生态环境学报 ›› 2025, Vol. 34 ›› Issue (9): 1398-1409.DOI: 10.16258/j.cnki.1674-5906.2025.09.007
李东熠1,2(), 李亭亭1,2, 薛婉怡1,2, 夏永知1,2, 汪正祥1,2,*(
)
收稿日期:
2025-01-11
出版日期:
2025-09-18
发布日期:
2025-09-05
通讯作者:
*E-mail: wangzx66@hubu.edu.cn
作者简介:
李东熠(1997年生),男,硕士研究生,研究方向为珍稀濒危植物保护。E-mail: ldy05336@163.com
基金资助:
LI Dongyi1,2(), LI Tingting1,2, XUE Wanyi1,2, XIA Yongzhi1,2, WANG Zhengxiang1,2,*(
)
Received:
2025-01-11
Online:
2025-09-18
Published:
2025-09-05
摘要:
红豆杉(Taxus wallichiana var. chinensis)是国家一级重点保护野生植物,也被IUCN列为易危级(VU)保护物种。目前关于气候变化下红豆杉的潜在适宜生境的研究较少,导致对其保护面临挑战。基于Biomod2程序包运用并集成多种模型方法,结合当前和未来气候情景,利用气候、地形等多种环境因子,分析了湖北省红豆杉潜在适宜生境的变化。研究表明,通过对多种模型进行组合,获得了精度更高的综合模型以预测红豆杉潜在适宜生境。另外发现,最冷季降水量(bio19)对适生区分布的影响最大,红豆杉适宜性随着降水量的增加呈现先上升,当降水量大于61 mm时下降的趋势。当前气候条件下,红豆杉潜在适宜生境主要分布在鄂西秦巴山区和鄂西南武陵山区,面积约15067 km2,占研究区总面积的8.1%。在未来气候情境下,由于气候变暖的影响潜在适宜生境面积预计将明显增加,总体破碎度化程度降低,并向水热条件较好地形起伏较大的中低山区扩展。研究进一步强调了未来气候变化对红豆杉潜在适宜生境扩展与分布中心迁移的影响,为湖北省红豆杉未来保护与管理提供了科学依据。
中图分类号:
李东熠, 李亭亭, 薛婉怡, 夏永知, 汪正祥. 气候变化下红豆杉潜在适宜生境分布预测分析——以湖北省为例[J]. 生态环境学报, 2025, 34(9): 1398-1409.
LI Dongyi, LI Tingting, XUE Wanyi, XIA Yongzhi, WANG Zhengxiang. Prediction and Analysis of Potential Habitat Distribution of Taxus wallichiana var. Chinensis under Climate Change: A Case Study of Hubei Province[J]. Ecology and Environmental Sciences, 2025, 34(9): 1398-1409.
图1 红豆杉物种点位的地理分布 基于自然资源部标准地图服务网站发布的GS(2024)0650号标准地图制作,底图边界无修改。下同
Figure 1 Geographic distribution of Taxus wallichiana var. chinensis species occurrence points
因子类型 | 环境因子名称 | 单位 | 值域 |
---|---|---|---|
气候 | 年均温(BIO1) | ℃ | 4.10-17.60 |
最湿季的均温(BIO8) | ℃ | 13.21-27.29 | |
最湿季的降水量(BIO16) | mm | 380.55-755.24 | |
最冷季的降水量(BIO19) | mm | 32.16-196.76 | |
地形 | 坡向 | - | 0-8 |
起伏度 | m | 3-2534 | |
土壤 | 土壤分类(WRB_PHASES) | - | 1-42 |
土壤单位的可用储水量(AWC) | mm | 0-150 | |
土地覆盖数据CLCD | 中国土地覆盖数据集 (CLCD) | - | 1-7 |
人类足迹数据HFS | 人类足迹数据 (HFS) | - | 0.28-50 |
表1 筛选后的环境变量因子
Table 1 Filtered environmental variables factors
因子类型 | 环境因子名称 | 单位 | 值域 |
---|---|---|---|
气候 | 年均温(BIO1) | ℃ | 4.10-17.60 |
最湿季的均温(BIO8) | ℃ | 13.21-27.29 | |
最湿季的降水量(BIO16) | mm | 380.55-755.24 | |
最冷季的降水量(BIO19) | mm | 32.16-196.76 | |
地形 | 坡向 | - | 0-8 |
起伏度 | m | 3-2534 | |
土壤 | 土壤分类(WRB_PHASES) | - | 1-42 |
土壤单位的可用储水量(AWC) | mm | 0-150 | |
土地覆盖数据CLCD | 中国土地覆盖数据集 (CLCD) | - | 1-7 |
人类足迹数据HFS | 人类足迹数据 (HFS) | - | 0.28-50 |
模型 | 环境因子重要性/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Aspec | AWC | Bio8 | Bio16 | Bio19 | Bio1 | CLCD | HFS | Relief | wrb_pha | |
GLM | 1.8 | 11.4 | 9.9 | 67.5 | 72.4 | 32.0 | 0.7 | 3.1 | 1.7 | 7.5 |
GBM | 0.3 | 1.4 | 6.1 | 10.6 | 10.8 | 9.3 | 0.0 | 1.8 | 15.7 | 1.3 |
CTA | 0.2 | 2.2 | 5.6 | 13.8 | 8.2 | 23.9 | 0.7 | 3.0 | 63.5 | 0.0 |
ANN | 3.7 | 16.9 | 8.7 | 42.1 | 45.1 | 9.4 | 1.7 | 10.5 | 47.0 | 14.9 |
SRE | 1.4 | 13.1 | 24.7 | 23.0 | 34.6 | 19.9 | 2.7 | 7.6 | 36.5 | 7.5 |
FDA | 0.0 | 1.8 | 15.8 | 41.2 | 45.8 | 55.9 | 0.0 | 0.8 | 7.9 | 1.0 |
RF | 0.5 | 1.7 | 5.9 | 6.8 | 3.9 | 21.6 | 0.3 | 1.9 | 8.6 | 1.1 |
Maxent1 | 1.3 | 2.4 | 6.1 | 36.1 | 40.5 | 7.9 | 0.0 | 1.8 | 3.3 | 0.6 |
Maxent2 | 7.4 | 3.3 | 0.4 | 19.0 | 33.9 | 14.6 | 2.1 | 1.5 | 12.4 | 5.2 |
EnsembleModel | 0.1 | 3.0 | 3.4 | 25.1 | 28.1 | 13.9 | 0.1 | 0.9 | 7.5 | 0.8 |
表2 环境因子重要性
Table 2 Environmental variable importance
模型 | 环境因子重要性/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Aspec | AWC | Bio8 | Bio16 | Bio19 | Bio1 | CLCD | HFS | Relief | wrb_pha | |
GLM | 1.8 | 11.4 | 9.9 | 67.5 | 72.4 | 32.0 | 0.7 | 3.1 | 1.7 | 7.5 |
GBM | 0.3 | 1.4 | 6.1 | 10.6 | 10.8 | 9.3 | 0.0 | 1.8 | 15.7 | 1.3 |
CTA | 0.2 | 2.2 | 5.6 | 13.8 | 8.2 | 23.9 | 0.7 | 3.0 | 63.5 | 0.0 |
ANN | 3.7 | 16.9 | 8.7 | 42.1 | 45.1 | 9.4 | 1.7 | 10.5 | 47.0 | 14.9 |
SRE | 1.4 | 13.1 | 24.7 | 23.0 | 34.6 | 19.9 | 2.7 | 7.6 | 36.5 | 7.5 |
FDA | 0.0 | 1.8 | 15.8 | 41.2 | 45.8 | 55.9 | 0.0 | 0.8 | 7.9 | 1.0 |
RF | 0.5 | 1.7 | 5.9 | 6.8 | 3.9 | 21.6 | 0.3 | 1.9 | 8.6 | 1.1 |
Maxent1 | 1.3 | 2.4 | 6.1 | 36.1 | 40.5 | 7.9 | 0.0 | 1.8 | 3.3 | 0.6 |
Maxent2 | 7.4 | 3.3 | 0.4 | 19.0 | 33.9 | 14.6 | 2.1 | 1.5 | 12.4 | 5.2 |
EnsembleModel | 0.1 | 3.0 | 3.4 | 25.1 | 28.1 | 13.9 | 0.1 | 0.9 | 7.5 | 0.8 |
时期 | NP | AREA_MN/hm2 | AI/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
低适生区 | 中高适生 | 总适生区 | 低适生区 | 中高适生区 | 总适生区 | 低适生区 | 中高适生区 | 总适生区 | ||||
当代 | 1159 | 360 | 476 | 444.95 | 2752.78 | 3165.34 | 41.25 | 75.73 | 79.51 | |||
SSP1-2.6 | 2030S | 561 | 225 | 216 | 1413.55 | 5742.67 | 9653.24 | 60.62 | 83.33 | 92.12 | ||
2070S | 627 | 269 | 128 | 2008.13 | 7557.25 | 26303.91 | 65.21 | 82.57 | 94.03 | |||
SSP2-4.5 | 2030S | 678 | 274 | 141 | 1946.76 | 8090.15 | 25082.27 | 65.25 | 83.14 | 95.07 | ||
2070S | 736 | 318 | 135 | 2145.11 | 7920.44 | 30351.85 | 66.05 | 81.92 | 96.16 | |||
SSP5-8.5 | 2030S | 627 | 269 | 137 | 2008.13 | 7557.25 | 24029.20 | 65.21 | 82.57 | 94.95 | ||
2070S | 641 | 403 | 118 | 2499.06 | 4392.06 | 28575.42 | 67.61 | 76.77 | 94.19 |
表3 红豆杉潜在适宜生境破碎化指标(不同时期与气候情景)
Table 3 Fragmentation indices of Taxus wallichiana var. chinensis habitat (periods and climate scenarios)
时期 | NP | AREA_MN/hm2 | AI/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
低适生区 | 中高适生 | 总适生区 | 低适生区 | 中高适生区 | 总适生区 | 低适生区 | 中高适生区 | 总适生区 | ||||
当代 | 1159 | 360 | 476 | 444.95 | 2752.78 | 3165.34 | 41.25 | 75.73 | 79.51 | |||
SSP1-2.6 | 2030S | 561 | 225 | 216 | 1413.55 | 5742.67 | 9653.24 | 60.62 | 83.33 | 92.12 | ||
2070S | 627 | 269 | 128 | 2008.13 | 7557.25 | 26303.91 | 65.21 | 82.57 | 94.03 | |||
SSP2-4.5 | 2030S | 678 | 274 | 141 | 1946.76 | 8090.15 | 25082.27 | 65.25 | 83.14 | 95.07 | ||
2070S | 736 | 318 | 135 | 2145.11 | 7920.44 | 30351.85 | 66.05 | 81.92 | 96.16 | |||
SSP5-8.5 | 2030S | 627 | 269 | 137 | 2008.13 | 7557.25 | 24029.20 | 65.21 | 82.57 | 94.95 | ||
2070S | 641 | 403 | 118 | 2499.06 | 4392.06 | 28575.42 | 67.61 | 76.77 | 94.19 |
[1] | ALLOUCHE O, TSOAR A, KADMON R, 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS)[J]. Journal of Applied Ecology, 43(6): 1223-1232. |
[2] | ANDERSON R P, 2013. A framework for using niche models to estimate impacts of climate change on species distributions[J]. Annals of the New York Academy of Sciences, 1297(1): 8-28. |
[3] | CABRA-RIVAS I, SALDAÑA A, CASTRO-DÍEZ P, et al., 2016. A multi-scale approach to identify invasion drivers and invaders’ future dynamics[J]. Biological Invasions, 18: 411-426. |
[4] | COBOS M E, PETERSON A T, BARVE N, et al., 2019. kuenm: An R package for detailed development of ecological niche models using Maxent[J]. PeerJ, 7: e6281. |
[5] | CVH, 2024. Data resources[EB/OL]. [2024-05-29]. https://www.cvh.ac.cn/spms/list.php. |
[6] | DAI Y C, HUANG H Q, QING Y, et al., 2023. Ecological response of an umbrella species to changing climate and land use: Habitat conservation for Asiatic black bear in the Sichuan‐Chongqing Region, Southwestern China[J]. Ecology and Evolution, 13(6): e10222. |
[7] | ELITH J, LEATHWICK J R, 2009. Species distribution models: ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution, and Systematics, 40(1): 677-697. |
[8] | ELITH J, PHILLIPS S J, HASTIE T, et al., 2011. A statistical explanation of MaxEnt for ecologists[J]. Diversity and distributions, 17(1): 43-57. |
[9] | FRANCO A C S, LORINI M L, MINSKY E M C, et al., 2022. Far beyond the Amazon: Global distribution, environmental suitability, and invasive potential of the two most introduced peacock bass[J]. Biological Invasions, 24(9): 2851-2872. |
[10] | GBIF, 2024. GBIF occurrence download[EB/OL]. [2024-05-29]. https://doi.org/10.15468/dl.5pgnnm. |
[11] | GONG X, CHEN Y J, WANG T, et al., 2020. Double-edged effects of climate change on plant invasions: Ecological niche modeling global distributions of two invasive alien plants[J]. Science of the Total Environment, 740: 139933. |
[12] | HUANG R J, DU H M, WEN Y T, et al., 2022. Predicting the distribution of suitable habitat of the poisonous weed Astragalus variabilis in China under current and future climate conditions[J]. Frontiers in Plant Science, 13: 921310. |
[13] | IUCN, 2024. IUCNredlist[EB/OL]. [2024-05-29]. https://www.iucnredlist.org. |
[14] | JANITZA S, CELIK E, BOULESTEIX A L, 2018. A computationally fast variable importance test for random forests for high-dimensional data[J]. Advances in Data Analysis and Classification, 12(4): 885-915. |
[15] | LI J L, DENG C R, DUAN G Z, et al., 2024. Potentially suitable habitats of Daodi goji berry in China under climate change[J]. Frontiers in Plant Science, 14: 1279019. |
[16] | LI Y X, SHAO W H, JIANG J M, 2022. Predicting the potential global distribution of Sapindus mukorossi under climate change based on MaxEnt modelling[J]. Environmental Science and Pollution Research, 29(15): 21751-21768. |
[17] |
MU H W, LI X C, WEN Y N, et al., 2022. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018[J]. Scientific Data, 9(1): 176.
DOI PMID |
[18] | PHILLIPS S J, ANDERSON R P, 2006. Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological modelling, 190(3-4): 231-259. |
[19] | PHILLIPS S J, DUDÍK M, 2008. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation[J]. Ecography, 31(2): 161-175. |
[20] | RANC N, SANTINI L, RONDININI C, et al., 2017. Performance tradeoffs in target‐group bias correction for species distribution models[J]. Ecography, 40(9): 1076-1087. |
[21] | STREET G M, 2020. Habitat suitability and distribution models with applications in R[J]. Journal of Wildlife Management, 84(6): 1212. |
[22] | SUBRAMANIAN J, SIMON R, 2013. Overfitting in prediction models-is it a problem only in high dimensions?[J]. Contemporary Clinical Trials, 36(2): 636-641. |
[23] | WANG J H, QIAN Q F, JIA X J, et al., 2023a. The possible impact of human activity and climate change on the potential suitable habitats of Taxus wallichiana var. mairei (Taxaceae) evaluated by ensemble modeling techniques[J]. Environmental Research Communications, 5(10): 105006. |
[24] | WANG Y L, LIU H C, XU J K, et al., 2023b. Prediction of suitable planting areas of Rubia cordifolia in China based on a species distribution model and analysis of specific secondary metabolites[J]. Industrial Crops and Products, 206: 117651. |
[25] | YANG J, HUANG X, 2023. The 30 m annual land cover datasets and its dynamics in China from 1985 to 2022 [EB/OL]. [2024-05-29]. https://zenodo.org/records/8176941. |
[26] | 杜超群, 吴昊, 袁慧, 等, 2023. 湖北主要造林树种生态区划研究[J]. 西南林业大学学报(自然科学), 43(6): 1-7. |
DU C Q, WU H, YUAN H, et al., 2023. Study on Ecological regionalization of main afforestation species in Hubei Province[J]. Journal of Southwest Forestry University(Natural Sciences), 43(6): 1-7. | |
[27] | 段居琦, 周广, 2011. 中国水稻潜在分布及其气候特征[J]. 生态学报, 31(22): 6659-6668. |
DUAN J Q, ZHOU G, 2011. Potential distribution of rice in china and its climate characteristics[J]. Acta Ecologica Sinica, 31(22): 6659-6668. | |
[28] | 高灿, 樊智丰, 马长乐, 等, 2024. 基于Biomod2组合模型对气候变化下滇山茶适生区的预测[J]. 生态学杂志, 43(11): 3526-3536. |
GAO C, FAN Z F, MA C L, et al., 2024. Modelling the suitable area of Camellia reticulata under climate change based on the Biomod2[J]. Chinese Journal of Ecology, 43(11): 3526-3536. | |
[29] | 郭富印, 刘晓煌, 赵晓峰, 等, 2024. 气候变化与人类活动对盐生植被的影响——以柽柳为例[J/OL]. 中国地质, 1-16. (2024-09-25) [2024-12-03]. http://kns.cnki.net/kcms/detail/11.1167.P.20240924.1722.005.html. |
GUO F Y, LIU X H, ZHAO X F, et al., 2024. Impacts of climate change and human activities on saline vegetation-anexample of Tamarix chinensis[J/OL]. Geology in China, 1-16. (2024-09-25) [2024-12-03]. http://kns.cnki.net/kcms/detail/11.1167.P.20240924.1722.005.html. | |
[30] | 郭恺琦, 姜小龙, 徐刚标, 2021. 薄片青冈潜在适生区及气候变化对其分布的影响[J]. 生态学杂志, 40(8): 2563-2574. |
GUO K Q, JIANG X L, XU G B, 2021. Potential suitable distribution area of Quercus lamellosa and the influence of climate change[J]. Chinese Journal of Ecology, 40(8): 2563-2574. | |
[31] |
郭彦龙, 赵泽芳, 乔慧捷, 等, 2020. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 35(12): 1292-1305.
DOI |
Guo Y L, Zhao Z F, Qiao H J, et al., 2020. Challenges and development trend of species distribution model[J]. Advances in Earth Science, 35(12): 1292-1305.
DOI |
|
[32] | 郜二虎, 汪正祥, 王志臣, 2012. 湖北堵河源自然保护区科学考察与研究[M]. 北京: 科学出版社: 88-97. |
HAO E H, WANG Z X, WANG Z C, 2012. Scientific investigation and research in duheyuan nature reserve, Hubei Province[M]. Beijing: Science Press: 88-97. | |
[33] | 雷军成, 徐海根, 吴军, 等, 2015. 气候变化情景下物种适宜生境预测研究进展[J]. 四川动物, 34(5): 794-800. |
LEI J C, XU H G, WU J, et al., 2015. Advance in predicting the suitable habitat of species under future climate change[J]. Sichuan Journal of Zoology, 34(5): 794-800. | |
[34] | 刘国华, 傅伯杰, 2001. 全球气候变化对森林生态系统的影响[J]. 自然资源学报, 16(1): 71-78. |
LIU G H, FU B J, 2001. Effects of global climate change on forest ecosystems[J]. Journal of Natural Resources, 16(1): 71-78.
DOI |
|
[35] | 李炎林, 杨星星, 张家银, 等, 2014. 南方红豆杉转录组SSR挖掘及分子标记的研究[J]. 园艺学报, 41(4): 735-745. |
LI Y L, YANG X X, ZHANG J Y, et al., 2014. Studies on SSR Molecular Markers Based on Transcriptome of Taxus chinensis var. mairei[J]. Acta Horticulturae Sinica, 41(4): 735-745. | |
[36] | 李新周, 刘晓东, 马红艳, 2023. 人类活动对轨道尺度全球季风区降水影响的模拟研究[J]. 地球环境学报, 14(5): 557-572. |
LI X Z, LIU X D, MA H Y, 2023. Regulation of human activities on orbital-scale precipitation in global monsoon regions[J]. Journal of Earth Environment, 14(5): 557-572. | |
[37] |
刘新星, 余响华, 刘学端, 2015. 红豆杉分布与培育技术研究进展[J]. 生物技术通报, 31(7): 51-57.
DOI |
LIU X X, YU X H, LIU X D, 2015. Research progress of cultivation technology of Taxus and its distribution in China[J]. Biotechnology Bulletin, 31(7): 51-57.
DOI |
|
[38] | 柳晓燕, 赵彩云, 李俊生, 等, 2022. 气候变化情景下中国外来入侵植物黄顶菊潜在分布区模拟与早期预警[J]. 环境科学研究, 35(12): 2768-2776. |
LIU X Y, ZHAO C Y, LI J S, et al., 2022. Simulation and early warning of potential range of Flaveria bidentis in China under climate change scenarios[J]. Research of Environmental Sciences, 35(12): 2768-2776. | |
[39] |
罗玫, 王昊, 吕植, 2017. 使用大熊猫数据评估Biomod2和MaxEnt分布预测模型的表现[J]. 应用生态学报, 28(12): 4001-4006.
DOI |
LUO M, WANG H, LÜ Z, 2017. Evaluating the performance of species distribution models Biomod2 and MaxEnt using the giant panda distribution data[J]. Chinese Journal of Applied Ecology, 28(12): 4001-4006.
DOI |
|
[40] | 王晓帆, 段雨萱, 金露露, 等, 2023. 基于优化的最大熵模型预测中国高山栎组植物的历史、现状与未来分布变化[J]. 生态学报, 43(16): 6590-6604. |
WANG X F, DUAN Y X, JIN L L, et al., 2023. Ediction of historical, present, and future distribution of Quercus sect. Heterobalanus based on the optimized MaxEnt model in China[J]. Acta Ecologica Sinica, 43(16): 6590-6604. | |
[41] |
王云, 周忠学, 郭钟哲, 2014. 都市农业景观破碎化过程对生态系统服务价值的影响——以西安市为例[J]. 地理研究, 33(6): 1097-1105.
DOI |
WANG Y, ZHOU Z X, GUO Z Z, 2014. Impact of the urban agricultural landscape fragmentation onecosystem services: A case study of Xi’an City[J]. Geographical Research, 33(6): 1097-1105. | |
[42] | 王志伟, 纪燕玲, 陈永敢, 2015. 植物内生菌研究及其科学意义[J]. 微生物学通报, 42(2): 349-363. |
WANG Z W, JI Y L, CHEN Y G, 2015. Studies and biological significances of plant endophytes[J]. Microbiology China, 42(2): 349-363. | |
[43] | 汪正祥, 蔡德军, 2013. 湖北五道峡自然保护区生物多样性及其保护研究[M]. 北京: 中国林业出版社: 86-95. |
WANG Z X, CAI D J, 2013. Study on biodiversity and conservation in Wudaoxia Nature Reserve, Hubei Province[M]. Beijing: China Forestry Publishing House: 86-95. | |
[44] | 汪正祥, 雷耘, 杨其仁, 等, 2016. 湖北崩尖子自然保护区生物多样性及其保护研究[M]. 北京: 科学出版社: 73-78. |
WANG Z X, LEI Y, YANG Q R, et al., 2016. Study on biodiversity and conservation in bengjianzi nature reserve, Hubei Province[M]. Beijing: Science Press: 73-78. | |
[45] | 汪正祥, 雷耘, 李亭亭, 2012. 湖北万朝山自然保护区生物多样性及其保护研究[M]. 北京: 科学出版社: 96-109. |
WANG Z X, LEI Y, LI T T, 2013. Study on biodiversity and conservation in Wanchaoshan Nature Reserve, Hubei Province[M]. Beijing: China Forestry Publishing House:96-109. | |
[46] | 吴榜华, 张启昌, 兰晓龙, 等, 1995. 东北红豆杉生长与气象因子关系的初步调查[J]. 吉林林学院学报 (4): 193-199, 209. |
WU B H, ZHANG Q C, LANG X L, et al., 1995. A preliminary investigation on the relations between growth of Taxus cuspidata and meteorological factors[J]. Journal of Jilin Forestry University (4): 193-199, 209. | |
[47] |
肖麒, 章梦婷, 吴翼, 等, 2020. 基于生态位模型的外来入侵种克氏原螯虾在中国的适生区预测[J]. 应用生态学报, 31(1): 309-318.
DOI |
XIAO L, ZHANG M T, WU Y, et al., 2020. Prediction of potential distribution of the invasive species Procambarus clarkii in China based on ecological niche models[J]. Chinese Journal of Applied Ecology, 31(1): 309-318.
DOI |
|
[48] | 谢春平, 2014. 南方红豆杉分布区生态适应性分析[J]. 热带地理, 34(3): 359-365. |
Xie C P, 2014. Climatic ecological adaption for geographical distribution of Taxus Wallichiana var. Mairei[J]. Tropical Geography, 34(3): 359-365. | |
[49] | 许仲林, 彭焕华, 彭守璋, 2015. 物种分布模型的发展及评价方法[J]. 生态学报, 35(2): 557-567. |
XU Z L, PENG H F, PENG S Z, 2015. The development and evaluation of species distribution models[J]. Acta Ecologica Sinica, 35(2): 557-567. | |
[50] | 徐帆, 贺鹭瑶, 郑伟, 2025. 基于MaxEnt模型预测我国怒江山茶的潜在适生区[J/OL]. 西南农业学报, 1-11. (2025-02-11) [2025-02-24]. http://kns.cnki.net/kcms/detail/51.1213.S.20250211.1442.010.html. |
XU F, HE L Y, ZHENG W, 2025. Prediction of the potential suitable area of Camellia saluenensis in China based on MaxEnt model[J/OL]. Southwest China Journal of Agricultural Sciences, 1-11. (2025-02-11) [2025-02-24]. http://kns.cnki.net/kcms/detail/51.1213.S.20250211.1442.010.html. | |
[51] | 杨利民, 张荫桥, 胡全德, 1993. 紫杉生物生态学特性及繁殖育苗初步研究[J]. 中国野生植物资源 (4): 41-43. |
Yang L M, Zhang Y Q, Hu Q D, 1993. Preliminary study on the biological and ecological characteristics and propagation of Taxus[J]. Chinese Wild Plant Resources (4): 41-43. | |
[52] | 杨玉林, 宋学东, 董京祥, 等, 2009. 红豆杉属植物资源及其世界分布概况[J]. 森林工程, 25(3): 5-10. |
Yang Y L, Song X D, Dong J X, et al., 2009. Resources and distribution of Taxus in the world[J]. Forest Engineering, 25(3): 5-10. | |
[53] | 杨子文, 韩姝伊, 李壹, 等, 2023. 气候变化对雪豹全球潜在适生区分布的影响与评估[J]. 生态学报, 43(4): 1412-1425. |
YANG Z W, HAN S Y, LI Y, et al., 2023. Impacts and assessment of climate change on the global distribution of potentially suitable habitats for Panthera uncia[J]. Acta Ecologica Sinica, 43(4): 1412-1425. | |
[54] | 殷晓洁, 周广胜, 隋兴华, 等, 2013. 蒙古栎地理分布的主导气候因子及其阈值[J]. 生态学报, 33(1): 103-109. |
YIN X J, ZHOU G S, SUI X H, et al., 2013. Dominant climatic factors of Quercus mongolica geographical distribution andtheir thresholds[J]. Acta Ecologica Sinica, 33(1): 103-109. | |
[55] | 张利平, 夏军, 胡志芳, 2009. 中国水资源状况与水资源安全问题分析[J]. 长江流域资源与环境, 18(2): 116-120. |
ZHANG L P, XIA J, HU Z F, 2009. Situation and problem analysis of water resource security in China[J]. Resources and Environment in the Yangtze Basin, 18(2): 116-120. | |
[56] | 赵宗慈, 罗勇, 黄建斌, 2018. 从检验CMIP5气候模式看CMIP6地球系统模式的发展[J]. 气候变化研究进展, 14(6): 643-648. |
ZHAO Z C, LUO Y, HUANG J B, 2018. The detection of the CMIP5 climate model to see the development of CMIP6 earth system models[J]. Climate Change Research, 14(6): 643-648. | |
[57] | 周全, 史航, 江明喜, 等, 2018. 湖北竹溪十八里长峡自然保护区红豆杉群落特征研究[J]. 湖北林业科技, 47(1): 5-9. |
ZHOU Q, SHI H, JIANG M X, et al., 2018. Study on the community characteristics of Taxus chinensis in Shibalichangxia Nature Reserve in Zhuxi, Hubei Province[J]. Hubei Forestry Science and Technology, 47(1): 5-9. | |
[58] | 周宇琛, 胡菊华, 刘牧, 等, 2024. 利用最大熵(MaxEnt)模型对红豆杉潜在适生区的模拟[J]. 东北林业大学学报, 52(4): 66-71. |
ZHOU Y C, HU J H, LIU M, et al., 2024. Simulation of Potential Suitable Habitats for Taxus wallichiana Using MaxEnt Model[J]. Journal of Northeast Forestry University, 52(4): 66-71. | |
[59] | 朱莹莹, 徐晓婷, 2019. 气候变化对我国特有濒危物种水杉野生种群分布的影响[J]. 生态学杂志, 38(6): 1629-1636. |
ZHU Y Y, XU X T, 2019. Effects of climate change on the distribution of wild population of Metasequoia glyptostroboides, an endangered and endemic species in China[J]. Chinese Journal of Ecology, 38(6): 1629-1636. |
[1] | 许达, 宫程程, 张在勇, 冉彬, 胡月, 王寒冰, 陈晨. 毛乌素沙地植被净初级生产力的时空变化规律及影响因素[J]. 生态环境学报, 2025, 34(9): 1361-1372. |
[2] | 刘泽渊, 魏有海, 严旭发, 程亮, 侯璐, 严紫玮, 郭良芝. 气候变化对入侵杂草续断菊潜在地理分布的影响[J]. 生态环境学报, 2025, 34(6): 845-852. |
[3] | 张亚丽, 黄柱军, 田义超, 林俊良, 覃彩焕. 极端气候对西南地区植被覆盖度变化的时滞与累积效应[J]. 生态环境学报, 2025, 34(5): 665-677. |
[4] | 叶俊宏, 刘珍环, 刘子瑜. 珠江三角洲城市群国土空间生态修复分区情景模拟[J]. 生态环境学报, 2025, 34(1): 4-12. |
[5] | 徐佳乐, 杨兴川, 赵文吉, 杨志强, 钟一雪, 师乐颜, 马鹏飞. 气候变化背景下内蒙古中西部植被覆盖度演变特征研究[J]. 生态环境学报, 2024, 33(7): 1008-1018. |
[6] | 杨乐. 基于集合模型预测外来植物反枝苋的入侵趋势[J]. 生态环境学报, 2024, 33(6): 888-899. |
[7] | 李慧, 邓佳伟, 李亚鑫, 母滢琦. 秦岭北麓典型流域径流对气候和土地利用变化的响应——以灞河流域为例[J]. 生态环境学报, 2024, 33(5): 802-811. |
[8] | 田叙辰, 魏洪玲, 解胜男, 储启名, 杨婧, 张颖, 肖思秋, 唐中华, 刘英, 李德文. 基于MaxEnt模型的东北地区槭树潜在地理分布[J]. 生态环境学报, 2024, 33(4): 509-519. |
[9] | 郝蕾, 翟涌光, 戚文超, 兰穹穹. 2001-2020年内蒙古植被碳源/碳汇时空动态及对气候因子的响应[J]. 生态环境学报, 2023, 32(5): 825-834. |
[10] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[11] | 李晖, 李必龙, 葛黎黎, 韩琛惠, 杨倩, 张岳军. 2000-2021年汾河流域植被时空演变特征及地形效应[J]. 生态环境学报, 2023, 32(3): 439-449. |
[12] | 贾志峰, 刘鹏程, 刘宇, 吴博博, 陈丹姿, 张向飞. 气候变化和人类活动对松辽流域植被覆盖的影响[J]. 生态环境学报, 2023, 32(1): 1-10. |
[13] | 邓天乐, 谢立勇, 张凤哲, 赵洪亮, 蒋语童. CO2浓度升高条件下稗草与水稻生长空间竞争关系研究[J]. 生态环境学报, 2022, 31(8): 1566-1572. |
[14] | 齐月, 张强, 胡淑娟, 蔡迪花, 赵福年, 陈斐, 张凯, 王鹤龄, 王润元. 黄土高原地区气候变化及其对冬小麦生产潜力的影响[J]. 生态环境学报, 2022, 31(8): 1521-1529. |
[15] | 卢燕宇, 孙维, 方砚秋, 唐为安, 邓汗青, 何冬燕. 基于种植结构的安徽省气候生产潜力估算及粮食安全气候承载力分析[J]. 生态环境学报, 2022, 31(7): 1293-1305. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||