon,LFOC)、重组分有机碳(Heavy fraction organic carbon,HFOC)和易氧化有机碳(Easily oxidized organic carbon,EOC)均与SOC含量具有显著的相关性(P<0.05),相关性大小为EOC>HFOC>LFOC。SOC含量与pH值、阳离子交换量呈显著正相关,而受含水率、总可溶性固体的影响不显著,这一现象可能与有机碳组分特征有关。辽河口湿地土壤碳库中HFOC占比最大,EOC占比最小,碳库结构较为稳定。pH值、阳离子交换量主要通过影响HFOC积累速率来影响SOC含量。因此,提高湿地土壤中较为稳定的HFOC储量,有助于提升湿地土壤的固碳能力。研究结果可为滨海湿地生态系统保护与碳汇功能提升提供参考。
中图分类号:
罗庆, 何清, 吴慧秋, 寇力月, 方旭, 张鑫雨, 李缘, 柴育廷, 张瑞生, 代文举. 辽河口湿地土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2024, 33(3): 333-340.
LUO Qing, HE Qing, WU Huiqiu, KOU Liyue, FANG Xu, ZHANG Xinyu, LI Yuan, CHAI Yuting, ZHANG Ruisheng, DAI Wenju. Characteristics of Soil Organic Carbon Fractions in Liao River Estuary Wetland and Their Influencing Factors[J]. Ecology and Environment, 2024, 33(3): 333-340.
土层/ cm | 覆盖类型 | 含水率/% | 总可溶性固体质量分数/ (g∙kg−1) | pH | 阳离子交换量/ (cmol∙kg−1) |
---|---|---|---|---|---|
10-30 | 油井 | 6.25±1.48Ba | 16.1±3.43Bb | 6.95±0.27Ba | 30.3±0.04Ba |
农耕 | 13.0±1.48Aa | 12.5±1.52Cb | 6.85±0.39Ba | 21.7±0.18Ca | |
碱蓬 | 11.8±1.41Aa | 22.6±1.71Ab | 7.70±0.11Aa | 44.2±0.63Aa | |
芦苇 | 11.3±3.90Aa | 15.8±1.67Ba | 7.05±0.07Ba | 46.5±0.33Aa | |
光滩 | 6.25±0.83Ba | 18.6±1.62Bb | 7.15±0.11Ba | 25.4±0.25Ca | |
30-50 | 油井 | 7.25±0.83Ba | 20.2±2.14Aa | 7.08±0.10Ba | 29.9±1.32Ba |
农耕 | 14.3±1.22Aa | 15.0±2.44Ba | 6.95±0.54Ba | 22.7±1.09Ca | |
碱蓬 | 13.3±1.48Ab | 26.1±2.48Aa | 7.95±0.11Aa | 43.8±0.30Aa | |
芦苇 | 13.0±4.60Aa | 18.0±1.55Ba | 7.18±0.17Ba | 40.0±0.24Ab | |
光滩 | 7.00±1.22Ba | 21.6±3.68Aa | 7.28±0.15Ba | 24.3±0.92Ca |
表1 辽河口湿地不同覆盖类型和深度下的土壤基本理化性质
Table 1 Basic physical and chemical properties of wetland soil in Liao River estuary under different cover types and depths
土层/ cm | 覆盖类型 | 含水率/% | 总可溶性固体质量分数/ (g∙kg−1) | pH | 阳离子交换量/ (cmol∙kg−1) |
---|---|---|---|---|---|
10-30 | 油井 | 6.25±1.48Ba | 16.1±3.43Bb | 6.95±0.27Ba | 30.3±0.04Ba |
农耕 | 13.0±1.48Aa | 12.5±1.52Cb | 6.85±0.39Ba | 21.7±0.18Ca | |
碱蓬 | 11.8±1.41Aa | 22.6±1.71Ab | 7.70±0.11Aa | 44.2±0.63Aa | |
芦苇 | 11.3±3.90Aa | 15.8±1.67Ba | 7.05±0.07Ba | 46.5±0.33Aa | |
光滩 | 6.25±0.83Ba | 18.6±1.62Bb | 7.15±0.11Ba | 25.4±0.25Ca | |
30-50 | 油井 | 7.25±0.83Ba | 20.2±2.14Aa | 7.08±0.10Ba | 29.9±1.32Ba |
农耕 | 14.3±1.22Aa | 15.0±2.44Ba | 6.95±0.54Ba | 22.7±1.09Ca | |
碱蓬 | 13.3±1.48Ab | 26.1±2.48Aa | 7.95±0.11Aa | 43.8±0.30Aa | |
芦苇 | 13.0±4.60Aa | 18.0±1.55Ba | 7.18±0.17Ba | 40.0±0.24Ab | |
光滩 | 7.00±1.22Ba | 21.6±3.68Aa | 7.28±0.15Ba | 24.3±0.92Ca |
土层/ cm | 覆盖类型 | LFOC | HFOC | DOC | EOC | SOC |
---|---|---|---|---|---|---|
10-30 | 油井 | 3.67±1.20Ba | 32.5±3.39Ba | 0.21±0.02Ca | 2.89±0.26Aa | 36.2±2.99Ba |
农耕 | 3.37±0.52Ba | 25.2±1.68Ca | 0.16±0.02Ca | 3.18±0.09Aa | 31.6±1.23Ca | |
碱蓬 | 1.14±0.38Ba | 49.5±3.48Aa | 0.31±0.02Ba | 3.00±0.66Aa | 50.6±1.47Aa | |
芦苇 | 28.0±24.4Aa | 24.6±20.4Db | 0.46±0.02Aa | 2.29±0.96Aa | 52.6±3.80Aa | |
光滩 | 3.03±2.65Bb | 25.2±3.45Ca | 0.16±0.01Ca | 2.26±0.10Ab | 28.2±7.05Ca | |
30-50 | 油井 | 2.26±0.55Ba | 32.2±2.73Ba | 0.20±0.03Ca | 1.74±1.54Aa | 34.5±2.26Ba |
农耕 | 2.12±0.60Ba | 24.4±1.43Ba | 0.14±0.01Da | 2.72±0.46Aa | 26.5±0.99Ca | |
碱蓬 | 1.08±0.12Ba | 47.1±4.29Aa | 0.28±0.02Ba | 2.22±0.36Aa | 48.2±1.46Ab | |
芦苇 | 6.73±7.30Ab | 39.2±8.90Aa | 0.43±0.03Aa | 1.65±1.40Aa | 45.9±4.23Ab | |
光滩 | 5.22±5.12Aa | 22.4±5.89Ba | 0.15±0.01Da | 2.68±0.95Aa | 27.6±1.79Ca |
表2 辽河口湿地不同覆盖类型和深度下的土壤有机碳组分
Table 2 Organic carbon fraction of wetland soil in Liao River estuary under different cover types and depths g?kg?1
土层/ cm | 覆盖类型 | LFOC | HFOC | DOC | EOC | SOC |
---|---|---|---|---|---|---|
10-30 | 油井 | 3.67±1.20Ba | 32.5±3.39Ba | 0.21±0.02Ca | 2.89±0.26Aa | 36.2±2.99Ba |
农耕 | 3.37±0.52Ba | 25.2±1.68Ca | 0.16±0.02Ca | 3.18±0.09Aa | 31.6±1.23Ca | |
碱蓬 | 1.14±0.38Ba | 49.5±3.48Aa | 0.31±0.02Ba | 3.00±0.66Aa | 50.6±1.47Aa | |
芦苇 | 28.0±24.4Aa | 24.6±20.4Db | 0.46±0.02Aa | 2.29±0.96Aa | 52.6±3.80Aa | |
光滩 | 3.03±2.65Bb | 25.2±3.45Ca | 0.16±0.01Ca | 2.26±0.10Ab | 28.2±7.05Ca | |
30-50 | 油井 | 2.26±0.55Ba | 32.2±2.73Ba | 0.20±0.03Ca | 1.74±1.54Aa | 34.5±2.26Ba |
农耕 | 2.12±0.60Ba | 24.4±1.43Ba | 0.14±0.01Da | 2.72±0.46Aa | 26.5±0.99Ca | |
碱蓬 | 1.08±0.12Ba | 47.1±4.29Aa | 0.28±0.02Ba | 2.22±0.36Aa | 48.2±1.46Ab | |
芦苇 | 6.73±7.30Ab | 39.2±8.90Aa | 0.43±0.03Aa | 1.65±1.40Aa | 45.9±4.23Ab | |
光滩 | 5.22±5.12Aa | 22.4±5.89Ba | 0.15±0.01Da | 2.68±0.95Aa | 27.6±1.79Ca |
[1] | APPLEBY P G, 2005. Chronostratigraphic Techniques in Recent Sediments. In, Tracking Environmental Change Using Lake Sediments[M]. Dordrecht: Kluwer Academic Publishers: 171-203. |
[2] |
KHATIWALA S, PRIMEAU F, HALL T, 2009. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean[J]. Nature, 462(7271): 346-349.
DOI |
[3] |
LI Y H, SHAHBAZ M, ZHU Z N, et al., 2021. Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils[J]. Soil Biology & Biochemistry, 153: 108106.
DOI URL |
[4] |
MACREADIE P, NIELSEND A, KELLEWAY J, et al., 2017. Can we manage coastal ecosystems to sequester more blue carbon?[J]. Frontiers in Ecology and the Environment, 15(4): 206-213.
DOI URL |
[5] |
VERES Z, KOTROCZ Z, FEKET I, et al., 2015. Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability[J]. Applied Soil Ecology, 92: 18-23.
DOI URL |
[6] | YANG Y L, TING W, YUN Q, et al., 2021. Negative effects of multiple global change factors on soil microbial diversity[J]. Soil Biology & Biochemistry: 156. |
[7] | 陈智, 于贵瑞, 2020. 土壤微生物碳素利用效率研究进展[J]. 生态学报, 40(3): 756-767. |
CHEN Z, YU G R, 2020. Advances in the soil microbial carbon use efficiency[J]. Acta Ecological Sinical, 40(3): 756-767. | |
[8] | 崔东, 闫俊杰, 刘海军, 等, 2019. 伊犁河谷不同类型湿地土壤活性有机碳组分及其含量差异[J]. 生态学杂志, 38(7): 2087-2093. |
CUI D, YAN J J, LIU H J, et al., 2019. Soil labile organic carbon fractions and the differences of their concentrations in different types of wetlands in Yili valley[J]. Chinese Journal of Ecology, 38(7): 2087-2093. | |
[9] | 常慧敏, 杨青惠, 齐翔, 2017. TOC-L总有机碳分析仪测定总有机碳的实验方法[J]. 科技创新与生产力, 286(11): 118-120. |
CHANG H M, YANG Q H, QI X, 2017. Experimental method of total organic carbon determination based on TOC-L analyzer[J]. Science and Technology Innovation and Productivity, 286(11): 118-120. | |
[10] | 董峻宇, 2022. 湿地土壤有机碳的影响因素和固定机理研究[D]. 青岛: 山东大学: 5-7. |
DONG J Y, 2022. Study on influencing factors and fixation mechanism of wetland soil organic carbon[D]. Qingdao: Shandong University: 5-7. | |
[11] | 杜书栋, 白军红, 贾佳, 等, 2022. 黄河三角洲芦苇湿地土壤有机碳储量沿盐分梯度的变化特征[J]. 环境科学学报, 42(1): 80-87. |
DU S D, BAI J H, JIA J, et al., 2022. Changes of soil organic carbon storage in Phragmites australis wetlands along a salinity gradient in the Yellow River delta[J]. Journal of Environmental Sciences, 42(1): 80-87. | |
[12] | 胡海清, 陆昕, 孙龙, 2012. 土壤活性有机碳分组及测定方法[J]. 森林工程, 28(5): 18-22. |
HU H Q, LU X, SUN L, 2012. Research review on soil active organic carbon fractionation and analytical methods[J]. Forest Engineering, 28(5): 18-22. | |
[13] | 侯翠翠, 宋长春, 李英臣, 等, 2012. 不同水分条件沼泽湿地土壤轻组有机碳与微生物活性动态[J]. 中国环境科学, 32(1): 113-119. |
HOU C C, SONG C C, LI Y C, et al., 2012. Light fractions of soil organic carbon and microbial activity dynamics in marshes under different water conditions[J]. China Environmental Science, 32(1): 113-119. | |
[14] | 靳振江, 程亚平, 李强, 等, 2014. 会仙喀斯特溶洞湿地、稻田和旱田土壤有机碳含量及其与养分的关系[J]. 湿地科学, 12(4): 485-490. |
JIN Z J, CHENG Y P, LI Q, et al., 2014. Content of soil organic carbon and its relationship with nutrients in karst cave wetlands, paddy fields and dry farmlands in Huixian[J]. Wetland Science, 12(4): 485-490. | |
[15] | 李淑芬, 俞元春, 何晟, 2002. 土壤溶解有机碳的研究进展[J]. 土壤与环境, 11(4): 422-429. |
LI S F, YU Y C, HE S, 2002. Summary of research on dissolved organic carbon (DOC)[J]. Soil and Environment, 11(4): 422-429. | |
[16] | 李新鸽, 韩广轩, 朱连奇, 等, 2019. 降雨量改变对黄河三角洲滨海湿地土壤呼吸的影响[J]. 生态学报, 39(13): 4806-4820. |
LI X G, HAN G X, ZHU L Q, et al., 2019. Effects of changes in precipitation on soil respiration in coastal wetlands of the Yellow River delta[J]. Acta Ecological Sinical, 39(13): 4806-4820. | |
[17] | 廖小娟, 何东进, 王韧, 等, 2013. 闽东滨海湿地土壤有机碳含量分布格局[J]. 湿地科学, 11(2): 192-197. |
LIAO X J, HE D J, WANG R, et al., 2013. Distribution pattern of soil organic carbon contents in the coastal wetlands in eastern Fujian[J]. Wetland Science, 11(2): 192-197. | |
[18] |
林春英, 李希来, 孙海松, 等, 2021. 黄河源高寒湿地有机碳组分对不同退化程度的响应[J]. 草地学报, 29(7): 1540-1548.
DOI |
LIN C Y, LI X L, SUN H S, et al., 2021. Responses of soil organic carbon component on different degrees of degradation of alpine wetland in the source of Yellow River[J]. Journal of Grassland Science, 29(7): 1540-1548. | |
[19] | 刘红涛, 胡天龙, 王慧, 等, 2023. 典型水稻土细菌亚类群——泛化种、特化种的群落构建及功能潜力[J]. 土壤学报, 60(2): 546-557. |
LIU H T, HU T L, WANG H, et al., 2023. Community assembly and functional potential of habitat generalists and specialists in typical paddy soils[J]. Acta Pedological Sinical, 60(2): 546-557. | |
[20] | 刘骞, 汤洁, 2020. 盐碱芦苇湿地土壤活性有机碳组分垂直分布及相关性分析[J]. 科学技术与工程, 20(5): 1760-1766. |
LIU Q, TANG J, 2020. Vertical distribution and correlation analysis of soil active organic carbon components in saline-alkali reed wetland[J]. Science Technology and Engineering, 20(5): 1760-1766. | |
[21] | 鲁青原, 2020. 辽河滨海芦苇湿地有机碳的埋藏过程及控制因素[D]. 杭州: 浙江大学: 9-13. |
LU Q Y, 2020. Burial process and controlling factors of organic carbon in Liaohe coastal reed wetland[D]. Hangzhou: Zhejiang University: 9-13. | |
[22] | 鲁如坤, 1999. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社: 51-58. |
LU R K, 1999. Methods for agrochemical analysis of soil[M]. Beijing: China Agricultural Science and Technology Press: 51-58. | |
[23] | 罗先香, 贾红丽, 杨建强, 等, 2015. 中国北方典型河口芦苇湿地土壤有机碳库比较研究[J]. 中国海洋大学学报(自然科学版), 45(3): 99-106. |
LUO X X, JIA H L, YANG J Q, et al., 2015. A comparison of soil organic carbon pools in two typical estuary reed wetlands in northern China[J]. Journal of Ocean University of China (Natural Science Edition), 45(3): 99-106. | |
[24] |
马宁, 齐继薇, 刘长发, 等, 2018. 辽河口潮滩湿地不同植被土壤4种碳代谢酶活性及其与有机碳含量、pH值关系[J]. 中国农学通报, 34(1): 90-97.
DOI |
MA N, QI J W, LIU C F, et al., 2018. Relationship between 4 carbon metabolism enzymes and organic carbon, pH value under different vegetation in Liaohe estuary tidal flat wetland[J]. Chinese Agricultural Science Bulletin, 34(1): 90-97.
DOI |
|
[25] | 莫朝阳, 张鑫林, 杨京平, 2021. 根际激发效应对土壤有机碳累积及分解的影响[J]. 浙江大学学报 (农业与生命科学版), 47(4): 527-533. |
MO Z Y, ZHANG X L, YANG J P, 2021. Influence of rhizosphere priming effects on accumulation and decomposition of soil organic carbon[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 47(4): 527-533. | |
[26] | 彭溶, 邹立, 万汉兴, 等, 2012. 辽河口芦苇湿地土壤有机碳的积累特征研究[J]. 中国海洋大学学报(自然科学版), 42(5): 28-34. |
PENG R, ZOU L, WAN H X, et al., 2012. Studies on the accumulation of organic carbon in the soil in the reed wetland at Liaohe estuary[J]. Journal of Ocean University of China (Natural Science Edition), 42(5): 28-34. | |
[27] | 王法明, 唐剑武, 叶思源, 等, 2021. 中国滨海湿地的蓝色碳汇功能及碳中和对策[J]. 中国科学院院刊, 36(3): 241-251. |
WANG F M, TANG J W, YE S Y, et al., 2021. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J]. Proceedings of Chinese Academy of Sciences, 36(3): 241-251. | |
[28] | 王園博, 赵锐锋, 张丽华, 等, 2020. 黑河中游湿地不同植物群落土壤有机碳分布及影响因素[J]. 草业科学, 37(5): 833-844. |
WANG Y B, ZHAO R F, ZHANG L H, et al., 2020. Soil organic carbon and its influencing factors on the different plant communities in the middle reaches of the Hei River wetland[J]. Pratacultural Science, 37(5): 833-844. | |
[29] |
王永志, 刘胜林, 2021. 黄河三角洲芦苇湿地生态系统碳通量动态特征及其影响因素[J]. 生态环境学报, 30(5): 949-956.
DOI |
WANG Y Z, LIU S L, 2021. Dynamic characteristics and influencing factors of carbon and water flux in reed wetland ecosystem in the Yellow River delta[J]. Journal of Ecology and Environment, 30(5): 949-956. | |
[30] | 吴建国, 张小全, 王彦辉, 等, 2002. 土地利用变化对土壤物理组分中有机碳分配的影响[J]. 林业科学, 38(4): 19-29. |
WU J G, ZHANG X Q, WANG Y H, et al., 2002. The effects of land use changes on the distribution of soil organic carbon in physical fractionation of soil[J]. Scientia Sylvae Sinical, 38(4): 19-29. | |
[31] | 习盼, 董倩, 张亚楠, 2020. 盐城滩涂湿地典型植物群落土壤活性有机碳组分分布特征[J]. 生态学杂志, 39(11): 3623-3632. |
XI P, DONG Q, ZHANG Y N, 2020. Distribution characteristics of active components in soil organic carbon across typical plant communities in Yancheng coastal wetlands[J]. Chinese Journal of Ecology, 39(11): 3623-3632.
DOI |
|
[32] | 谢冬明, 温丽, 易青, 等, 2020. 基于景观尺度下的鄱阳湖湿地浅层土有机碳的空间特征[J]. 生态科学, 39(1): 101-109. |
XIE D M, WEN L, YI Q, et al., 2020. Spatial characteristic of SOC in surface soil in different landscape of Poyang Lake wetlands[J]. Ecological Science, 39(1): 101-109. | |
[33] | 徐广平, 李艳琼, 沈育伊, 等, 2019. 桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征[J]. 环境科学, 40(3): 1491-1503. |
XU G P, LI Y Q, SHEN Y Y, et al., 2019. Soil organic carbon distribution and components in different plant communities along a water table gradient in the Huixian karst wetland in Guilin[J]. Environmental Science, 40(3): 1491-1503.
DOI URL |
|
[34] | 徐欢欢, 曾从盛, 王维奇, 等, 2010. 艾比湖湿地土壤有机碳垂直分布特征及其影响因子分析[J]. 福建师范大学学报(自然科学版), 26(5): 86-91. |
XU H H, ZENG C S, WANG W Q, et al., 2010. Study on vertical distribution and the influencing factors of soil organic carbon in Eibner Lake wetland[J]. Journal of Fujian Normal University (Natural Science Edition), 26(5): 86-91. | |
[35] | 杨长明, 陈霞智, 张一夔, 等, 2021. 土地利用与覆被变化对巢湖湖滨带土壤有机碳组分及酶活性的影响[J]. 湖泊科学, 33(6): 1766-1776. |
YANG C M, CHEN X Z, ZHANG Y K, et al., 2021. Effect of land use and cover change on soil organic carbon fractions and enzymatic activi-ties in lakeshore wetland of north shore of Lake Chao[J]. Journal of Lake Science, 33(6): 1766-1776. | |
[36] | 杨君珑, 张学丽, 曹兵, 等, 2017. 宁夏罗山典型植被类型的土壤活性有机碳组分研究[J]. 西部林业科学, 46(4): 61-66. |
YANG J L, ZHANG X L, CAO B, et al., 2017. Active organic carbon in soil of typical vegetation in Luo Hill of Ningxia[J]. Western Forestry Science, 46(4):61-66. | |
[37] | 余健, 房莉, 卞正富, 等, 2014. 土壤碳库构成研究进展[J]. 生态学报, 34(17): 4829-4838. |
YU J, FANG L, BIAN Z F, et al., 2014. A review of the composition of soil carbon pool[J]. Acta Ecological Sinical, 34(17): 4829-4838. | |
[38] | 袁继红, 任琼, 周莉荫, 等, 2023. 鄱阳湖湿地不同环境条件土壤有机碳组分特征及其影响因素[J]. 生态学杂志, 42(6): 1323-1329. |
YUAN J H, REN Q, ZHOU L Y, et al., 2023. Characteristics and influencing factors of soil organic carbon components under different environmental conditions in Poyang Lake wetland[J]. Chinese Journal of Ecology, 42(6): 1323-1329. | |
[39] | 张甘霖, 龚子同, 2012. 土壤调查实验室分析方法[M]. 北京: 科学出版社: 19-23. |
ZHANG G L, GONG Z T, 2012. Methods for laboratory analysis of soil investigation[M]. Beijing: Science Press: 19-23. | |
[40] | 张洪霞, 郑世玲, 魏文超, 等, 2017. 水分条件对滨海芦苇湿地土壤微生物多样性的影响[J]. 海洋科学, 41(5): 144-152. |
ZHANG H X, ZHENG S L, WEI W C, et al., 2017. Effects of water conditions on the diversity of soil microbial communities in the coastal reed wetlands[J]. Marine Science, 41(5): 144-152. | |
[41] |
张维理, 张认连, 2020. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 53(2): 317-331.
DOI |
ZHANG W L, ZHANG R L, 2020. Research progress of SOC functions and transformation mechanisms[J]. Chinese Journal of Agricultural Sciences, 53(2): 317-331. | |
[42] | 张文敏, 吴明, 王蒙, 等, 2014. 杭州湾湿地不同植被类型下土壤有机碳及其组分分布特征[J]. 土壤学报, 51(6): 1351-1360. |
ZHANG W M, WU M, WANG M, et al., 2014. Distribution characteristics of soil organic carbon and its components under different vegetation types in Hangzhou Bay wetland[J]. Acta Pedologica Sinical, 51(6): 1351-1360. | |
[43] | 张智博, 刘涛, 伍青山, 等, 2019. 东平湖湿地土壤有机碳分布特征及其影响因素[J]. 人民黄河, 41(7): 92-96, 147. |
ZHANG Z B, LIU T, WU Q S, et al., 2019. Distribution characteristics and influencing factors of organic carbon content in soil of Dongping Lake wetland[J]. People's Yellow River, 41(7): 92-96, 147. | |
[44] | 张子鸣, 王艺杰, 王莹, 等, 2023. 珠江口红树林湿地土壤碳的分布特征和影响因素研究[J]. 环境科学学报, 43(1): 297-306. |
ZHANG Z M, WANG Y J, WANG Y, et al., 2023. Distribution patterns and influencing factors of soil carbon storage in mangrove wetland at the Pear River estuary[J]. Chinese Journal of Environmental Sciences, 43(1): 297-306. | |
[45] | 赵光影, 江姗, 邵宗仁, 2017. 小兴安岭森林沼泽湿地土地利用变化对土壤活性碳组分的影响[J]. 水土保持通报, 37(6): 68-74. |
ZHAO G Y, JIANG S, SHAO Z R, 2017. Effects on component of activated carbon in soil under different patterns of land use in Lesser Khingan mountains[J]. Bulletin of Soil and Water Conservation, 37(6): 68-74. | |
[46] | 赵志忠, 李燕, 赵泽阳, 等, 2019. 海南岛东部地区土地利用方式对土壤有机碳与易氧化有机碳的影响[J]. 热带地理, 39(1): 144-152. |
ZHAO Z Z, LI Y, ZHAO Z Y, et al., 2019. Effects of land use patterns on soil organic carbon and easily oxidized organic carbon in the eastern part of Hainan island[J]. Tropical Geography, 39(1): 144-152.
DOI |
|
[47] | 周念清, 吴延浩, 蔡奕, 等, 2022. 湿地关键带中磷与氮、碳循环联动耦合机制[J]. 地球科学与环境学报, 44(1): 91-101. |
ZHOU N Q, WU Y H, CAI Y, et al., 2022. Coupling mechanism of phosphorus and nitrogen, carbon cycles in critical zone of wetland[J]. Journal of Earth Sciences and Environment, 44(1): 91-101. | |
[48] | 朱万泽, 马胜兰, 王文武, 等, 2023. 土壤微生物碳利用效率研究进展[J]. 山地学报, 41(1): 1-18. |
ZHU W Z, MA S L, WANG W W, et al., 2023. Research advances in soil microbial carbon use efficiency[J]. Journal of Mountain Science, 41(1): 1-18. |
[1] | 林丹丹, 毕华兴, 赵丹阳, 管凝, 韩金丹, 郭艳杰. 晋西黄土区不同密度刺槐林土壤有机碳组分及碳库特征[J]. 生态环境学报, 2024, 33(3): 379-388. |
[2] | 刘亚静, 刘明月, 李京, 周帅. 基于ANN-CA的外来入侵植物互花米草的扩散趋势预测研究[J]. 生态环境学报, 2024, 33(3): 341-350. |
[3] | 张腾云, 王静, 高健磊, 葛文静, 王宗耀, 韩龙. 碱性农田土壤冬小麦不同生育期镉的迁移转化研究[J]. 生态环境学报, 2024, 33(3): 450-459. |
[4] | 张桂芹, 王云博, 杜琪玥, 闫怀忠, 李思源, 石敬华, 刘仕杰, 朱文祺, 孙友敏. 济南市柴油型移动源排放颗粒物中碳组分特征和排放量估算[J]. 生态环境学报, 2024, 33(3): 408-417. |
[5] | 王郑钧, 王邵军, 肖博, 解玲玲, 郭志鹏, 张昆凤, 张路路, 樊宇翔, 郭晓飞, 罗双, 夏佳慧, 李瑞, 杨胜秋, 兰梦杰. 西双版纳热带森林土壤有机碳积累-分配动态对蚂蚁筑巢活动的响应[J]. 生态环境学报, 2024, 33(1): 35-44. |
[6] | 宋思梦, 林冬梅, 周恒宇, 罗宗志, 张丽丽, 易超, 林辉, 林兴生, 刘斌, 苏德伟, 郑丹, 余世葵, 林占熺. 种植巨菌草对乌兰布和沙漠植物物种多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(9): 1595-1605. |
[7] | 梁鑫, 韩亚峰, 郑柯, 王旭刚, 陈志怀, 杜鹃. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 2023, 32(9): 1615-1622. |
[8] | 王玉琴, 宋梅玲, 周睿, 王宏生. 黄帚橐吾扩散对高寒草甸土壤理化特性及酶活性的影响[J]. 生态环境学报, 2023, 32(8): 1384-1391. |
[9] | 田成诗, 孙瑞欣. 长江经济带市域生态环境质量空间分异与影响因素分析——基于三生空间的土地利用转型[J]. 生态环境学报, 2023, 32(7): 1173-1184. |
[10] | 王琳, 卫伟. 黄土高原典型县域生态系统服务变化特征及驱动因素[J]. 生态环境学报, 2023, 32(6): 1140-1148. |
[11] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[12] | 刘霞, 郭澍, 王琳. 区域一体化地区的土地利用与生态服务价值研究——以双莱先行区为例[J]. 生态环境学报, 2023, 32(6): 1163-1172. |
[13] | 王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897. |
[14] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[15] | 王铁铮, 瞿心悦, 刘春香, 李有志. 东江湖水质时空变化规律及其与流域土地利用的关系[J]. 生态环境学报, 2023, 32(4): 722-732. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||