生态环境学报 ›› 2023, Vol. 32 ›› Issue (9): 1615-1622.DOI: 10.16258/j.cnki.1674-5906.2023.09.008
梁鑫1(), 韩亚峰1,2, 郑柯1, 王旭刚1,3,*(
), 陈志怀1, 杜鹃4
收稿日期:
2023-04-11
出版日期:
2023-09-18
发布日期:
2023-12-11
通讯作者:
*王旭刚。E-mail: nywxg@126.com作者简介:
梁鑫(1999年生),男,硕士研究生,研究方向为土壤化学。E-mail: haustlx@163.com
基金资助:
LIANG Xin1(), HAN Yafeng1,2, ZHENG Ke1, WANG Xugang1,3,*(
), CHEN Zhihuai1, DU Juan4
Received:
2023-04-11
Online:
2023-09-18
Published:
2023-12-11
摘要:
厌氧条件下土壤铁还原与碳循环紧密相关,然而针对稻田土壤中异化铁还原与碳矿化关系的认识尚有不足。采用黄河中下游地区河南孟津稻田土壤为研究对象,分别将50.0、100、200、400 mg磁铁矿(Fe3O4)粉末添加至3.00 g稻田土壤,设置恒温厌氧泥浆培养实验,期间动态监测土壤0.5 molL−1 HCl可提取态Fe(Ⅱ)、水溶性有机碳(WSOC)、水溶性无机碳(WSIC)、铁氧化物形态、CO2和CH4排放的变化。结果表明,外源添加Fe3O4可显著提高土壤铁还原潜势,增幅为0.883-4.53 mgkg−1,但对最大铁还原速率和铁还原速率常数无显著影响;添加Fe3O4显著提高了WSIC含量,增加值达88.4 mgkg−1,降低了WSOC含量,降低值为62.7 mgkg−1,减弱微生物对土壤有机碳分解作用及CO2的外排风险;提高Fe3O4添加量对CO2累积排放量无显著影响,但显著抑制了土壤CH4的累积排放量,降低值介于11.1-76.3 mgkg−1,降幅最高达56.3%,表明外源添加Fe3O4降低了土壤碳矿化风险;培养结束后矿化产物CO2与CH4累积排放量占比呈现显著增长趋势,最高值可达174%,表明培养周期内CH4排放随外源Fe3O4添加量增加而被显著抑制,液相矿化产物分配占比则随外源Fe3O4添加量增加显著增加,增幅最大达15%,表明厌氧培养中外源Fe3O4添加可显著抑制温室气体排放。相关分析显示,土壤Fe还原潜势、游离态铁氧化物(Fed)与CH4累积排放量和CH4排放速率均呈现出极显著负相关关系,表明外源添加Fe3O4增强的异化铁还原显著抑制了土壤有机碳的矿化。研究结果对进一步理解水稻土壤异化铁还原及其耦合的碳转化机理具有重要意义。
中图分类号:
梁鑫, 韩亚峰, 郑柯, 王旭刚, 陈志怀, 杜鹃. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 2023, 32(9): 1615-1622.
LIANG Xin, HAN Yafeng, ZHENG Ke, WANG Xugang, CHEN Zhihuai, DU Juan. Effects of Fe3O4 on Soil Carbon Mineralization in Paddy Field[J]. Ecology and Environment, 2023, 32(9): 1615-1622.
图1 不同Fe3O4添加水平下土壤避光厌氧培养过程中0.5 molL−1 HCl可浸提Fe(Ⅱ) CK、FA、FB、FC、FD处理表示与3.00 g土壤混合Fe3O4质量,分别为0、50.0、100、200、400 mg
Figure 1 Contents of 0.5 molL−1 HCl extractable Fe(Ⅱ) in the different Fe3O4 supplemental levels under anaerobic incubation in darkness
处理 | 还原潜势/ (mg g−1) | 最大还原速率/ (mgg−1d−1) | 速率常数 k/d−1 | 决定系数 r2 | P值 |
---|---|---|---|---|---|
CK | 6.26±0.11e | 0.57±0.09a | 0.36±0.06a | 0.947 | <0.01 |
FA | 7.15±0.20d | 0.71±0.13a | 0.41±0.09a | 0.930 | <0.01 |
FB | 7.78±0.19c | 0.70±0.12a | 0.36±0.07a | 0.934 | <0.01 |
FC | 9.62±0.42b | 0.63±0.12a | 0.27±0.06a | 0.917 | <0.01 |
FD | 10.79±0.56a | 0.75±0.13a | 0.27±0.05a | 0.934 | <0.01 |
表1 恒温培养过程铁还原关键参数
Table 1 Key parameters of iron reduction in constant temperature culture
处理 | 还原潜势/ (mg g−1) | 最大还原速率/ (mgg−1d−1) | 速率常数 k/d−1 | 决定系数 r2 | P值 |
---|---|---|---|---|---|
CK | 6.26±0.11e | 0.57±0.09a | 0.36±0.06a | 0.947 | <0.01 |
FA | 7.15±0.20d | 0.71±0.13a | 0.41±0.09a | 0.930 | <0.01 |
FB | 7.78±0.19c | 0.70±0.12a | 0.36±0.07a | 0.934 | <0.01 |
FC | 9.62±0.42b | 0.63±0.12a | 0.27±0.06a | 0.917 | <0.01 |
FD | 10.79±0.56a | 0.75±0.13a | 0.27±0.05a | 0.934 | <0.01 |
图2 不同Fe3O4添加水平下土壤Feo(a)、Fep(b)、Fed(c)、Feo-p(d)形态含量变化 OS:未淹水的风干土样;Feo:无定型铁;Fep:有机络合态铁;Fed:游离态铁;Feo-p:非晶型铁
Figure 2 The change in soil Feo (a), Fep (b), Fed (c), Feo-p (d) contents under different Fe3O4 supplemental levels
图4 不同Fe3O4添加水平下CO2(以C计)累积排放量Logistic方程拟合曲线
Figure 4 Logistic equation fitting curve of cumulative CO2 emissions under different Fe3O4 supplemental levels
处理 | 排放潜势/ (mg g−1) | 最大排放速率/ (mgkg−1 d−1) | 速率常数 k/d−1 | 决定系数 r2 | P值 |
---|---|---|---|---|---|
CK | 121.04±8.05b | 0.83±1.33a | 0.33±0.09a | 0.928 | <0.01 |
FA | 134.98±8.19b | 0.67±1.27a | 0.28±0.07ab | 0.952 | <0.01 |
FB | 148.59±16.00b | 0.29±0.60a | 0.20±0.06bc | 0.931 | <0.01 |
FC | 210.11±19.41a | 0.26±0.35a | 0.09±0.04c | 0.875 | <0.01 |
FD | 65.05±17.25c | 0.14±0.32a | 0.13±0.05c | 0.900 | <0.01 |
表2 恒温培养过程CH4排放关键参数
Table 2 Key parameters of CH4 emission during constant temperature culture
处理 | 排放潜势/ (mg g−1) | 最大排放速率/ (mgkg−1 d−1) | 速率常数 k/d−1 | 决定系数 r2 | P值 |
---|---|---|---|---|---|
CK | 121.04±8.05b | 0.83±1.33a | 0.33±0.09a | 0.928 | <0.01 |
FA | 134.98±8.19b | 0.67±1.27a | 0.28±0.07ab | 0.952 | <0.01 |
FB | 148.59±16.00b | 0.29±0.60a | 0.20±0.06bc | 0.931 | <0.01 |
FC | 210.11±19.41a | 0.26±0.35a | 0.09±0.04c | 0.875 | <0.01 |
FD | 65.05±17.25c | 0.14±0.32a | 0.13±0.05c | 0.900 | <0.01 |
图6 培养结束后CO2/CH4比值(a)与矿化产物气/液比(b) 气相矿化产物主要指CO2与CH4,液相矿化产物为培养前后WSIC(溶液中CO32−、HCO3−、H2CO3)的差值
Figure 6 Ratio of CO2 to CH4 (a) and gas to liquid of mineralized product (b) at the end of incubation
图7 Fe(Ⅱ)还原参数及各形态铁氧化物与土壤碳矿化参数相关关系矩阵
Figure 7 Correlation matrix between iron redox parameters/different forms of iron oxides and soil carbon mineralization
[1] |
ANDREAS K, CASEY B, MUAMMAR M, et al., 2021. An evolving view on biogeochemical cycling of iron[J]. Nature reviews. Microbiology, 19(6): 360-374.
DOI PMID |
[2] |
BANWART S, BLACK H, CAI Z, et al., 2014. Benefits of soil carbon: report on the outcomes of an international scientific committee on problems of the environment rapid assessment workshop[J]. Carbon management, 5(2): 185-192.
DOI URL |
[3] |
FRIESE A, BAUER K, GLOMBITZA C, et al., 2021. Organic matter mineralization in modern and ancient ferruginous sediments[J]. Nature communications 12: 2216.
DOI PMID |
[4] |
HAN L F, SUN K, JIN J, et al., 2016. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature[J]. Soil Biology and Biochemistry, 94: 107-121.
DOI URL |
[5] |
HUIJUAN L, JIALI C, PENGFEI L, et al., 2015. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments[J]. Environmental microbiology, 17(5): 1533-1547.
DOI PMID |
[6] |
LAL R, 2004. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security[J]. Science, 304(5677):1623-1627.
DOI PMID |
[7] |
LIANG S, HAILIANG D, GEMMA R, et al., 2016. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 14(10): 651-662.
DOI PMID |
[8] |
LUONG N, VU MINH T, MD A H J, et al., 2021. Promotion of direct interspecies electron transfer and potential impact of conductive materials in anaerobic digestion and its downstream processing-a critical review[J]. Bioresource Technology, 341: 125847.
DOI URL |
[9] |
MARANGUIT D, GUILLAUME T, KUZYAKOV Y, 2017. Effects of flooding on phosphorus and iron mobilization in highly weathered soils under different land-use types: Short-term effects and mechanisms[J]. Catena, 158: 161-170.
DOI URL |
[10] |
SHI L, DONG H, REGUERA G, et al., 2016. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 14(10): 651-662.
DOI PMID |
[11] |
SOUICHIRO K, KAZUHITO H, KAZUYA W, 2012. Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals[J]. Environmental microbiology, 14(7): 1646-1654.
DOI URL |
[12] |
WANG Y, ZHANG Z Y, HAN L F, et al., 2019. Preferential molecular fractionation of dissolved organic matter by iron minerals with different oxidation states[J]. Chemical Geology, 520: 69-76.
DOI URL |
[13] |
WEN Y L, LIU W J, DENG W B, et al., 2019. Impact of agricultural fertilization practices on organo-mineral associations in four long-term field experiments: Implications for soil C sequestration[J]. Science of the Total Environment, 651(Part 1): 591-600.
DOI URL |
[14] | XIAO K Q, ZHAO Y, LIANG C, et al., 2023. Introducing the soil mineral carbon pump[J]. Nature Reviews Earth & Environment, 4(3): 135-136. |
[15] |
YANG Z M, SHI X S, WANG C S, et al., 2015. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors[J]. Scientific Reports, 12(5): 16118.
DOI |
[16] |
ZHAO Z Q, L Y, X Q, et al., 2017. Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials[J]. Water Research, 115: 266-277.
DOI PMID |
[17] |
ZHUANG L, TANG J, WANG Y Q, et al., 2015. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation[J]. Journal of Hazardous Materials, 293: 37-45.
DOI PMID |
[18] | 陈家坊, 何群, 邵宗臣, 1983. 土壤中氧化铁的活化过程的探讨[J]. 土壤学报, 20(4): 387-393. |
CHEN J F, HE Q, SHAO Z C, 1983. Discussion on the activation process of iron oxide in soil[J]. Acta Pedologica Sinica, 20(4): 387-393. | |
[19] | 陈志怀, 王旭刚, 孙丽蓉, 等, 2023. 石灰性水稻土中硝酸盐依赖型与光合型亚铁氧化过程[J]. 土壤学报, 60(1): 127-137. |
CHEN Z H, WANG X G, SUN L R, et al., 2023. Nitrate-dependent and photosynthetic ferrous oxidation processes in calcic paddy soils[J]. Acta Pedologica Sinica, 60(1): 127-137. | |
[20] | 程琨, 潘根兴, 2021. 农业与碳中和[J]. 科学, 73(6): 8-12. |
CHENG K, PAN G X, 2021. Agriculture and carbon neutrality[J]. Science, 73(6): 8-12.
DOI URL |
|
[21] |
段勋, 李哲, 刘淼, 等, 2022. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 37(2): 202-211.
DOI |
DUAN X, LI Z, LIU M, et al., 2022. Progress in studies on iron-mediated soil organic carbon sequestration and mineralization[J]. Advances in Earth Sciences, 37(2): 202-211. | |
[22] | 国家统计局, 2021. 中国统计年鉴 (总第40期 NO.40)[M]. 北京: 中国统计出版社. |
National Bureau of Statistics (Ed.), 2021. China Statistical Yearbook (Total NO.40)[M]. Beijing: China Statistics Press. | |
[23] | 何群, 陈家坊, 1983. 土壤中游离铁和络合态铁的测定[J]. 土壤, 15(6): 242-244. |
HE Q, CHEN J F, 1983. Determination of free iron and complex iron in soil[J]. Soil Research, 15(6): 242-244. | |
[24] | 李建, 王鸿辉, 马美萍, 等, 2021. 磁铁矿促进微生物种间电子传递的机制[J]. 应用与环境生物学报, 28(5): 1331-1340. |
LI J, WANG H H, MA M P, et al., 2021. Mechanism of magnetite promoting electron transfer between microbial species[J]. Chinese Journal of Applied & Environmental Biology, 28(5): 1331-1340. | |
[25] | 李文军, 黄庆海, 李大明, 等, 2021. 长期施肥红壤性稻田和旱地土壤有机碳积累差异[J]. 植物营养与肥料学报, 27(3): 544-552. |
LI W J, HUANG Q H, LI D M, et al., 2021. Differences in soil organic carbon accumulation between long-term fertilized red soil paddy field and dry land[J]. Plant Nutrition and Fertilizer Journal, 27(3): 544-552. | |
[26] | 刘侯俊, 陈红娜, 王俊梅, 等, 2017. 长期施肥对棕壤铁形态及其有效性的影响[J]. 植物营养与肥料学报, 23(1): 36-43. |
LIU H J, CHEN H N, WANG J M, et al., 2017. Effects of long-term fertilization on iron morphology and availability in brown soil[J]. Plant Nutrition and Fertilizer Journal, 23(1): 36-43. | |
[27] | 刘琪, 李宇虹, 李哲, 等, 2021. 不同水分条件和微生物生物量水平下水稻土有机碳矿化及其影响因子特征[J]. 环境科学, 42(5): 2440-2448. |
LIU Q, LI Y H, LI Z, et al., 2021. Characteristics of organic carbon mineralization and its influencing factors in paddy soil under different water conditions and microbial biomass levels[J]. Environmental Science, 42(5): 2440-2448. | |
[28] | 任向宁, 董玉祥, 王秋香, 2018. 珠三角核心区农田耕层土壤有机碳库储量时空变化特征及其影响因素识别[J]. 热带地理, 38(5): 668-677. |
REN X N, DONG Y X, WANG Q X, 2018. Spatio-temporal variation of soil organic carbon pool in farmland in the core area of the Pearl River Delta and identification of its influencing factors[J]. Tropical Geography, 38(5): 668-677. | |
[29] | 孙博雅, 程永毅, 肖广全, 等, 2021. 典型气田土壤铁还原活性与微生物群落关系研究[J]. 环境科学学报, 41(10): 4170-4178. |
SUN B Y, CHENG Y Y, XIAO G Q, et al., 2021. Relationship between soil iron reducing activity and microbial community in typical gas fields[J]. Journal of Environmental Sciences, 41(10): 4170-4178. | |
[30] | 唐子阳, 汤佳, 庄莉, 等, 2016. 土壤铁氧化物对有机质产甲烷过程的影响及其机制[J]. 生态学杂志, 35(6): 1653-1660. |
TANG Z Y, TANG J, ZHUANG L, et al., 2016. Effect of soil iron oxides on methane production of organic matter and its mechanism[J]. Chinese Journal of Ecology, 35(6): 1653-1660. | |
[31] | 王媛媛, 郑世超, 黄文力, 等, 2022. 零价铁与磁铁矿促进半干式猪粪厌氧产甲烷的效能与机理研究[J]. 环境科学学报, 42(12): 215-223. |
WANG Y Y, ZHENG S C, HUANG W L, et al., 2022. Effect and mechanism of zero-valent iron and magnetite on anaerobic methane production from semi-dry pig manure[J]. Journal of Environmental Sciences, 42(12): 215-223.
DOI URL |
|
[32] | 王云秋, 李宇虹, 祝贞科, 等, 2021. 铁氧化物对厌氧水稻土中乙酸矿化、转化及其激发效应的影响[J]. 土壤学报, 59(6): 1683-1694. |
WANG Y Q, LI Y H, ZHU Z K, et al., 2021. Effects of iron oxides on acetic acid mineralization, transformation and its excitation effect in anaerobic paddy soil[J]. Journal of Soil Science, 59(6): 1683-1694. | |
[33] | 许祖诒, 陈家坊, 1980. 土壤中无定形氧化铁的测定[J]. 土壤通报 (6): 32-35. |
XU Z Y, CHEN J F, 1980. Determination of amorphous iron oxide in soil[J]. Chinese Journal of Soil Science (6): 32-35. | |
[34] | 张天娇, 汤佳, 庄莉, 等, 2014. 干湿交替条件下不同晶型铁氧化物对水稻土甲烷排放的影响[J]. 环境科学, 35(3): 901-907. |
ZHANG T J, TANG J, ZHUANG L, et al., 2014. Effects of different crystal types of iron oxides on methane emission from paddy soil under dry-wet alternating conditions[J]. Environmental Science, 35(3): 901-907.
DOI URL |
|
[35] | 张勋, 陈天虎, 王进, 等, 2018. 铁氧化物对有机质厌氧产甲烷过程的影响及其机制[J]. 地球科学, 43(S1): 136-144. |
ZHANG X, CHEN T H, WANG J, et al., 2018. Effect of iron oxides on anaerobic methanogenesis of organic matter and its mechanism[J]. Earth Sciences, 43(S1): 136-144. | |
[36] | 朱晓艳, 袁宇翔, 宋长春, 等, 2020. 湿地土壤和沉积物异化铁还原过程研究进展[J]. 湿地科学, 18(1): 122-128. |
ZHU X Y, YUAN Y X, SONG C C, et al., 2020. Research progress of dissimilatory iron reduction process in wetland soil and sediment[J]. Wetland Science, 18(1): 122-128. |
[1] | 王兴来, 苗淑杰, 乔云发. 基于江苏省本地化参数评价稻麦周年轮作系统碳足迹[J]. 生态环境学报, 2023, 32(9): 1682-1691. |
[2] | 王家一, 孙亭亭, 沙润钰, 谌婷红, 邢冉, 秦伯强, 施文卿. 富营养化湖泊蓝藻打捞减污降碳效果模拟研究[J]. 生态环境学报, 2023, 32(6): 1108-1114. |
[3] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[4] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
[5] | 吴昊平, 秦红杰, 贺斌, 尤毅, 陈金峰, 邹春萍, 杨思雨, 郝贝贝. 基于碳中和的农业面源污染治理模式发展态势刍议[J]. 生态环境学报, 2022, 31(9): 1919-1926. |
[6] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
[7] | 龚玲玄, 王丽丽, 赵建宁, 刘红梅, 杨殿林, 张贵龙. 不同覆盖作物模式对茶园土壤理化性质及有机碳矿化的影响[J]. 生态环境学报, 2022, 31(6): 1141-1150. |
[8] | 张涵, 唐常源, 禤映雪, 江涛, 黄品怡, 杨秋, 曹英杰. 珠江口红树林土壤甲烷和二氧化碳通量特征及其影响因素研究[J]. 生态环境学报, 2022, 31(5): 939-948. |
[9] | 杜雪, 王海燕, 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 2022, 31(4): 663-669. |
[10] | 胡靓达, 周海菊, 黄永珍, 姚贤宇, 叶绍明, 喻素芳. 不同杉木林分类型植物多样性及其土壤碳氮关系的研究[J]. 生态环境学报, 2022, 31(3): 451-459. |
[11] | 梁蕾, 马秀枝, 韩晓荣, 李长生, 张志杰. 模拟增温下凋落物对大青山油松人工林土壤温室气体通量的影响[J]. 生态环境学报, 2022, 31(3): 478-486. |
[12] | 贺晓佳, 冯书华, 蒋明, 李明锐, 湛方栋, 李元, 何永美. UV-B辐射对水稻根际土壤活性有机碳转化和产甲烷潜力的影响[J]. 生态环境学报, 2022, 31(3): 556-564. |
[13] | 郝小雨, 王晓军, 高洪生, 毛明艳, 孙磊, 马星竹, 周宝库, 迟凤琴, 李伟群. 松嫩平原不同秸秆还田方式下农田温室气体排放及碳足迹估算[J]. 生态环境学报, 2022, 31(2): 318-325. |
[14] | 王浩, 陈永金, 刘加珍, 万波, 张丽. 黄河三角洲新生湿地3种柽柳灌丛对土壤有机碳空间分布的影响研究[J]. 生态环境学报, 2022, 31(1): 9-16. |
[15] | 史利江, 高杉, 姚晓军, 张晓龙, 李文刚, 高峰. 晋西北黄土丘陵区不同植被恢复下的土壤碳氮累积特征[J]. 生态环境学报, 2021, 30(9): 1787-1796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||