生态环境学报 ›› 2024, Vol. 33 ›› Issue (9): 1372-1383.DOI: 10.16258/j.cnki.1674-5906.2024.09.005
石含之1(), 熊振乾2, 曹怡然1, 吴志超1, 文典1, 李富荣1, 李冬琴1, 王旭1,*(
)
收稿日期:
2024-02-06
出版日期:
2024-09-18
发布日期:
2024-10-18
通讯作者:
*王旭。E-mail: wangxuguangzhou@126.com作者简介:
石含之(1989年生),女,助理研究员,主要从事土壤组分互作微界面固碳机制研究。E-mail: 692874887@qq.com
基金资助:
SHI Hanzhi1(), XIONG Zhenqian2, CAO Yiran1, WU Zhichao1, WEN Dian1, LI Furong1, LI Dongqin1, WANG Xu1,*(
)
Received:
2024-02-06
Online:
2024-09-18
Published:
2024-10-18
摘要:
土壤是陆地生态系统中最大的有机碳库,其微小的变化对全球碳循环影响巨大。土壤中铁氧化物对有机碳的固定起重要作用,但不同类型的铁氧化物对有机碳固定的影响还有待进一步研究。选取南、北方两种地带性土壤,设计添加秸秆的培养试验,培养24个月,定期取样。测定土壤中不同类型有机碳和铁氧化物含量并获得其相关性;利用同步辐射红外光谱技术得到铁氧化物、有机物官能团随秸秆、时间变化的空间分布等信息。研究结果表明,1)秸秆还田后,红壤中有机碳在培养12个月后到达平衡,黑土中有机碳在培养20个月后分解量增加;2)在红壤中,晶型铁与总有机碳呈极显著正相关(r=0.519,p<0.01),非晶型铁与总有机碳(r=−0.454,p<0.01)、腐殖酸呈极显著负相关(r=−0.434,p<0.01),说明晶型铁对红壤有机碳的固定起促进作用。在黑土中,晶型铁与总有机碳、腐殖酸呈极显著正相关,r值分别为0.545和0.643;与溶解性有机碳呈极显著负相关(r=−0.433,p<0.01),说明在黑土中晶型铁对有机碳固相组分的固定起促进作用;3)同步辐射红外结果显示,在两种土壤不同处理中,粘粒矿物、铁氧化物优先固定脂肪碳;在红壤中,时间促进了两类矿物与各类型有机碳的结合,秸秆促进了铁氧化物与各类型有机碳的结合;在黑土中,两类矿物与各类型有机碳的结合受时间影响更大。该研究揭示了外源秸秆添加到红壤和黑土中,各类型有机碳、铁氧化物的动态变化过程,明确了各类型铁氧化物对有机碳固定的作用,可为红壤及黑土中有机碳管理提供理论依据。
中图分类号:
石含之, 熊振乾, 曹怡然, 吴志超, 文典, 李富荣, 李冬琴, 王旭. 外源秸秆添加对红壤及黑土有机碳固定的影响[J]. 生态环境学报, 2024, 33(9): 1372-1383.
SHI Hanzhi, XIONG Zhenqian, CAO Yiran, WU Zhichao, WEN Dian, LI Furong, LI Dongqin, WANG Xu. Effect of Straw Returning to Field on Organic Carbon Fixation in Red Soil and Black Soil[J]. Ecology and Environment, 2024, 33(9): 1372-1383.
土壤类型 | 有机质质量分数/(g∙kg−1) | 阳离子交换量/(cmol∙kg−1) | pH | 砂粒质量分数/% | 粉粒质量分数/% | 粘粒质量分数/% |
---|---|---|---|---|---|---|
红壤 | 5.30±0.20 | 6.80±0.16 | 5.97±0.01 | 41.42 | 39.75 | 18.83 |
黑土 | 32.00±1.54 | 34.99±0.07 | 5.79±0.00 | 14.04 | 58.07 | 27.26 |
表1 土壤基本理化性质
Table 1 Soil physiochemical properties
土壤类型 | 有机质质量分数/(g∙kg−1) | 阳离子交换量/(cmol∙kg−1) | pH | 砂粒质量分数/% | 粉粒质量分数/% | 粘粒质量分数/% |
---|---|---|---|---|---|---|
红壤 | 5.30±0.20 | 6.80±0.16 | 5.97±0.01 | 41.42 | 39.75 | 18.83 |
黑土 | 32.00±1.54 | 34.99±0.07 | 5.79±0.00 | 14.04 | 58.07 | 27.26 |
土壤类型 | 处理 | 土壤腐殖酸E4/E6值 | |||||
---|---|---|---|---|---|---|---|
4月 | 8月 | 12月 | 16月 | 20月 | 24月 | ||
红壤 | 对照 | 7.07±0.06b | 6.96±0.23b | 7.05±0.09b | 7.83±0.06b | 6.88±0.00c | 7.45±0.00b |
秸秆 | 7.70±0.08a | 7.60±0.08a | 7.84±0.06a | 8.66±0.11a | 7.50±0.15b | 7.74±0.05a | |
黑土 | 对照 | 3.44±0.01a | 3.43±0.02a | 3.44±0.01a | 3.74±0.01a | 3.70±0.01a | 3.65±0.01a |
秸秆 | 3.48±0.02a | 3.46±0.02a | 3.50±0.01a | 3.81±0.02a | 3.72±0.00a | 3.72±0.02a |
表2 土壤腐殖酸E4/E6值
Table 2 E4/E6 of soil humic acids in different treatments
土壤类型 | 处理 | 土壤腐殖酸E4/E6值 | |||||
---|---|---|---|---|---|---|---|
4月 | 8月 | 12月 | 16月 | 20月 | 24月 | ||
红壤 | 对照 | 7.07±0.06b | 6.96±0.23b | 7.05±0.09b | 7.83±0.06b | 6.88±0.00c | 7.45±0.00b |
秸秆 | 7.70±0.08a | 7.60±0.08a | 7.84±0.06a | 8.66±0.11a | 7.50±0.15b | 7.74±0.05a | |
黑土 | 对照 | 3.44±0.01a | 3.43±0.02a | 3.44±0.01a | 3.74±0.01a | 3.70±0.01a | 3.65±0.01a |
秸秆 | 3.48±0.02a | 3.46±0.02a | 3.50±0.01a | 3.81±0.02a | 3.72±0.00a | 3.72±0.02a |
土壤类型 | 土壤性质 | pH | 有机质 | 腐殖酸 | 游离铁 | 非晶型铁 | 络合铁 | 溶解性有机碳 | 晶型铁 |
---|---|---|---|---|---|---|---|---|---|
红壤 | pH | 1 | |||||||
土壤有机质 | 0.870** | 1 | |||||||
腐殖酸 | 0.461** | 0.640** | 1 | ||||||
游离铁 | 0.538** | 0.498** | 0.095 | 1 | |||||
非晶型铁 | −0.265 | −0.454** | −0.434** | −0.195 | 1 | ||||
络合铁 | −0.447** | −0.241 | 0.031 | 0.066 | −0.397* | 1 | |||
溶解性有机碳 | 0.700** | 0.857** | 0.672** | 0.128 | −0.450** | −0.163 | 1 | ||
晶型铁 | 0.535** | 0.519** | 0.141 | 0.981** | −0.347* | 0.131 | 0.153 | 1 | |
黑土 | pH | 1 | |||||||
土壤有机质 | 0.473** | 1 | |||||||
腐殖酸 | 0.577** | 0.885** | 1 | ||||||
游离铁 | 0.391* | 0.422* | 0.629** | 1 | |||||
非晶型铁 | −0.075 | −0.458** | −0.315 | −0.225 | 1 | ||||
络合铁 | 0.082 | 0.149 | 0.220 | 0.583** | −0.692** | 1 | |||
溶解性有机碳 | 0.001 | 0.216 | −0.037 | −0.624** | −0.132 | −0.377* | 1 | ||
晶型铁 | 0.344* | 0.545** | 0.643** | 0.894** | −0.638** | 0.778** | −0.433** | 1 |
表3 土壤pH、有机碳和铁氧化物的相关性分析
Table 3 The correlation analysis among different types of soil organic carbon and iron oxides
土壤类型 | 土壤性质 | pH | 有机质 | 腐殖酸 | 游离铁 | 非晶型铁 | 络合铁 | 溶解性有机碳 | 晶型铁 |
---|---|---|---|---|---|---|---|---|---|
红壤 | pH | 1 | |||||||
土壤有机质 | 0.870** | 1 | |||||||
腐殖酸 | 0.461** | 0.640** | 1 | ||||||
游离铁 | 0.538** | 0.498** | 0.095 | 1 | |||||
非晶型铁 | −0.265 | −0.454** | −0.434** | −0.195 | 1 | ||||
络合铁 | −0.447** | −0.241 | 0.031 | 0.066 | −0.397* | 1 | |||
溶解性有机碳 | 0.700** | 0.857** | 0.672** | 0.128 | −0.450** | −0.163 | 1 | ||
晶型铁 | 0.535** | 0.519** | 0.141 | 0.981** | −0.347* | 0.131 | 0.153 | 1 | |
黑土 | pH | 1 | |||||||
土壤有机质 | 0.473** | 1 | |||||||
腐殖酸 | 0.577** | 0.885** | 1 | ||||||
游离铁 | 0.391* | 0.422* | 0.629** | 1 | |||||
非晶型铁 | −0.075 | −0.458** | −0.315 | −0.225 | 1 | ||||
络合铁 | 0.082 | 0.149 | 0.220 | 0.583** | −0.692** | 1 | |||
溶解性有机碳 | 0.001 | 0.216 | −0.037 | −0.624** | −0.132 | −0.377* | 1 | ||
晶型铁 | 0.344* | 0.545** | 0.643** | 0.894** | −0.638** | 0.778** | −0.433** | 1 |
官能团类型 | 土壤矿物基团与不同类型有机碳位置分布的 相关系数 (r值) | ||
---|---|---|---|
红壤 | 对照-24个月 | 秸秆-24个月 | |
粘粒/脂肪碳 | 0.63 | 0.96 | 0.94 |
粘粒/芳香碳 | 0.32 | 0.78 | 0.74 |
粘粒/羧基碳 | 0.33 | 0.77 | 0.74 |
铁氧化物/脂肪碳 | 0.32 | 0.61 | 0.94 |
铁氧化物/芳香碳 | 0.26 | 0.42 | 0.87 |
铁氧化物/羧基碳 | 0.30 | 0.51 | 0.87 |
表4 红壤中矿物基团与不同类型有机碳位置分布的相关性
Table 4 Correlation between organic carbon and mineral functional group positional distribution (r) in Red soil
官能团类型 | 土壤矿物基团与不同类型有机碳位置分布的 相关系数 (r值) | ||
---|---|---|---|
红壤 | 对照-24个月 | 秸秆-24个月 | |
粘粒/脂肪碳 | 0.63 | 0.96 | 0.94 |
粘粒/芳香碳 | 0.32 | 0.78 | 0.74 |
粘粒/羧基碳 | 0.33 | 0.77 | 0.74 |
铁氧化物/脂肪碳 | 0.32 | 0.61 | 0.94 |
铁氧化物/芳香碳 | 0.26 | 0.42 | 0.87 |
铁氧化物/羧基碳 | 0.30 | 0.51 | 0.87 |
官能团类型 | 土壤矿物基团与不同类型有机碳位置分布的 相关系数 (r值) | ||
---|---|---|---|
黑土 | 对照-24个月 | 秸秆-24个月 | |
粘粒/脂肪碳 | 0.95 | 0.96 | 0.95 |
粘粒/芳香碳 | 0.69 | 0.54 | 0.57 |
粘粒/羧基碳 | 0.61 | 0.47 | 0.49 |
铁氧化物/脂肪碳 | 0.72 | 0.62 | 0.54 |
铁氧化物/芳香碳 | 0.53 | 0.32 | 0.36 |
铁氧化物/羧基碳 | 0.41 | 0.32 | 0.33 |
表5 黑土中矿物基团与不同类型有机碳位置分布的相关性
Table 5 Correlation between organic carbon and mineral functional group positional distribution (r) in Black soil
官能团类型 | 土壤矿物基团与不同类型有机碳位置分布的 相关系数 (r值) | ||
---|---|---|---|
黑土 | 对照-24个月 | 秸秆-24个月 | |
粘粒/脂肪碳 | 0.95 | 0.96 | 0.95 |
粘粒/芳香碳 | 0.69 | 0.54 | 0.57 |
粘粒/羧基碳 | 0.61 | 0.47 | 0.49 |
铁氧化物/脂肪碳 | 0.72 | 0.62 | 0.54 |
铁氧化物/芳香碳 | 0.53 | 0.32 | 0.36 |
铁氧化物/羧基碳 | 0.41 | 0.32 | 0.33 |
[1] |
ADHIKARI D, YANG Y, 2015. Selective stabilization of aliphatic organic carbon by iron oxide[J]. Scientific Reports, 5: 11214.
DOI PMID |
[2] |
ANDREAS K, CASEY B, MUAMMAR M, et al., 2021. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 19(6): 360-374.
DOI PMID |
[3] | BARRAL M T, ARIAS M, GUÉRIF J, 1998. Effects of iron and organic matter on the porosity and structural stability of soil aggregates[J]. Soil & Tillage Research, 46(3-4): 261-272. |
[4] | BLAGODATSKY S, BLAGODATSKAYA E, YUYUKINA T, et al., 2010. Model of apparent and real priming effects: Linking microbial activity with soil organic matter decomposition[J]. Soil Biology and Biochemistry, 42(8): 1275-1283. |
[5] | CHASSÈA W, OHNO T, 2016. Higher molecular mass organic matter molecules compete with orthophosphate for adsorption to iron (oxy) hydroxide[J]. Environmental Science & Technology, 50(14): 7461-7469. |
[6] |
CHEN C M, HALL S J, COWARD E, et al., 2020. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 11: 2255.
DOI PMID |
[7] | EUSTERHUES K, RENNERT T, KNICKER H, et al., 2011. Fractionation of organic matter due to reaction with ferrihydrite: Coprecipitation versus adsorption[J]. Environmental Science & Technology, 45(2): 527-533. |
[8] | HALL S J, BERHE A A, THOMPSON A, 2018. Order from disorder: do soil organic matter composition and turnover co-vary with iron phase crystallinity?[J]. Biogeochemistry, 140(1): 93-110. |
[9] | HAN L F, SUN K, KEILUWEIT M, et al., 2019. Mobilization of ferrihydrite-associated organic carbon during Fe reduction: Adsorption versus coprecipitation[J]. Chemical Geology, 503: 61-68. |
[10] | HECKMAN K, LAWRENCE C R, HARDEN J W, 2018. A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases[J]. Geoderma, 312: 24-35. |
[11] | HUANG C C, LIU S, LI R Z, et al., 2016. Spectroscopic evidence of the improvement of reactive iron mineral content in Red soil by long-term application of swine manure[J]. PLoS One, 11(1): e0146364. |
[12] | HUANG W J, HALL S J, 2017. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter[J]. Nature Communications, 8(1): 1774. |
[13] | JEEWANI P H, LING L, FU Y Y, et al., 2021a. The stoichiometric C-Fe ratio regulates glucose mineralization and stabilization via microbial processes[J]. Geoderma, 383: 114769. |
[14] | JEEWANI P H, VAN ZWIETEN L, ZHU Z K, et al., 2021b. Abiotic and biotic regulation on carbon mineralization and stabilization in paddy soils along iron oxide gradients[J]. Soil Biology and Biochemistry, 160: 108312. |
[15] | JIANG Z H, LIU Y Z, YANG J P, et al., 2021. Rhizosphere priming regulates soil organic carbon and nitrogen mineralization: The significance of abiotic mechanisms[J]. Geoderma, 385: 114877. |
[16] | KAISER K, GUGGENBERGER G, HAUMAIER L, et al., 1997. Dissolved organic matter sorption on sub soils and minerals studied by 13C-NMR and DRIFT spectroscopy[J]. European Journal of Soil Science, 48(3): 301-310. |
[17] | KRAUSE L, KLUMPP E, NOFZ I, et al., 2020. Colloidal iron and organic carbon control soil aggregate formation and stability in arable luvisols[J]. Geoderma, 374: 114421. |
[18] | LEHMANN J, KLEBER M, 2015. The contentious nature of soil organic matter[J]. Nature, 528(7580): 60-68. |
[19] | LI Z P, LIU M, WU X C, et al., 2010. Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China[J]. Soil and Tillage Research, 106(2): 268-274. |
[20] |
LIU C, LU M, CUI J, et al., 2014. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis[J]. Global Change Biology, 20(5): 1366-1381.
DOI PMID |
[21] | MA W W, ZHU M X, YANG G P, et al., 2018. Iron geochemistry and organic carbon preservation by iron (oxyhydr) oxides in surface sediments of the East China Sea and the South Yellow Sea[J]. Journal of Marine Systems, 178: 62-74. |
[22] | MAYER L M, XING B S, 2001. Organic matter-surface area relationships in acid soils[J]. Soil Science Society of America Journal, 65(1): 250-258. |
[23] | MEIER M, NAMJESNIK-DEJANOVIC K, MAURICE P A, et al., 1999. Fractionation of aquatic natural organic matter upon sorption to goethite and kaolinite[J]. Chemical Geology, 157(3-4): 275-284. |
[24] | MIKUTTA R, KLEBER M, TORN M S, et al., 2006. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance?[J]. Biogeochemistry, 77(1): 25-56. |
[25] | MIKUTTA R, LORENZ D, GUGGENBERGER G, et al., 2014. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption[J]. Geochimica et Cosmochimica Acta, 144: 258-276. |
[26] |
SAKSCHEWSKI B, VON BLOH W, BOIT A, et al., 2016. Resilience of Amazon forests emerges from plant trait diversity[J]. Nature Climate Change, 6: 1032-1036.
DOI |
[27] | SCHMIDT M, TORN M, ABIVEN S, et al., 2011. Persistence of soil organic matter as an ecosystem property[J]. Nature, 478: 49-56. |
[28] | SCHWERTMANN U, 1966. Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide[J]. Nature, 212(5062): 645-646. |
[29] | SHAHBAZ M, KUZYAKOV Y, SANAULLAH M, et al., 2017. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: Mechanisms and thresholds[J]. Biology and Fertility of Soils, 53(3): 287-301. |
[30] | SIX J, BOSSUYT H, DEGRYZE S, et al., 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil & Tillage Research, 79(1): 7-31. |
[31] | TANAKA H, KYAW K M, TOYOTA K, et al., 2006. Influence of application of rice straw, farmyard manure, and municipal biowastes on nitrogen fixation, soil microbial biomass N, and mineral N in a model paddy microcosm[J]. Biology and Fertility of Soils, 42(6): 501-505. |
[32] | TIPPING E, 1981. The adsorption of aquatic humic substances by iron oxides[J]. Geochimica et Cosmochimica Acta, 45(2): 191-199. |
[33] | TOMBÁCZ E, LIBOR Z, ILLÉS E, et al., 2004. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles[J]. Organic Geochemistry, 35(3): 257-267. |
[34] | WEN Y L, XIAO J, LIU F F, et al., 2018. Contrasting effects of inorganic and organic fertilisation regimes on shifts in Fe redox bacterial communities in Red soils[J]. Soil Biology and Biochemistry, 117: 56-67. |
[35] | XIAO J J, WANG X, ZHAO Y F, et al., 2023. Soil organic carbon stability of vegetation restoration during 11-year-old grassland succession[J]. Journal of Soils and Sediments, 23: 2344-2355. |
[36] | XU Y D, DING F, GAO X D, et al., 2019. Mineralization of plant residues and native soil carbon as affected by soil fertility and residue type[J]. Journal of Soils and Sediments, 19(3): 1407-1415. |
[37] | XUE B, HUANG L, HUANG Y N, et al., 2019. Roles of soil organic carbon and iron oxides on aggregate formation and stability in two paddy soils[J]. Soil and Tillage Research, 187: 161-171. |
[38] | YAN J F, WANG L, HU Y, et al., 2018. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability[J]. Geoderma, 319: 194-203. |
[39] | YE C, HUANG W, HALL S J, et al., 2022. Association of organic carbon with reactive iron oxides driven by soil pH at the global scale[J]. Global Biogeochemical Cycles, 36(1): e2021GB007128. |
[40] | YU G H, YAKOV K, 2021. Fenton chemistry and reactive oxygen species in soil: Abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling[J]. Earth Science Reviews, 214: 103525. |
[41] | ZHANG X H, XIN Y, ZHANG Z S, et al., 2022. Soil moisture and aromatic-containing compounds control soil organic carbon associated with iron oxides in permafrost wetland soils along the Yarlung Tsangbo River, Tibet[J]. Journal of Soil Science and Plant Nutrition, 22: 1315-1325. |
[42] | ZHAO Q, POULSON S R, OBRIST D, et al., 2016. Ironbound organic carbon in forest soils: Quantification and characterization[J]. Biogeosciences, 13: 4777-4788. |
[43] | 程思远, 李欢, 梅慧玲, 等, 2021. 接种蚯蚓与添加有机物料对茶园土壤结构的影响[J]. 土壤学报, 58(1): 259-268. |
CHENG S Y, LI H, MEI H L, et al., 2021. Effects of earthworms and organic materials on soil structure in tea plantation[J]. Acta Pedologica Sinica, 58(1): 259-268. | |
[44] |
段勋, 李哲, 刘淼, 等, 2022. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 37(2): 202-211.
DOI |
DUAN X, LI Z, LIU M, et al., 2022. Progress of the Iron-mediated soil organic carbon preservation and mineralization[J]. Advances in Earth Science, 37(2): 202-211.
DOI |
|
[45] | 胡国成, 章明奎, 2002. 氧化铁对土粒强胶结作用的矿物学证据[J]. 土壤通报, 33(1): 25-27. |
HU G C, ZHANG M K, 2002. Mineralogical evidence for strong cementation of soil particles by iron oxides[J]. Chinese Journal of Soil Science, 33(1): 25-27. | |
[46] | 鲁如坤, 1999. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 1999. Methods for agrochemical analysis of soils[M]. Beijing: China Agricultural Science and Technology Press. | |
[47] |
石含之, 赵沛华, 黄永东, 等, 2020. 秸秆还田对土壤有机碳结构的影响[J]. 生态环境学报, 29(3): 536-542.
DOI |
SHI H Z, ZHAO P H, HUANG Y D, et al., 2020. Effect of straw mulching on soil organic carbon structure[J]. Ecology and Environmental Sciences, 29(3): 536-542. | |
[48] | 万丹, 王伯仁, 张璐, 等, 2022. 红壤铁氧化物对有机碳的固定及其对长期施肥的响应[J]. 中国生态农业学报, 30(4): 694-701. |
WAN D, WANG B R, ZHANG L, et al., 2022. Effect of long-term fertilization on the stabilization of soil organic carbon by iron oxides in Red soil[J]. Chinese Journal of Eco-Agriculture, 30(4): 694-701. | |
[49] | 汪超, 李福春, 阚尚, 等, 2015. 黑垆土有机碳在团聚体中的分配及其保护机制[J]. 土壤, 47(1): 49-54. |
WANG C, LI F C, KAN S, et al., 2015. Distribution and preservation mechanisms of organic carbon in aggregates of Heilu soil[J]. Soils, 47(1): 49-54. | |
[50] | 王磊, 应蓉蓉, 石佳奇, 等, 2017. 土壤矿物对有机质的吸附与固定机制研究进展[J]. 土壤学报, 54(4): 805-818. |
WANG L, YING R R, SHI J Q, et al., 2017. Advancement in study on adsorption of organic matter on soil minerals and its mechanism[J]. Acta Pedologica Sinica, 54(4): 805-818. | |
[51] | 张斯梅, 段增强, 顾克军, 等, 2023. 稻秸还田下减量化施氮对小麦产量、养分吸收及土壤理化性质的影响[J]. 土壤, 55(3): 537-543. |
ZHANG S M, DUAN Z Q, GU K J, et al., 2023. Effects of reduced nitrogen fertilization on wheat yield, nutrient uptake and soil physicochemical properties under rice straw returning[J]. Soils, 55(3): 537-543. | |
[52] | 张叶叶, 莫非, 韩娟, 等, 2021. 秸秆还田下土壤有机质激发效应研究进展[J]. 土壤学报, 58(6): 1381-1392. |
ZHANG Y Y, MO F, HAN J, et al., 2021. Research progress on the native soil carbon priming after straw addition[J]. Acta Pedologica Sinica, 58(6): 1381-1392. | |
[53] | 赵惠丽, 董金琎, 师江澜, 等, 2021. 秸秆还田模式对小麦-玉米轮作体系土壤有机碳固存的影响[J]. 土壤学报, 58(1): 213-224. |
ZHAO H L, DONG J J, SHI J L, et al., 2021. Effect of straw returning mode on soil organic carbon sequestration[J]. Acta Pedologica Sinica, 58(1): 213-224. |
[1] | 李建付, 黄志霖, 和成忠, 姜昕, 宋琳, 刘佳鑫, 陈利顶. 滇东喀斯特断陷盆地土壤有机碳空间分布特征及其关键影响因子[J]. 生态环境学报, 2024, 33(9): 1339-1352. |
[2] | 范贝贝, 丁帅, 张田田, 张帅, 魏露露, 陈清. 周期性淹水-落干和施用秸秆对白云石改良棕壤磷素流失风险的模拟研究[J]. 生态环境学报, 2024, 33(8): 1203-1213. |
[3] | 蒋云峰, 严婷, 刘俊男, 马丙增, 王海萌, 窦笑萌. 黑土区农田中型土壤动物群落对免耕玉米秸秆覆盖频率的响应[J]. 生态环境学报, 2024, 33(5): 699-707. |
[4] | 林丹丹, 毕华兴, 赵丹阳, 管凝, 韩金丹, 郭艳杰. 晋西黄土区不同密度刺槐林土壤有机碳组分及碳库特征[J]. 生态环境学报, 2024, 33(3): 379-388. |
[5] | 罗庆, 何清, 吴慧秋, 寇力月, 方旭, 张鑫雨, 李缘, 柴育廷, 张瑞生, 代文举. 辽河口湿地土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2024, 33(3): 333-340. |
[6] | 李嘉惠, 童辉, 陈曼佳, 刘承帅, 姜琪, 易秀. 微氧生物亚铁氧化及其重金属固定效应研究进展[J]. 生态环境学报, 2024, 33(2): 310-320. |
[7] | 梁鑫, 韩亚峰, 郑柯, 王旭刚, 陈志怀, 杜鹃. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 2023, 32(9): 1615-1622. |
[8] | 唐志伟, 翁颖, 朱夏童, 蔡洪梅, 代雯慈, 王捧娜, 郑宝强, 李金才, 陈翔. 秸秆还田下中国农田土壤微生物生物量碳变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(9): 1552-1562. |
[9] | 刘晨, 白雪冬, 赵海超, 黄智鸿, 刘松涛, 卢海博, 刘子刚, 刘雪玲. 寒旱区春玉米秸秆还田方式对土壤DOM光谱特征的影响机制[J]. 生态环境学报, 2023, 32(8): 1419-1432. |
[10] | 宫亮, 金丹丹, 牛世伟, 王娜, 邹晓锦, 张鑫, 隋世江, 解占军, 韩瑛祚. 辽宁省水稻田固碳减排潜力分析[J]. 生态环境学报, 2023, 32(7): 1226-1236. |
[11] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[12] | 秦佳琪, 肖指柔, 明安刚, 朱豪, 滕金倩, 梁泽丽, 陶怡, 覃林. 针阔人工混交林及其纯林对土壤微生物碳循环功能基因丰度的影响[J]. 生态环境学报, 2023, 32(10): 1719-1731. |
[13] | 徐敏, 许超, 余光辉, 尹力初, 张泉, 朱捍华, 朱奇宏, 张杨珠, 黄道友. 地下水位和长期秸秆还田对土壤镉有效性及稻米镉含量的影响[J]. 生态环境学报, 2023, 32(1): 150-157. |
[14] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
[15] | 龚玲玄, 王丽丽, 赵建宁, 刘红梅, 杨殿林, 张贵龙. 不同覆盖作物模式对茶园土壤理化性质及有机碳矿化的影响[J]. 生态环境学报, 2022, 31(6): 1141-1150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||