生态环境学报 ›› 2022, Vol. 31 ›› Issue (6): 1132-1140.DOI: 10.16258/j.cnki.1674-5906.2022.06.008
王超1,2(), 杨倩楠1,2, 张池3, 李祥东4, 陈静1,2, 张晓龙1,2, 陈金洁1,2, 刘科学1,2,*(
)
收稿日期:
2022-01-13
出版日期:
2022-06-18
发布日期:
2022-07-29
通讯作者:
*刘科学(1980年生),男,高级工程师,博士,研究方向为土地整治与生态修复。E-mail: 28257448@qq.com作者简介:
王超(1994年生),男,硕士研究生,研究方向为耕地质量提升和土壤结构改良。E-mail: wzfaye66@sina.com
基金资助:
WANG Chao1,2(), YANG Qiannan1,2, ZHANG Chi3, LI Xiangdong4, CHEN Jing1,2, ZHANG Xiaolong1,2, CHEN Jinjie1,2, LIU Kexue1,2,*(
)
Received:
2022-01-13
Online:
2022-06-18
Published:
2022-07-29
摘要:
“中国丹霞”是中国东南部湿润地带脆弱的生态系统之一。研究其土壤有机碳组分、碳库的敏感性和碳库管理的变化特征,对脆弱生态区土壤固碳和生态环境的可持续性发展具有重要意义。在广东仁化丹霞山典型地貌区,选取4种土地利用方式土壤(自然林地NL、灌丛SL、撂荒草地AG和农田CL)为研究对象,测定土壤总有机碳(TOC)、溶解性有机碳(DOC)、易氧化有机碳(EOC)、颗粒态有机碳(POC)和微生物量碳(MBC)含量,旨在探明东南湿润区典型丹霞地貌不同土地利用方式下土壤有机碳组分及其敏感性特征。结果表明,(1)TOC、DOC和POC质量分数在NL土壤表现最高,分别为24.32 g∙kg-1、291.10 mg∙kg-1和6.49 g∙kg-1。与其他利用方式相比,AG土壤EOC和微生物熵显著增加,分别提高了21.04%—43.19%和36.16%—171.43%,而CL表层土壤MBC含量显著降低,降幅达258.40%—347.89%。(2)4种土地利用方式土壤有机碳组分均以POC最敏感,DOC差异性较小。(3)表层土壤的碳库管理指数以AG最高,而亚表层土壤以NL最高,MBC是土壤碳库管理指数变化的重要影响因素。(4)线性拟合分析表明,土壤TOC变化量与DOC变化无明显相关,与EOC呈显著负相关,与POC、非活性有机碳、矿物结合态有机碳呈极显著正相关。POC是土壤有机碳组分敏感性指标,而MBC是土壤碳库管理指数变化的有效性表征指标,这揭示了丹霞地貌不同土地利用方式是通过土壤团粒结构和土壤微生物代谢活动影响土壤有机碳库变化。此外,该区域林地有机碳组分含量较高,退耕还林有助于土壤固碳和土壤质量提升。
中图分类号:
王超, 杨倩楠, 张池, 李祥东, 陈静, 张晓龙, 陈金洁, 刘科学. 东南湿润区典型丹霞地貌土壤有机碳组分及其敏感性研究[J]. 生态环境学报, 2022, 31(6): 1132-1140.
WANG Chao, YANG Qiannan, ZHANG Chi, LI Xiangdong, CHEN Jing, ZHANG Xiaolong, CHEN Jinjie, LIU Kexue. Soil Organic Carbon Fractions and Their Sensitivities to Land Use in the Typical Danxia landform Area in the Humid Region of Southeast China[J]. Ecology and Environment, 2022, 31(6): 1132-1140.
编号 No. | 样地类型 Sample type | 海拔 Altitude/m | 地理坐标 Geographic coordinates | 年限 Age/a | 主要植被 Major vegetation |
---|---|---|---|---|---|
NL | 自然林地 | 268.9 | 25°2′36″N, 113°43′2″E | >30 | 枫香(Liquidambar formosana Hance)、米储(Castanopsis Carlesii)、丹霞梧桐(Firmiana danxiaensis H. H. Hsue & H. S. Kiu)、乌楣(Castanopsis jucunda Hance) |
SL | 灌丛 | 191.7 | 25°2′38″N, 113°43′28″E | >20 | 鸭脚木(Schefflera octophylla (Lour.) Harms)、南酸枣(Choerospondias axillaris (Roxb.) Burtt et Hill.)、圆叶小石积(Osteomeles subrotunda K. Koch)、芒萁(Dicranopteris dichotoma (Thunb.) Berhn.)、狗脊(Cibotium barometz (L.) J. Sm.) |
AG | 撂荒草地 | 117.5 | 25°2′27″N, 113°43′57″E | 约3 | 狗尾草(Setaria viridis (L.) Beauv.)、雀稗(Paspalum thunbergii Kunth ex steud.) |
CL | 农田 | 88.0 | 25°2′45″N, 113°43′21″E | >20 | 辣椒(Capsicum annuum L.)、菜心(Brassica campestris L. ssp.chinensis var. utilis Tsen)、玉米(Zea mays L.) |
表1 样地基本信息
Table 1 Condition of different sample plots
编号 No. | 样地类型 Sample type | 海拔 Altitude/m | 地理坐标 Geographic coordinates | 年限 Age/a | 主要植被 Major vegetation |
---|---|---|---|---|---|
NL | 自然林地 | 268.9 | 25°2′36″N, 113°43′2″E | >30 | 枫香(Liquidambar formosana Hance)、米储(Castanopsis Carlesii)、丹霞梧桐(Firmiana danxiaensis H. H. Hsue & H. S. Kiu)、乌楣(Castanopsis jucunda Hance) |
SL | 灌丛 | 191.7 | 25°2′38″N, 113°43′28″E | >20 | 鸭脚木(Schefflera octophylla (Lour.) Harms)、南酸枣(Choerospondias axillaris (Roxb.) Burtt et Hill.)、圆叶小石积(Osteomeles subrotunda K. Koch)、芒萁(Dicranopteris dichotoma (Thunb.) Berhn.)、狗脊(Cibotium barometz (L.) J. Sm.) |
AG | 撂荒草地 | 117.5 | 25°2′27″N, 113°43′57″E | 约3 | 狗尾草(Setaria viridis (L.) Beauv.)、雀稗(Paspalum thunbergii Kunth ex steud.) |
CL | 农田 | 88.0 | 25°2′45″N, 113°43′21″E | >20 | 辣椒(Capsicum annuum L.)、菜心(Brassica campestris L. ssp.chinensis var. utilis Tsen)、玉米(Zea mays L.) |
土地利用方式 Land use types | 土层深度 Soil depth/cm | pH | 容重 Bulk density/(g∙cm-3) | w(total N)/ (g∙kg-1) | w(amorphous iron)/ (g∙kg-1) | w(sand)/ (g∙kg-1) | w(silt)/ (g∙kg-1) | w(clay)/ (g∙kg-1) |
---|---|---|---|---|---|---|---|---|
自然林地 NL | 0-10 | 6.28±0.13 | 1.08±0.01 | 1.40±0.05 | 2.42±0.13 | 202.11±9.37 | 467.09±20.84 | 330.80±23.45 |
10-20 | 6.77±0.15 | 1.20±0.01 | 1.09±0.05 | 0.99±0.07 | 179.07±12.25 | 438.93±15.07 | 382.00±2.88 | |
灌丛 SL | 0-10 | 6.01±0.12 | 1.19±0.00 | 1.98±0.11 | 1.72±0.07 | 231.56±15.80 | 450.58±12.28 | 317.87±21.85 |
10-20 | 5.91±0.06 | 1.22±0.01 | 1.03±0.09 | 1.30±0.09 | 175.34±1.91 | 416.26±5.20 | 408.40±3.46 | |
撂荒草地 AG | 0-10 | 5.29±0.02 | 1.25±0.03 | 0.81±0.04 | 1.05±0.06 | 373.32±44.69 | 545.74±48.54 | 80.93±11.34 |
10-20 | 5.16±0.17 | 1.31±0.01 | 0.66±0.07 | 1.12±0.02 | 410.03±17.58 | 505.70±17.71 | 84.27±4.20 | |
农田 CL | 0-10 | 5.21±0.04 | 1.28±0.04 | 1.61±0.10 | 2.84±0.07 | 322.94±13.01 | 491.46±11.95 | 185.60±1.44 |
10-20 | 4.80±0.03 | 1.30±0.04 | 1.11±0.03 | 2.81±0.06 | 299.96±12.16 | 661.91±5.83 | 38.13±6.50 |
表2 采样点土壤基本理化性质
Table 2 Basic physical and chemical properties of soil samples
土地利用方式 Land use types | 土层深度 Soil depth/cm | pH | 容重 Bulk density/(g∙cm-3) | w(total N)/ (g∙kg-1) | w(amorphous iron)/ (g∙kg-1) | w(sand)/ (g∙kg-1) | w(silt)/ (g∙kg-1) | w(clay)/ (g∙kg-1) |
---|---|---|---|---|---|---|---|---|
自然林地 NL | 0-10 | 6.28±0.13 | 1.08±0.01 | 1.40±0.05 | 2.42±0.13 | 202.11±9.37 | 467.09±20.84 | 330.80±23.45 |
10-20 | 6.77±0.15 | 1.20±0.01 | 1.09±0.05 | 0.99±0.07 | 179.07±12.25 | 438.93±15.07 | 382.00±2.88 | |
灌丛 SL | 0-10 | 6.01±0.12 | 1.19±0.00 | 1.98±0.11 | 1.72±0.07 | 231.56±15.80 | 450.58±12.28 | 317.87±21.85 |
10-20 | 5.91±0.06 | 1.22±0.01 | 1.03±0.09 | 1.30±0.09 | 175.34±1.91 | 416.26±5.20 | 408.40±3.46 | |
撂荒草地 AG | 0-10 | 5.29±0.02 | 1.25±0.03 | 0.81±0.04 | 1.05±0.06 | 373.32±44.69 | 545.74±48.54 | 80.93±11.34 |
10-20 | 5.16±0.17 | 1.31±0.01 | 0.66±0.07 | 1.12±0.02 | 410.03±17.58 | 505.70±17.71 | 84.27±4.20 | |
农田 CL | 0-10 | 5.21±0.04 | 1.28±0.04 | 1.61±0.10 | 2.84±0.07 | 322.94±13.01 | 491.46±11.95 | 185.60±1.44 |
10-20 | 4.80±0.03 | 1.30±0.04 | 1.11±0.03 | 2.81±0.06 | 299.96±12.16 | 661.91±5.83 | 38.13±6.50 |
指标 Index | 土地利用方式 Land use types | 土层深度 Soil depth | 土地利用方式×土层深度 Land use types×Soil depth | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
TOC | 763.89 | P<0.01 | 599.742 | P<0.01 | 78.77 | P<0.01 | ||
DOC | 4.11 | P<0.05 | 84.74 | P<0.01 | 6.68 | P<0.01 | ||
EOC | 29.84 | P<0.01 | 363.40 | P<0.01 | 65.36 | P<0.01 | ||
POC | 781.50 | P<0.01 | 58.40 | P<0.01 | 7.09 | P<0.01 | ||
IOC | 837.45 | P<0.01 | 536.30 | P<0.01 | 97.98 | P<0.01 | ||
MOC | 511.18 | P<0.01 | 762.84 | P<0.01 | 122.05 | P<0.01 | ||
MBC | 180.43 | P<0.01 | 605.88 | P<0.01 | 79.40 | P<0.01 | ||
qMB | 43.87 | P<0.01 | 59.03 | P<0.01 | 19.81 | P<0.01 |
表3 不同土地利用方式土壤有机碳组分的双因素方差分析
Table 3 Two-way ANOVA on soil organic carbon components under different land-use types
指标 Index | 土地利用方式 Land use types | 土层深度 Soil depth | 土地利用方式×土层深度 Land use types×Soil depth | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
TOC | 763.89 | P<0.01 | 599.742 | P<0.01 | 78.77 | P<0.01 | ||
DOC | 4.11 | P<0.05 | 84.74 | P<0.01 | 6.68 | P<0.01 | ||
EOC | 29.84 | P<0.01 | 363.40 | P<0.01 | 65.36 | P<0.01 | ||
POC | 781.50 | P<0.01 | 58.40 | P<0.01 | 7.09 | P<0.01 | ||
IOC | 837.45 | P<0.01 | 536.30 | P<0.01 | 97.98 | P<0.01 | ||
MOC | 511.18 | P<0.01 | 762.84 | P<0.01 | 122.05 | P<0.01 | ||
MBC | 180.43 | P<0.01 | 605.88 | P<0.01 | 79.40 | P<0.01 | ||
qMB | 43.87 | P<0.01 | 59.03 | P<0.01 | 19.81 | P<0.01 |
图1 不同土地利用方式土壤有机碳组分含量变化 NL:自然林地;SL:灌丛;AG:撂荒草地;CL:农田;不同小写字母表示相同土层深度不同土地利用方式之间差异显著(P<0.05);不同大写字母表示相同土地利用方式不同土层深度差异显著(P<0.05)。下同
Figure 1 Soil organic carbons contents under different land-use types NL: Natural forest; SL: Shrubland; AG: Abandoned grassland; CL: Cropland; Different lowercases in the same soil depth indicated significant difference among land use types at P<0.05; Different capital letters in the same land use type indicated significant difference among soil depths at P<0.05. The same below
图2 不同土地利用方式土壤有机碳组分的敏感性指数 不同小写字母表示有机碳组分之间差异显著(P<0.05)
Figure 2 Sensitivity index of soil organic carbon components under different land-use types Different lower-case letters indicated significant differences at P<0.05
土层深度 Soil depth/cm | 土地利用方式 Land-use type | 碳库指数 ICP | 碳库活度 ACP | 碳库活度指数 ICPA | 碳库管理指数 ICPM |
---|---|---|---|---|---|
0-10 | NL | — | 0.07±0.00Bd | — | — |
SL | 0.60±0.02Aa | 0.10±0.00Ac | 1.46±0.03Ac | 87.19±3.38Ab | |
AG | 0.54±0.01Ab | 0.16±0.00Ab | 2.43±0.12Ab | 132.34±9.32Aa | |
CL | 0.21±0.00Bc | 0.42±0.01Aa | 6.34±0.21Aa | 130.97±2.77Aa | |
10-20 | NL | — | 0.11±0.00Ab | — | — |
SL | 0.61±0.02Aa | 0.10±0.01Ab | 0.97±0.10Bb | 59.22±6.71Bb | |
AG | 0.59±0.01Aa | 0.07±0.00Bc | 0.64±0.02Bc | 37.45±0.68Bc | |
CL | 0.31±0.01Ab | 0.31±0.01Ba | 2.90±0.09Ba | 88.64±2.25Ba | |
土地利用方式 Land use type | 445.14** | 790.54** | 546.28** | 26.79** | |
土层深度 Soil depth | 26.18** | 68.26** | 422.87** | 174.36** | |
土地利用方式×土层深度 Land use type×soil depth | 5.86* | 61.38** | 84.39** | 23.78** |
表4 不同土地利用方式土壤质量指数的变化
Table 4 Change of soil quality indices under different land-use types
土层深度 Soil depth/cm | 土地利用方式 Land-use type | 碳库指数 ICP | 碳库活度 ACP | 碳库活度指数 ICPA | 碳库管理指数 ICPM |
---|---|---|---|---|---|
0-10 | NL | — | 0.07±0.00Bd | — | — |
SL | 0.60±0.02Aa | 0.10±0.00Ac | 1.46±0.03Ac | 87.19±3.38Ab | |
AG | 0.54±0.01Ab | 0.16±0.00Ab | 2.43±0.12Ab | 132.34±9.32Aa | |
CL | 0.21±0.00Bc | 0.42±0.01Aa | 6.34±0.21Aa | 130.97±2.77Aa | |
10-20 | NL | — | 0.11±0.00Ab | — | — |
SL | 0.61±0.02Aa | 0.10±0.01Ab | 0.97±0.10Bb | 59.22±6.71Bb | |
AG | 0.59±0.01Aa | 0.07±0.00Bc | 0.64±0.02Bc | 37.45±0.68Bc | |
CL | 0.31±0.01Ab | 0.31±0.01Ba | 2.90±0.09Ba | 88.64±2.25Ba | |
土地利用方式 Land use type | 445.14** | 790.54** | 546.28** | 26.79** | |
土层深度 Soil depth | 26.18** | 68.26** | 422.87** | 174.36** | |
土地利用方式×土层深度 Land use type×soil depth | 5.86* | 61.38** | 84.39** | 23.78** |
图3 土壤有机碳和有机碳组分变化量的关系 △SOC:各有机碳组分增量;△TOC:总有机碳增量
Figure 3 Relationship between changes of TOC and soil organic carbon components △SOC: Organic carbon fraction increment; △TOC: Total organic carbon increment
指标 Index | ICP | ACP | ICPA | ICPM | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
rp | P | rp | P | rp | P | rp | P | ||||
TOC | -0.066 | P>0.05 | 0.068 | P>0.05 | -0.009 | P>0.05 | 0.194 | P>0.05 | |||
DOC | 0.098 | P>0.05 | 0.166 | P>0.05 | 0.393 | P>0.05 | 0.289 | P>0.05 | |||
EOC | 0.170 | P>0.05 | -0.234 | P>0.05 | -0.247 | P>0.05 | -0.382 | P>0.05 | |||
POC | -0.066 | P>0.05 | 0.161 | P>0.05 | 0.225 | P>0.05 | 0.134 | P>0.05 | |||
IOC | 0.159 | P>0.05 | -0.228 | P>0.05 | -0.223 | P>0.05 | -0.374 | P>0.05 | |||
MOC | -0.076 | P>0.05 | 0.165 | P>0.05 | 0.237 | P>0.05 | 0.140 | P>0.05 | |||
MBC | 0.846 | P<0.01 | -0.545 | P<0.05 | -0.917 | P<0.01 | -0.618 | P<0.05 |
表5 土壤有机碳组分与土壤碳库管理指标的偏相关分析
Table 5 Particle correlation analysis of soil organic carbon fractions and soil carbon pool management indexes
指标 Index | ICP | ACP | ICPA | ICPM | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
rp | P | rp | P | rp | P | rp | P | ||||
TOC | -0.066 | P>0.05 | 0.068 | P>0.05 | -0.009 | P>0.05 | 0.194 | P>0.05 | |||
DOC | 0.098 | P>0.05 | 0.166 | P>0.05 | 0.393 | P>0.05 | 0.289 | P>0.05 | |||
EOC | 0.170 | P>0.05 | -0.234 | P>0.05 | -0.247 | P>0.05 | -0.382 | P>0.05 | |||
POC | -0.066 | P>0.05 | 0.161 | P>0.05 | 0.225 | P>0.05 | 0.134 | P>0.05 | |||
IOC | 0.159 | P>0.05 | -0.228 | P>0.05 | -0.223 | P>0.05 | -0.374 | P>0.05 | |||
MOC | -0.076 | P>0.05 | 0.165 | P>0.05 | 0.237 | P>0.05 | 0.140 | P>0.05 | |||
MBC | 0.846 | P<0.01 | -0.545 | P<0.05 | -0.917 | P<0.01 | -0.618 | P<0.05 |
[1] | BENBI D K, BRAR K, TOOR A S, et al., 2015. Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India[J]. Geoderma, 237-238: 149-158. |
[2] | BLAIR G, LEFROY R, LISLE L, 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agriculture Research, 46(7): 1459-1466. |
[3] | CHAUDHARY S, DHERI G S, BRAR B S, 2017. Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system[J]. Soil and Tillage Research, 166: 59-66. |
[4] | CHEN S, XU C M, YAN J X, et al., 2016. The influence of the type of crop residue on soil organic carbon fractions: An 11-year field study of rice-based cropping systems in southeast China[J]. Agriculture, Ecosystems, Environment, 223: 261-269. |
[5] | DENG L, ZHU G Y, TANG Z S, et al., 2016. Global patterns of the effects of land-use changes on soil carbon stocks[J]. Global Ecology & Conservation, 5: 127-138. |
[6] | GUO D, LI X D, WANG J, et al., 2020. Edaphic and microbial determinants of the residence times of active and slow C pools on the Tibetan Plateau[J]. Geoderma, 357: 113942. |
[7] | HU N, LAN J C, 2020. Impact of vegetation restoration on soil organic carbon stocks and aggregates in a karst rocky desertification area in Southwest China[J]. Journal of Soils and Sediments, 20: 1264-1275. |
[8] | JIMENEZ-GONZALEZ M A, ALVAREZ A M, CARRAL P, et al., 2020. Influence of soil forming factors on the molecular structure of soil organic matter and carbon levels[J]. Catena, 189: 104501. |
[9] | KRISTINA W, ALIX V, DAVID I S, et al., 2021. Particulate organic matter as a functional soil component for persistent soil organic carbon[J]. Nature Communication, 12: 4115. |
[10] | LAN J C, 2021. Responses of soil organic carbon components and their sensitivity to karst rocky desertification control measures in Southwest China[J]. Journal of Soil and Sediment, 21: 978-989. |
[11] | LIANG Q, CHEN H Q, GONG Y S, et al., 2012. Effect of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China Plain[J]. Nutrient Cycling in Agroecosystems, 92: 21-33. |
[12] | LIU S L, SUI Y R, HUANG D Y, et al., 2006. Response of Cmic-to-Corg to land use and fertilization in subtropical region of China[J]. Scientia Agricultura Sinica, 39(7): 1411-1418. |
[13] | LIU S R, HUANG R H, 1991. Redstone karst and danxia landforms in guangdong province[J]. Carsologica Sinica, 10(3): 16-22. |
[14] | LIU Z F, LIU G H, FU B J, et al., 2007. Relationship between plant species diversity and soil microbial functional diversity along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China[J]. Ecological Research, 23: 511-518. |
[15] | MOOSHAMMER M, WANEK W, ZECHMEISTER-BOLTENSTERN S, et al., 2014. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources[J]. Frontiers in Microbiology, 5: 22. |
[16] | PANG D B, CUI M, LIU Y G, et al., 2019. Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of Southwest China[J]. Ecological Engineering, 138: 391-402. |
[17] | QIN Y B, XIN Z B, WANG D M, et al., 2017. Soil organic carbon storage and its influencing factors in the riparian woodlands of a Chinese karst area[J]. Catena, 153: 21-29. |
[18] | SINGH S, GHOSHAL N, SINGH K P, 2007. Variations in soil microbial biomass and crop roots due to differing resource quality inputs in a tropical dryland agroecosystem[J]. Soil Biology and Biochemistry, 39(1): 76-86. |
[19] | WANG Q Y, WANG Y, WANG Q C, et al., 2014. Impacts of 9 years of a new conservational agricultural management on soil organic carbon fraction[J]. Soil Tillage Research, 143: 1-6. |
[20] | YAN L B, PENG H, ZHANG S, et al., 2019. The spatial patterns of red beds and danxia landforms: Implication for the formation factors-China[J]. Scientific Reports, 9: 1961. |
[21] | YAN Y C, WANG X, GUO Z J, et al., 2018. Influence of wind erosion on dry aggregate size distribution and nutrients in three steppe soils in northern China[J]. Catena, 170: 159-168. |
[22] | YANG Y H, LUO Y Q, 2011. Carbon: nitrogen stoichiometry in forest ecosystems during stand development[J]. Global Ecology and Biogeography, 20(2): 354-361. |
[23] | ZHENG H Z, WANG C K, LUO Y Q, 2018. Effects of forest degradation on microbial communities and soil carbon cycling: A global meta-analysis[J]. Global Ecology and Biogeography, 27(1): 110-124. |
[24] | 崔东, 肖治国, 赵玉, 等, 2017. 不同土地利用类型对伊犁地区土壤活性有机碳库和碳库管理指数的影响[J]. 水土保持研究, 24(1): 61-67. |
CUI D, XIAO Z Z, ZHAO Y, et al., 2017. Effects of different land use patterns on soil active organic carbon pool and carbon pool management index in Yili area, Xinjiang Uygur Autonomous Region[J]. Research of Soil and Water Conservation, 24(1): 61-67. | |
[25] |
何祖霞, 严岳鸿, 马其侠, 等, 2012. 湖南丹霞地貌区的苔藓植物多样性[J]. 生物多样性, 20(4): 522-526.
DOI |
HE Z X, YAN Y H, MA Q X, et al., 2012. The bryophyte diversity of the Danxia landform in Hunan, China[J]. Biodiversity Science, 20(4): 522-526. | |
[26] | 简兴, 王松, 翟晓钰, 等, 2019. 安徽三汊河国家湿地公园不同土地利用方式下表层土壤活性有机碳含量[J]. 湿地科学, 17(5): 511-518. |
JIAN X, WANG S, ZHAI X Y, et al., 2019. Labile organic carbon contents in surface soil under different land-use ways in Anhui sancha riverNational wetland park[J]. Wetland Science, 17(5): 511-518. | |
[27] | 刘守龙, 苏以荣, 黄道友, 等, 2006. 微生物商对亚热带地区土地利用及施肥制度的响应[J]. 中国农业科学, 39(7): 1411-1418. |
LIU S L, SUI Y R, HUANG D Y, et al., 2006. Response of Cmic-to-Corg to land use and fertilization in subtropical region of China[J]. Scientia Agricultura Sinica, 39(7): 1411-1418. | |
[28] |
刘洋, 曾全超, 安韶山, 等, 2017. 黄土丘陵区草本植物叶片与枯落物生态化学计量学特征[J]. 应用生态学报, 28(6): 1793-1800.
DOI |
LIU Y, ZENG Q C, AN S S, et al., 2017. Ecological stoichiometry of leaf and litter of herbaceous plants in loess hilly and gully regions, China[J]. Chinese Journal of Applied Ecology, 28(6): 1793-1800. | |
[29] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 科学出版社. |
LU R K, 2000. Methods for soil agrochemical analysis[M]. Beijing: Science Press. | |
[30] | 欧阳杰, 朱诚, 彭华, 2011. 丹霞地貌国内外研究对比[J]. 地理科学, 31(8): 996-1000. |
OUYANG J, ZHU C, PENG H, et al., 2011. A contrast introduction to Danxia landforms from a world-wide reference for similar landforms[J]. Scientia Geographica Sinica, 31(8): 996-1000. | |
[31] |
彭华, 潘志新, 闫罗彬, 等, 2013. 国内外红层与丹霞地貌研究述评[J]. 地理学报, 68(9): 1170-1181.
DOI |
PENG H, PAN Z X, YAN L B, et al., 2013. A review of the research on red beds and Danxia landform[J]. Acta Geographica Sinica, 68(9): 1170-1181.
DOI |
|
[32] | 祁心, 江长胜, 郝庆菊, 等, 2015. 缙云山不同土地利用方式对土壤活性有机碳、氮组分的影响[J]. 环境科学, 36(10): 3816-3824. |
QI X, JIANG C S, HAO Q J, et al., 2015. Effects of different land uses on soil active organic carbon and nitrogen fractions in jinyun mountain[J]. Environmental Science, 36(10): 3816-3824. | |
[33] |
王超, 董玉清, 卢瑛, 等, 2021. 粤北低山林地改建梯田对土壤碳、氮、磷及其化学计量特征的影响[J]. 应用生态学报, 32(7): 2440-2448.
DOI |
WANG C, DONG Y Q, LU Y, et al., 2021. Effects of transforming forest land into terraced land on the characteristics of soil carbon, nitrogen, phosphorus and their stoichiometry in North Guangdong, China[J]. Chinese Journal of Applied Ecology, 32(7): 2440-2448.
DOI |
|
[34] | 王有良, 宋重升, 彭丽鸿, 等, 2021. 间伐对杉木人工林土壤碳氮及其组分特征的影响[J]. 水土保持学报, 35(5): 204-212. |
WANG Y L, SONG C S, PENG L H, et al., 2021. Effects of thinning on soil carbon and nitrogen fractions in a cunninghamia lanceolata plantation[J]. Journal of Soil and Water Conservation, 35(5): 204-212. | |
[35] |
魏夏新, 熊俊芬, 李涛, 等, 2020. 有机物料还田对双季稻田土壤有机碳及其活性组分的影响[J]. 应用生态学报, 31(7): 2373-2380.
DOI |
WEI X X, XIONG J F, LI T, et al., 2020. Effects of different organic amendments on soil organic carbon and its labile fractions in the paddy soil of a double rice cropping system[J]. Chinese Journal of Applied Ecology, 31(7): 2373-2380. | |
[36] | 袁嘉欣, 杨滨娟, 胡启良, 等, 2021. 长江中游稻田种植模式对土壤有机碳及碳库管理指数的影响[J]. 中国生态农业学报 (中英文), 29(7): 1205-1214. |
YUAN J X, YANG B J, HU Q L, et al., 2021. Effects of paddy field cropping patterns on soil organic carbon and carbon pool management index in the middle reaches of the Yangtze River[J]. Chinese Journal of Eco-Agriculture, 29(7): 1205-1214. | |
[37] | 展鹏飞, 刘振亚, 郭玉静, 等, 2018. 不同放牧方式下高寒草甸土壤碳组分的对比研究[J]. 土壤, 50(3): 543-551. |
ZHAN P F, LIU Z Y, GUO Y J, et al., 2018. Study on soil carbon fractions in alpine meadow under different herding patterns[J]. Soils, 50(3): 543-551. | |
[38] | 周伟, 张运龙, 徐明岗, 等, 2021. 长期撂荒对黑土土壤有机碳组分的影响[J]. 中国土壤与肥料 (4): 11-18. |
ZHOU W, ZHANG Y L, XUN M G, et al., 2021. Effect of long-term fallow on soil organic carbon fractions in black soil[J]. Soil and Fertilizer Sciences in China (4): 11-18. |
[1] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[2] | 王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897. |
[3] | 张平江, 党国锋. 基于MCR模型与蚁群算法的洮河流域生态安全格局构建[J]. 生态环境学报, 2023, 32(3): 481-491. |
[4] | 陈丽娟, 周文君, 易艳芸, 宋清海, 张一平, 梁乃申, 鲁志云, 温韩东, MOHD Zeeshan, 沙丽清. 云南哀牢山亚热带常绿阔叶林土壤CH4通量特征[J]. 生态环境学报, 2022, 31(5): 949-960. |
[5] | 吴献文, 陈颖彪. 基于自然资源本底数据的珠三角城市群生态敏感性评估分析[J]. 生态环境学报, 2021, 30(5): 976-983. |
[6] | 洪莹莹, 陈辰, 保鸿燕, 沈劲. 珠三角西南部春季臭氧来源与敏感性分析[J]. 生态环境学报, 2021, 30(5): 984-994. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||