生态环境学报 ›› 2023, Vol. 32 ›› Issue (5): 878-888.DOI: 10.16258/j.cnki.1674-5906.2023.05.006
李传福1(), 朱桃川1, 明玉飞1, 杨宇轩1, 高舒1, 董智2, 李永强1,*(
), 焦树英1,*(
)
收稿日期:
2022-10-20
出版日期:
2023-05-18
发布日期:
2023-08-09
通讯作者:
*焦树英(1978年生),女,教授,硕士研究生导师,主要从事盐碱地改良与退化土壤生态修复。E-mail: jiaoshuying@sdau.edu.cn作者简介:
李传福(1995年生),男,硕士研究生,主要研究方向为盐碱地改良与土壤养分管理研究。E-mail: lichuanfu1995@126.com
基金资助:
LI Chuanfu1(), ZHU Taochuan1, MING Yufei1, YANG Yuxuan1, GAO Shu1, DONG Zhi2, LI Yongqiang1,*(
), JIAO Shuying1,*(
)
Received:
2022-10-20
Online:
2023-05-18
Published:
2023-08-09
摘要:
黄河三角洲地区土壤盐碱化严重制约了土壤资源高效利用和农业可持续发展。施用改良剂是改良盐碱土的有效措施,前期研究集中于有机肥对盐碱地土壤有机碳及其组分的影响,有机肥与脱硫石膏配施对滨海盐碱地团聚体有机碳组分变化作用机制缺乏研究。选用有机肥与脱硫石膏配施,探究其对盐碱土团聚体及其有机碳组分含量的影响,以期为改善盐碱地垦殖区土壤质量和农业可持续发展提供理论依据。以黄河三角洲新垦殖小麦-玉米轮作地为研究对象,采用随机区组试验方法,设置不施肥(CK)、农民常用施肥(CN)、猪粪有机肥(PCOF)、猪粪有机肥+低量石膏(PCOF-1)、猪粪有机肥+高量石膏(PCOF-2)共5个处理。通过3年田间试验,结果表明:与CK、CN处理相比,PCOF-1处理显著提高0-20 cm土层0.25-0.053 mm粒径团聚体占比(P<0.05),分别显著增加13.39%、22.69%,降低<0.053 mm粒径团聚体占比,分别显著降低39.05%、43.29%,PCOF-1处理显著提高土壤团聚体稳定性,GMD较CN、CK处理显著增加20%、16.42%。有机肥与脱硫石膏处理显著提高0-20 cm土层全土和团聚体总有机碳及其组分含量(P<0.05),PCOF-1处理全土总有机碳(TOC)及其组分(MBC、WSOC、EOC、AHCⅠ、AHCⅡ)较CN处理分别显著提高6.75%、92.75%、13.36%、58.49%、16.33%、21.37%,并显著提高>0.25 mm和0.25-0.053 mm粒径团聚体中有机碳组分贡献率,降低<0.053 mm粒径中有机碳组分贡献率。土壤微生物量碳的敏感性指数均高于其他有机碳组分,且PCOF-1处理MBC值最高。因此,在农民常用施肥基础上,低量脱硫石膏与猪粪有机肥配施对黄河三角洲盐碱地小麦玉米轮作土壤有较好的质地改善和增碳作用。
中图分类号:
李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888.
LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta[J]. Ecology and Environment, 2023, 32(5): 878-888.
处理 | 施肥量/(kg·hm-2) | 改良材料+有机肥用量/(kg·hm-2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
小麦季 | 玉米季 | 小麦季、玉米季 | ||||||||||
N-P2O5-K2O | 尿素 | 重过磷酸钙 | 硫酸钾 | N-P2O5-K2O | 尿素 | 重过磷酸钙 | 硫酸钾 | 猪粪有机肥 | 脱硫石膏 | |||
CK | 0-0-0 | 0 | 0 | 0 | 0-0-0 | 0 | 0 | 0 | 0 | 0 | ||
CN | 240-120-90 | 521.74 | 272.73 | 180.00 | 225-75-90 | 400.95 | 170.40 | 180.00 | 0 | 0 | ||
PCOF | 240-120-90 | 521.74 | 272.73 | 180.00 | 225-75-90 | 400.95 | 170.40 | 180.00 | 4500.00 | 0.00 | ||
PCOF-1 | 240-120-90 | 521.74 | 272.73 | 180.00 | 225-75-90 | 400.95 | 170.40 | 180.00 | 4500.00 | 300.00 | ||
PCOF-2 | 240-120-90 | 521.74 | 272.73 | 180.00 | 225-75-90 | 400.95 | 170.40 | 180.00 | 4500.00 | 600.00 |
表1 施肥方案
Table 1 Fertilization schedule
处理 | 施肥量/(kg·hm-2) | 改良材料+有机肥用量/(kg·hm-2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
小麦季 | 玉米季 | 小麦季、玉米季 | ||||||||||
N-P2O5-K2O | 尿素 | 重过磷酸钙 | 硫酸钾 | N-P2O5-K2O | 尿素 | 重过磷酸钙 | 硫酸钾 | 猪粪有机肥 | 脱硫石膏 | |||
CK | 0-0-0 | 0 | 0 | 0 | 0-0-0 | 0 | 0 | 0 | 0 | 0 | ||
CN | 240-120-90 | 521.74 | 272.73 | 180.00 | 225-75-90 | 400.95 | 170.40 | 180.00 | 0 | 0 | ||
PCOF | 240-120-90 | 521.74 | 272.73 | 180.00 | 225-75-90 | 400.95 | 170.40 | 180.00 | 4500.00 | 0.00 | ||
PCOF-1 | 240-120-90 | 521.74 | 272.73 | 180.00 | 225-75-90 | 400.95 | 170.40 | 180.00 | 4500.00 | 300.00 | ||
PCOF-2 | 240-120-90 | 521.74 | 272.73 | 180.00 | 225-75-90 | 400.95 | 170.40 | 180.00 | 4500.00 | 600.00 |
土层深度/cm | 处理 | 团聚体粒级/% | 稳定性指标 | ||||
---|---|---|---|---|---|---|---|
>0.25 mm | 0.25-0.053 mm | <0.053 mm | 平均质量直径MWD/mm | 几何平均直径GMD/mm | |||
0-20 | CK | 50.99±1.28a | 31.20±0.56c | 17.81±1.40a | 2.67±0.07a | 0.67±0.05b | |
CN | 49.67±0.84ab | 33.76±2.31bc | 16.57±0.39a | 2.60±0.05ab | 0.65±0.03b | ||
PCOF | 48.75±0.53b | 37.01±1.70a | 14.24±0.85b | 2.56±0.03b | 0.66±0.02b | ||
PCOF-1 | 51.62±1.15a | 38.28±0.68a | 10.10±0.81c | 2.71±0.06a | 0.78±0.01a | ||
PCOF-2 | 51.14±1.30a | 35.87±1.18ab | 12.99±0.45b | 2.68±0.07a | 0.73±0.03a | ||
20-40 | CK | 39.16±0.43c | 40.72±1.79b | 20.12±1.09a | 2.07±0.02c | 0.42±0.03c | |
CN | 37.82±1.04c | 43.77±1.65a | 18.41±0.69a | 2.01±0.05c | 0.42±0.03c | ||
PCOF | 52.29±1.49b | 35.91±0.73c | 11.80±1.65bc | 2.74±0.08b | 0.78±0.04b | ||
PCOF-1 | 55.96±0.29a | 34.02±1.09c | 10.02±1.90c | 2.92±0.01a | 0.91±0.06a | ||
PCOF-2 | 50.96±0.90b | 35.98±0.96c | 13.06±0.86b | 2.67±0.05b | 0.73±0.02b | ||
40-60 | CK | 20.06±0.17c | 60.43±1.30b | 19.50±0.58b | 1.13±0.01c | 0.22±0.01c | |
CN | 13.75±0.34d | 64.01±2.76ab | 22.24±1.24a | 0.81±0.01d | 0.17±0.01d | ||
PCOF | 23.66±1.52b | 63.17±1.89ab | 13.17±0.68d | 1.31±0.08b | 0.28±0.01b | ||
PCOF-1 | 25.55±0.33a | 65.01±2.71a | 9.43±0.75e | 1.41±0.02a | 0.32±0.02a | ||
PCOF-2 | 20.56±1.46c | 63.00±1.04ab | 16.44±0.55c | 1.15±0.07c | 0.23±0.01c |
表2 不同施肥处理水稳性团聚体分布及稳定性
Table 2 Distribution and stability of water stable aggregates under different fertilizer treatments
土层深度/cm | 处理 | 团聚体粒级/% | 稳定性指标 | ||||
---|---|---|---|---|---|---|---|
>0.25 mm | 0.25-0.053 mm | <0.053 mm | 平均质量直径MWD/mm | 几何平均直径GMD/mm | |||
0-20 | CK | 50.99±1.28a | 31.20±0.56c | 17.81±1.40a | 2.67±0.07a | 0.67±0.05b | |
CN | 49.67±0.84ab | 33.76±2.31bc | 16.57±0.39a | 2.60±0.05ab | 0.65±0.03b | ||
PCOF | 48.75±0.53b | 37.01±1.70a | 14.24±0.85b | 2.56±0.03b | 0.66±0.02b | ||
PCOF-1 | 51.62±1.15a | 38.28±0.68a | 10.10±0.81c | 2.71±0.06a | 0.78±0.01a | ||
PCOF-2 | 51.14±1.30a | 35.87±1.18ab | 12.99±0.45b | 2.68±0.07a | 0.73±0.03a | ||
20-40 | CK | 39.16±0.43c | 40.72±1.79b | 20.12±1.09a | 2.07±0.02c | 0.42±0.03c | |
CN | 37.82±1.04c | 43.77±1.65a | 18.41±0.69a | 2.01±0.05c | 0.42±0.03c | ||
PCOF | 52.29±1.49b | 35.91±0.73c | 11.80±1.65bc | 2.74±0.08b | 0.78±0.04b | ||
PCOF-1 | 55.96±0.29a | 34.02±1.09c | 10.02±1.90c | 2.92±0.01a | 0.91±0.06a | ||
PCOF-2 | 50.96±0.90b | 35.98±0.96c | 13.06±0.86b | 2.67±0.05b | 0.73±0.02b | ||
40-60 | CK | 20.06±0.17c | 60.43±1.30b | 19.50±0.58b | 1.13±0.01c | 0.22±0.01c | |
CN | 13.75±0.34d | 64.01±2.76ab | 22.24±1.24a | 0.81±0.01d | 0.17±0.01d | ||
PCOF | 23.66±1.52b | 63.17±1.89ab | 13.17±0.68d | 1.31±0.08b | 0.28±0.01b | ||
PCOF-1 | 25.55±0.33a | 65.01±2.71a | 9.43±0.75e | 1.41±0.02a | 0.32±0.02a | ||
PCOF-2 | 20.56±1.46c | 63.00±1.04ab | 16.44±0.55c | 1.15±0.07c | 0.23±0.01c |
图1 不同施肥处理土壤水稳性团聚体总有机碳(TOC)质量分数 CK:不施肥;CN:农民常用施肥;PCOF:猪粪有机肥;PCOF-1:猪粪有机肥+低量石膏;PCOF-2:猪粪有机肥+高量石膏。 图中不同小写字母表示相同土层处理间差异显著(P<0.05,n=3),下同
Figure 1 Soil total organic carbon (TOC) content of soil water stable aggregates under different fertilization treatments
图2 不同施肥处理土壤水稳性团聚体微生物量碳(MBC)质量分数
Figure 2 Microbial biomass carbon (MBC) content of soil water stable aggregates under different fertilization treatments
图3 不同施肥处理土壤水稳性团聚体水溶性有机碳(WSOC)质量分数
Figure 3 Water soluble organic carbon (WSOC) content of soil water stable aggregates under different fertilization treatments
图4 不同施肥处理土壤水稳性团聚体易氧化有机碳(EOC)质量分数
Figure 4 Content of easily oxidizable carbon (EOC) in soil water stable aggregates under different fertilization treatments
图5 不同施肥处理土壤水稳性团聚体酸水解活性组分Ⅰ、Ⅱ(AHC Ⅰ、AHC Ⅱ)质量分数
Figure 5 Contents of acid hydrolysis active fractions Ⅰ and Ⅱ in soil water-stable aggregates under different fertilization treatments
图6 不同施肥处理水稳性团聚体总有机碳和有机碳组分的贡献率
Figure 6 Contribution rates of total organic carbon and its fractions for water-stable aggregate under different fertilization treatments
土层深度/ cm | 处理 | 有机碳组分敏感性指数/% | |||||
---|---|---|---|---|---|---|---|
TOC | WSOC | ROC | AHC Ⅰ | AHC Ⅱ | MBC | ||
0-20 | CN | 4.07±2.21b | 0.43±0.29b | 25.87±7.59b | 2.26±3.58b | 24.89±2.46d | 17.45±4.30d |
PCOF | 8.99±3.31ab | 13.65±1.10a | 36.05±19.14b | 13.85±2.46a | 39.18±2.28b | 98.63±4.07b | |
PCOF-1 | 11.17±2.43a | 13.84±0.51a | 99.50±17.45a | 18.96±5.12a | 51.58±0.96a | 126.40±7.61a | |
PCOF-2 | 4.94±5.18ab | 1.45±0.96b | 54.68±13.22b | 13.90±4.04a | 33.87±1.57c | 68.88±7.56c | |
20-40 | CN | 1.50±0.48a | 17.28±1.69d | 21.29±5.89d | 9.55±4.93b | 5.95±2.11d | 9.23±6.17d |
PCOF | 1.61±4.67b | 29.11±1.22b | 9.01±3.32c | 12.28±2.51b | 26.80±3.31b | 34.79±2.99c | |
PCOF-1 | 13.98±12.13ab | 36.46±1.64a | 86.52±1.29a | 27.43±6.26a | 46.43±2.02a | 108.75±0.95a | |
PCOF-2 | 11.75±0.76ab | 25.84±1.56c | 75.98±6.90b | 12.17±9.08b | 21.59±2.33c | 83.67±14.49b | |
40-60 | CN | 21.09±11.47b | 0.85±0.98d | 110.65±52.17b | 14.97±12.13c | 16.41±4.41b | 4.72±6.92d |
PCOF | 38.01±15.78a | 31.62±2.21b | 61.94±14.44b | 32.21±8.08b | 20.76±3.49b | 65.24±6.80a | |
PCOF-1 | 38.73±6.36ab | 35.99±1.03a | 252.14±57.67a | 51.87±8.91a | 59.66±6.69a | 101.95±6.06a | |
PCOF-2 | 35.26±5.81a | 22.03±0.99c | 242.47±44.32a | 29.03±2.27bc | 23.85±5.28b | 84.16±9.06b |
表3 不同施肥处理土壤有机碳组分敏感性指数
Table 3 Sensitivity indices of soil organic carbon components under different fertilization treatments
土层深度/ cm | 处理 | 有机碳组分敏感性指数/% | |||||
---|---|---|---|---|---|---|---|
TOC | WSOC | ROC | AHC Ⅰ | AHC Ⅱ | MBC | ||
0-20 | CN | 4.07±2.21b | 0.43±0.29b | 25.87±7.59b | 2.26±3.58b | 24.89±2.46d | 17.45±4.30d |
PCOF | 8.99±3.31ab | 13.65±1.10a | 36.05±19.14b | 13.85±2.46a | 39.18±2.28b | 98.63±4.07b | |
PCOF-1 | 11.17±2.43a | 13.84±0.51a | 99.50±17.45a | 18.96±5.12a | 51.58±0.96a | 126.40±7.61a | |
PCOF-2 | 4.94±5.18ab | 1.45±0.96b | 54.68±13.22b | 13.90±4.04a | 33.87±1.57c | 68.88±7.56c | |
20-40 | CN | 1.50±0.48a | 17.28±1.69d | 21.29±5.89d | 9.55±4.93b | 5.95±2.11d | 9.23±6.17d |
PCOF | 1.61±4.67b | 29.11±1.22b | 9.01±3.32c | 12.28±2.51b | 26.80±3.31b | 34.79±2.99c | |
PCOF-1 | 13.98±12.13ab | 36.46±1.64a | 86.52±1.29a | 27.43±6.26a | 46.43±2.02a | 108.75±0.95a | |
PCOF-2 | 11.75±0.76ab | 25.84±1.56c | 75.98±6.90b | 12.17±9.08b | 21.59±2.33c | 83.67±14.49b | |
40-60 | CN | 21.09±11.47b | 0.85±0.98d | 110.65±52.17b | 14.97±12.13c | 16.41±4.41b | 4.72±6.92d |
PCOF | 38.01±15.78a | 31.62±2.21b | 61.94±14.44b | 32.21±8.08b | 20.76±3.49b | 65.24±6.80a | |
PCOF-1 | 38.73±6.36ab | 35.99±1.03a | 252.14±57.67a | 51.87±8.91a | 59.66±6.69a | 101.95±6.06a | |
PCOF-2 | 35.26±5.81a | 22.03±0.99c | 242.47±44.32a | 29.03±2.27bc | 23.85±5.28b | 84.16±9.06b |
[1] |
ANTONANGELO J A, NETO J F, CRUSCIOL C A C, et al., 2017. Lime and calcium-magnesium silicate in the ionic speciation of an Oxisol[J]. Scientia Agricola, 74(4): 317-333.
DOI URL |
[2] |
CAMBARDELLA C A, ELLIOTT E T, et al., 1993. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils[J]. Soil Science Society of America Journal, 57(4): 1071-1076.
DOI URL |
[3] |
DAY S J, NORTON J B, STROM C F, et al., 2019. Gypsum, langbeinite, sulfur, and compost for reclamation of drastically disturbed calcareous saline-sodic soils[J]. International Journal of Environmental Science and Technology, 16(1): 295-304.
DOI |
[4] | DUTTA D, MEENA A L, KUMAR A, et al., 2022. Influence of different nutrient management practices and cropping systems on organic carbon pools in typic ustochrept soil of indo-gangetic plains in India[J]. Journal of Soil Science and Plant Nutrition, 12: 1403-1421. |
[5] | HUANG X L, JIA Z X, GUO J J, et al., 2019. Ten-year long-term organic fertilization enhances carbon sequestration and calcium-mediated stabilization of aggregate-associated organic carbon in a reclaimed Cambisol[J]. Geoderma, 355: 113880. |
[6] |
QU Y K, TANG J, LI Z Y, et al., 2020. Soil enzyme activity and microbial metabolic function diversity in soda saline-alkali rice paddy fields of northeast China[J]. Sustainability, 12(23): 10095
DOI URL |
[7] | QU Y K, TANG J, ZHOU Z H, et al., 2021. The development and utilization of saline-alkali land in western Jilin Province promoted the sequestration of organic carbon fractions in soil aggregates[J]. Agronomy, 11(12): 113880. |
[8] |
ROVIRA P, VALLEJO V R, 2002. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach[J]. Geoderma, 107(1): 109-141.
DOI URL |
[9] |
SHI Z H, YAN F L, LI L, et al., 2010. Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China[J]. Catena, 81(3): 240-248.
DOI URL |
[10] | SARKER J R, SINGH B P, COWIE A L, et al., 2018. Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils[J]. Soil & Tillage Research, 178: 209-223. |
[11] |
TRIPATHI R, NAYAK A K, BHATTACHARYYA P, et al., 2014. Soil aggregation and distribution of carbon and nitrogen in different fractions after 41years long-term fertilizer experiment in tropical rice-rice system[J]. Geoderma, 213: 280-286.
DOI URL |
[12] |
ZHAO Y G, WANG S J, LIU J, et al., 2021. Fertility and biochemical activity in sodic soils 17 years after reclamation with flue gas desulfurization gypsum[J]. Journal of Integrative Agriculture, 20(12): 3312-3322.
DOI URL |
[13] | 白璐, 蒋福祯, 曹卫东, 等, 2021. 麦后复种绿肥对土壤有机碳及其固持特征的影响[J]. 干旱地区农业研究, 39(4):148-154. |
BAI L, JIANG F Z, CAO W D, et al., 2021. Effects of multiple cropping of green manure after wheat on soil organic carbon and its sequestration characteristics[J]. Agricultural Research in the Arid Areas, 39(4): 148-154. | |
[14] | 白义鑫, 盛茂银, 肖海龙, 2020. 典型石漠化治理对土壤有机碳、氮及组分的影响[J]. 水土保持学报, 34(1): 170-177, 185. |
BAI Y X, SHENG M Y, XIAO H L, 2020. Effects of typical rocky desertification control measures on soil organic carbon, nitrogen, and components[J]. Journal of Soil and Water Conservation, 34(1): 170-177, 185. | |
[15] | 陈洁, 梁国庆, 周卫, 等, 2019. 长期施用有机肥对稻麦轮作体系土壤有机碳氮组分的影响[J]. 植物营养与肥料学报, 25(1): 36-44. |
CHEN J, LIANG G Q, ZHOU W, et al., 2019. Responses of soil organic carbon and nitrogen fractions to long-term organic fertilization under rice-wheat rotation[J]. Plant Nutrition and Fertilizer Science, 25(1): 36-44. | |
[16] | 董红云, 朱振林, 李新华, 等, 2017. 山东省盐碱地分布、改良利用现状与治理成效潜力分析[J]. 山东农业科学, 49(5): 134-139. |
DONG H Y, ZHU Z L, LI X H, et al., 2017. Analysis on distribution, utilization status and governance effect of saline-alkali soil in Shandong Province[J]. Shandong Agricultural Sciences, 49(5): 134-139. | |
[17] | 郭鸿鑫, 孙崇玉, 孙立强, 等, 2022. 长期梨树种植土壤团聚体组成及有机碳分布特征[J]. 土壤, 54(2): 351-357. |
GUO H X, SUN C Y, SUN L Q, et al., 2022. Aggregate composition and organic carbon distribution in long-term pear planting soil[J]. Soils, 54(2): 351-357. | |
[18] | 黑杰, 李先德, 刘吉龙, 等, 2022. 轮作模式对农田土壤团聚体及碳氮含量的影响[J]. 中国水土保持科学, 20(3): 126-134. |
HEI J, LI X D, LIU J L, et al., 2022. Effects of crop rotation patterns on the soil aggregates and carbon and nitrogen content in farmland[J]. Science of Soil and Water Conservation, 20(3): 126-134. | |
[19] | 刘星, 吴华勇, 杨升, 等, 2020. 海涂围垦区不同耐盐树种根际土壤团聚体形成及养分分布特征[J]. 土壤学报, 57(5): 1270-1279. |
LIU X, WU H Y, YANG S, et al., 2020. Formation of soil aggregates and distribution of soil nutrients in rhizosphere of salt-tolerant trees in Coastal Polder Reclamation[J]. Acta Pedologica Sinica, 57(5): 1270-1279. | |
[20] | 刘新梅, 田剑, 张昊, 等, 2021. 改良剂对复垦土壤团聚体组成及有机碳含量的影响[J]. 水土保持学报, 35(1): 326-33, 355. |
LIU X M, TIAN J, ZHANG H, et al., 2021. Effects of amendment on aggregates composition and organic carbon content in Reclaimed soil[J]. Journal of Soil and Water Conservation, 35(1): 326-333, 355. | |
[21] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 科学出版社. |
LU R K, 2000. Methods for soil agrochemical analysis[M]. Beijing: Science Press. | |
[22] | 马征, 王学君, 董晓霞, 等, 2020. 改良剂作用下滨海盐化潮土团聚体分布、稳定性及有机碳分布特征[J]. 水土保持学报, 34(4): 327-333. |
MA Z, WANG X J, DONG X X, et al., 2020. Effects of soil amendments ondistribution and stability of soil aggregates and organic carbon content in coastal salinized fluvo-aquic soil[J]. Journal of Soil and Water Conservation, 34(4): 327-333. | |
[23] | 毛玉梅, 李小平, 2016. 烟气脱硫石膏对滨海滩涂盐碱地的改良效果研究[J]. 中国环境科学, 36(1): 225-231. |
MAO Y M, LI X P, 2016. Amelioration of flue gas desulfurization gypsum on saline-sodic soil of tidal flats and its effects on plant growth[J]. China Environmental Science, 36(1): 225-231. | |
[24] | 南江宽, 陈效民, 王晓洋, 等, 2014. 石膏与肥料配施对滨海盐土降盐抑碱的效果研究[J]. 南京农业大学学报, 37(4): 103-108. |
NAN J K, CHEN X M, WANG X Y, et al., 2014. Effects of gypsum and fertilizers amendment on reducing salinity and preventing alkalization of coastal saline soil[J]. Journal of Nanjing Agricultural University, 37(4): 103-108. | |
[25] |
石丽红, 李超, 唐海明, 等, 2021. 长期不同施肥措施对双季稻田土壤活性有机碳组分和水解酶活性的影响[J]. 应用生态学报, 32(3): 921-930.
DOI |
SHI L H, LI C, TANG H M, et al., 2021. Effects of long-term fertilizer management on soil labile organic carbon fractions and hydrolytic enzyme activity under a double-cropping rice system of southern China[J]. Chinese Journal of Applied Ecology, 32(3): 921-930. | |
[26] | 邵慧芸, 李紫玥, 刘丹, 等, 2019. 有机肥施用量对土壤有机碳组分和团聚体稳定性的影响[J]. 环境科学, 40(10): 4691-4699. |
SHAO H Y, LI Z Y, LIU D, et al., 2019. Effects of manure application rates on the soil carbon fractions and aggregate stability[J]. Environmental Science, 40(10): 4691-4699. | |
[27] | 孙泰朋, 2018. 生物质炭对黑土土壤团聚体稳定性及活性有机碳影响[D]. 哈尔滨: 东北农业大学:42-44. |
SUN T P, 2018. Effects of biochar on stability of soil aggregates and active organic carbon in black soil[D]. Harbin: Northeast Agricultural University: 42-44. | |
[28] | 孙雪, 张玉铭, 张丽娟, 等, 2021. 长期添加外源有机物料对华北农田土壤团聚体有机碳组分的影响[J]. 中国生态农业学报(中英文), 29(8): 1384-1396. |
SUN X, ZHANG Y M, ZHANG L J, et al., 2021. Effects of long-term exogenous organic material addition on the organic carbon composition of soil aggregates in farmlands of North China[J]. Chinese Journal of Eco-Agriculture, 29(8): 1384-1396. | |
[29] | 王西和, 杨金钰, 王彦平, 等, 2021. 长期施肥措施下灰漠土有机碳及团聚体稳定性特征[J]. 中国土壤与肥料 (6): 1-8. |
WANG X H, YANG J Y, WANG Y P, et al., 2021. Characteristics of organic carbon and stability of aggregates in grey desert soil under long-term fertilization measures[J]. Soils and Fertilizers Sciences in China (6): 1-8. | |
[30] | 王著峰, 王玉刚, 陈园园, 等, 2021. 施加脱硫石膏对盐碱土固碳的影响[J]. 水土保持学报, 35(2): 353-360. |
WANG Z F, WANG Y G, CHEN Y Y, et al., 2021. Effects of applying flue gas desulfurization gypsum (FGDG) on carbon sequestration in Saline-sodic soils[J]. Journal of Soil and Water Conservation, 35(2): 353-360. | |
[31] | 王韵弘, 张济世, 王红叶, 等, 2021. 提高滨海盐渍地区春玉米产量及改善土壤盐碱特性的综合管理措施[J]. 植物营养与肥料学报, 27(11): 2045-2053. |
WANG Y H, ZHANG J S, WANG H Y, et al., 2021. Improving soil properties and maize yield by integrating soil and crop management measures in coastal saline area[J]. Plant Nutrition and Fertilizer Science, 27(11): 2045-2053. | |
[32] |
魏守才, 谢文军, 夏江宝, 等, 2021. 盐渍化条件下土壤团聚体及其有机碳研究进展[J]. 应用生态学报, 32(1): 369-376.
DOI |
WEI S C, XIE W J, XIA J B, et al., 2021. Research progress on soil aggregates and associated organic carbon in salinized soils[J]. Chinese Journal of Applied Ecology, 32(1): 369-376. | |
[33] | 谢钧宇, 孟会生, 焦欢, 等, 2019. 施肥对复垦土壤中活性和难降解碳氮组分的影响[J]. 应用与环境生物学报, 25(5): 1113-1121. |
XIE J Y, MENG H S, JIAO H, et al., 2019. Effects of fertilization regimes on organic carbon and total nitrogen in labile and recalcitrant fractions of reclaimed soils[J]. Chinese Journal of Applied & Environmental Biology, 25(5): 1113-1121. | |
[34] | 郑佳舜, 胡钧铭, 韦翔华, 等, 2021. 绿肥压青对粉垄稻田土壤微生物量碳和有机碳累积矿化量的影响[J]. 中国生态农业学报(中英文), 29(4): 691-703. |
ZHENG J S, HU J M, WEI X H, et al., 2021. Effects of green manure returning on soil microbial biomass carbon and mineralization of organic carbon in smash ridging paddy field[J]. Chinese Journal of Eco-Agriculture, 29(4): 691-703. | |
[35] | 张艺, 戴齐, 尹力初, 等, 2017. 后续施肥措施改变对水稻土团聚体有机碳分布及其周转的影响[J]. 土壤, 49(5): 969-976. |
ZHANG Y, DAI Q, YIN L C, et al., 2017. Effects of following-up fertilization reforming on distribution and turnover of aggregate-associated organic carbon in paddy soils[J]. Soils, 49(5): 969-976. | |
[36] | 朱秋丽, 曾冬萍, 王纯, 等, 2016. 废弃物施加对福州平原稻田土壤团聚体分布及其稳定性的影响[J]. 环境科学学报, 36(8): 3000-3008. |
ZHU Q L, ZENG D P, WANG C, et al., 2016. Effects of waste applications on the distribution and stability of soil aggregates in the paddy field of Fuzhou plain[J]. Acta Scientiae Circumstantiae, 36(8): 3000-3008. | |
[37] | 张晓丽, 孔凡磊, 刘晓林, 等, 2019. 生物质改良剂对川西北地区高寒草地沙化土壤有机碳特征的影响[J]. 中国生态农业学报(中英文), 27(11): 1732-1743. |
ZHANG X L, KONG F L, LIU X L, et al., 2019. Effects of different biomass amendments on soil organic carbon characteristics in alpine desertification grassland of Northwest Sichuan[J]. Chinese Journal of Eco-Agriculture, 27(11): 1732-1743. | |
[38] |
周吉祥, 张贺, 杨静, 等, 2020. 连续施用土壤改良剂对沙质潮土肥力及活性有机碳组分的影响[J]. 中国农业科学, 53(16): 3307-3318.
DOI |
ZHOU J X, ZHANG H, YANG J, et al., 2020. Effects of continuous application of soil amendments on fluvo-aquic soil fertility and active organic carbon components[J]. Scientia Agricultura Sinica, 53(16): 3307-3318. | |
[39] | 周仕轩, 夏彬, 郝旺林, 等, 2022. 黄土高原坝地深层土壤有机碳稳定性研究[J]. 水土保持学报, 36(4): 284-289, 298. |
ZHOU S X, XIA B, HAO W L, et al., 2022. Stablity of deep soil organic carbon of dan land on the Loess Platesu[J]. Journal of Soil and Water Conservation, 36(4): 284-289, 298. |
[1] | 周沁苑, 董全民, 王芳草, 刘玉祯, 冯斌, 杨晓霞, 俞旸, 张春平, 曹铨, 刘文亭. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报, 2023, 32(4): 660-667. |
[2] | 王超, 杨倩楠, 张池, 李祥东, 陈静, 张晓龙, 陈金洁, 刘科学. 东南湿润区典型丹霞地貌土壤有机碳组分及其敏感性研究[J]. 生态环境学报, 2022, 31(6): 1132-1140. |
[3] | 朱生堡, 唐光木, 张云舒, 徐万里, 葛春辉, 马海刚. 水旱长期耕作下土壤团聚体及有机碳动态变化[J]. 生态环境学报, 2022, 31(11): 2152-2160. |
[4] | 余玉洋, 宋丰艺, 张世杰. 2000—2020年河南省NDVI时空变化及其驱动因素定量分析[J]. 生态环境学报, 2022, 31(10): 1939-1950. |
[5] | 邓玉娇, 王捷纯, 徐杰, 吴永琪, 陈靖扬. 广东省植被固碳量时空变化及气象贡献率研究[J]. 生态环境学报, 2022, 31(1): 1-8. |
[6] | 刘红梅, 李睿颖, 高晶晶, 朱平, 路杨, 高洪军, 张贵龙, 张秀芝, 彭畅, 杨殿林. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展[J]. 生态环境学报, 2020, 29(6): 1277-1284. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||