生态环境学报 ›› 2025, Vol. 34 ›› Issue (3): 358-367.DOI: 10.16258/j.cnki.1674-5906.2025.03.003
申佳龙1,2(), 吴栎宏1,2, 李林霜1,2, 周远芳1,2, 杨孝民1,2,*(
)
收稿日期:
2024-09-01
出版日期:
2025-03-18
发布日期:
2025-03-24
通讯作者:
*杨孝民。E-mail: yangxm@gzu.edu.cn作者简介:
申佳龙(1998年生),男,硕士,主要从生物地球化学循环研究。E-mail: 2459660332@qq.com
基金资助:
SHEN Jialong1,2(), WU Lihong1,2, LI Linshuang1,2, ZHOU Yuanfang1,2, YANG Xiaomin1,2,*(
)
Received:
2024-09-01
Online:
2025-03-18
Published:
2025-03-24
摘要:
研究喀斯特山区不同土地利用类型下土壤有机碳的动态变化对于发挥喀斯特山区在实现碳中和目标中的作用具有重要意义。以典型喀斯特山区撂荒地、耕地、板栗林地、灌丛林地等4种常见的土地利用类型为研究对象,分别采集不同土地利用类型下0-20、20-40、40-60、60-80、80-100 cm深度土层的土壤样品,采用硫酸-重铬酸钾外加热氧化法和修正后的硫酸水解法将土壤总有机碳(SOC)划分为活性有机碳(LOC)和惰性有机碳(ROC)组分,以探讨土地利用类型对土壤有机碳不同组分及其固碳效应的影响。研究结果显示,在相同深度土层中,不同土地利用类型间的LOC储量并无显著性差异,而SOC和ROC储量在20-40 cm和80-100 cm土层中则具有显著性差异。在不同土地利用类型之间,灌丛林地具有较高的SOC储量和ROC储量,表明其固碳效应相对较强;由于荒地具有较低的ROC储量和较高的LOC储量,因此其固碳效应相对较弱。上述研究结果表明,在不同深度范围的土层中土地利用类型对LOC和ROC组分的影响并不完全相同;此外,通过加强土地资源管理,减少或杜绝耕地弃耕抛荒现象可提高喀斯特山区的土壤固碳潜力。研究结果可为优化喀斯特山区土地管理,从而提高喀斯特山区土壤固碳效应提供科学参考。
中图分类号:
申佳龙, 吴栎宏, 李林霜, 周远芳, 杨孝民. 典型喀斯特山地小流域土地利用类型对土壤有机碳组分及其固碳效应的影响[J]. 生态环境学报, 2025, 34(3): 358-367.
SHEN Jialong, WU Lihong, LI Linshuang, ZHOU Yuanfang, YANG Xiaomin. Effects of Land Uses on Soil Organic Carbon Fractions and Their Carbon Sequestration in a Typical Karst Small Mountain Watershed[J]. Ecology and Environment, 2025, 34(3): 358-367.
土地利用类型 | 土壤深度/cm | pH | 电导率/(μS∙cm−1) | 溶解性总固体质量浓度/(mg∙L−1) | 土壤容重/(g∙cm−3) |
---|---|---|---|---|---|
耕地 | 0-20 | 5.30±0.05Ba | 117.57±49.01Aa | 58.80±24.49Aa | 1.09±0.02BCa |
20-40 | 5.43±0.38Ba | 63.43±10.23Aab | 31.73±5.12Aab | 1.20±0.01Aa | |
40-60 | 5.78±0.70ABa | 79.87±35.97Aab | 39.92±17.96Aab | 1.18±0.05Aa | |
60-80 | 5.98±1.01ABa | 61.40±11.45Bb | 31.70±5.75Bb | 1.18±0.11Aa | |
80-100 | 6.00±0.67Aa | 54.97±28.50Ab | 27.51±14.24Ab | 1.25±0.16Aa | |
荒地 | 0-20 | 6.08±0.44Aa | 36.33±6.73Bb | 18.13±3.36Bb | 1.28±0.05Aa |
20-40 | 6.59±0.26Aa | 157.83±85.35Aa | 79.00±42.74Aa | 1.28±0.06Aa | |
40-60 | 6.47±0.08Aa | 57.67±23.71Ab | 28.78±11.82Ab | 1.30±0.06Aa | |
60-80 | 6.79±0.21Aa | 49.77±8.73Bb | 24.88±4.45Bb | 1.22±0.09Aab | |
80-100 | 6.01±0.81Aa | 80.67±30.26Ab | 40.43±15.18Ab | 1.14±0.11Ab | |
灌丛林地 | 0-20 | 4.77±0.12Ca | 61.70±13.52Ba | 31.87±7.95Ba | 0.94±0.03Cb |
20-40 | 4.74±0.14Ca | 102.07±72.74Aa | 51.03±36.36Aa | 1.16±0.15Aa | |
40-60 | 4.70±0.20Ca | 145.17±88.58Aa | 72.60±44.28Aa | 1.15±0.02Aa | |
60-80 | 4.88±0.17Ca | 99.87±21.76Aa | 49.93±10.83Aa | 1.21±0.01Aa | |
80-100 | 4.90±0.28Aa | 155.67±102.68Aa | 77.87±51.35Aa | 1.16±0.13Aa | |
板栗林地 | 0-20 | 5.25±0.06Bab | 34.37±10.97Ba | 17.22±5.43Ba | 1.16±0.17ABa |
20-40 | 5.11±0.16BCab | 53.40±27.51Aa | 26.72±13.69Aa | 1.21±0.12Aa | |
40-60 | 5.32±0.33BCab | 146.50±149.21Aa | 73.27±74.77Aa | 1.18±0.15Aa | |
60-80 | 5.09±0.10BCb | 71.30±23.43ABa | 35.63±11.76ABa | 1.10±0.15Aa | |
80-100 | 5.58±0.44Aa | 53.40±39.83Aa | 38.37±2.58Aa | 1.19±0.13Aa |
表1 不同土地利用类型下土壤中的pH、电导率、溶解性总固体和土壤容重
Table 1 The soil pH, electrical conductivity, total dissolved solids, and bulk density in soils of different land uses
土地利用类型 | 土壤深度/cm | pH | 电导率/(μS∙cm−1) | 溶解性总固体质量浓度/(mg∙L−1) | 土壤容重/(g∙cm−3) |
---|---|---|---|---|---|
耕地 | 0-20 | 5.30±0.05Ba | 117.57±49.01Aa | 58.80±24.49Aa | 1.09±0.02BCa |
20-40 | 5.43±0.38Ba | 63.43±10.23Aab | 31.73±5.12Aab | 1.20±0.01Aa | |
40-60 | 5.78±0.70ABa | 79.87±35.97Aab | 39.92±17.96Aab | 1.18±0.05Aa | |
60-80 | 5.98±1.01ABa | 61.40±11.45Bb | 31.70±5.75Bb | 1.18±0.11Aa | |
80-100 | 6.00±0.67Aa | 54.97±28.50Ab | 27.51±14.24Ab | 1.25±0.16Aa | |
荒地 | 0-20 | 6.08±0.44Aa | 36.33±6.73Bb | 18.13±3.36Bb | 1.28±0.05Aa |
20-40 | 6.59±0.26Aa | 157.83±85.35Aa | 79.00±42.74Aa | 1.28±0.06Aa | |
40-60 | 6.47±0.08Aa | 57.67±23.71Ab | 28.78±11.82Ab | 1.30±0.06Aa | |
60-80 | 6.79±0.21Aa | 49.77±8.73Bb | 24.88±4.45Bb | 1.22±0.09Aab | |
80-100 | 6.01±0.81Aa | 80.67±30.26Ab | 40.43±15.18Ab | 1.14±0.11Ab | |
灌丛林地 | 0-20 | 4.77±0.12Ca | 61.70±13.52Ba | 31.87±7.95Ba | 0.94±0.03Cb |
20-40 | 4.74±0.14Ca | 102.07±72.74Aa | 51.03±36.36Aa | 1.16±0.15Aa | |
40-60 | 4.70±0.20Ca | 145.17±88.58Aa | 72.60±44.28Aa | 1.15±0.02Aa | |
60-80 | 4.88±0.17Ca | 99.87±21.76Aa | 49.93±10.83Aa | 1.21±0.01Aa | |
80-100 | 4.90±0.28Aa | 155.67±102.68Aa | 77.87±51.35Aa | 1.16±0.13Aa | |
板栗林地 | 0-20 | 5.25±0.06Bab | 34.37±10.97Ba | 17.22±5.43Ba | 1.16±0.17ABa |
20-40 | 5.11±0.16BCab | 53.40±27.51Aa | 26.72±13.69Aa | 1.21±0.12Aa | |
40-60 | 5.32±0.33BCab | 146.50±149.21Aa | 73.27±74.77Aa | 1.18±0.15Aa | |
60-80 | 5.09±0.10BCb | 71.30±23.43ABa | 35.63±11.76ABa | 1.10±0.15Aa | |
80-100 | 5.58±0.44Aa | 53.40±39.83Aa | 38.37±2.58Aa | 1.19±0.13Aa |
土地利用类型 | 土壤深度/ cm | 活性有机碳 质量分数/% | 惰性有机碳 质量分数/% | 总有机碳 质量分数/% |
---|---|---|---|---|
耕地 | 0-20 | 1.15±0.06Aa | 0.77±0.21Aa | 1.92±0.21Aa |
20-40 | 0.72±0.04Ab | 0.50±0.05Bb | 1.22±0.03Bb | |
40-60 | 0.51±0.05Ac | 0.43±0.17Bb | 0.94±0.16Bbc | |
60-80 | 0.43±0.12Ac | 0.34±0.11Ab | 0.78±0.24Ac | |
80-100 | 0.42±0.16Ac | 0.34±0.08Ab | 0.76±0.24Ac | |
荒地 | 0-20 | 1.40±1.05Aa | 0.84±0.14Aa | 2.24±0.97Aa |
20-40 | 0.69±0.25Aab | 0.64±0.10ABa | 1.33±0.34ABab | |
40-60 | 0.56±0.48Aab | 0.38±0.18Bb | 0.94±0.37Bbc | |
60-80 | 0.49±0.52Aab | 0.21±0.14Abc | 0.70±0.43Ac | |
80-100 | 0.25±0.01Ab | 0.12±0.05Bc | 0.37±0.04Bc | |
灌丛林地 | 0-20 | 1.12±0.22Aa | 1.07±0.18Aa | 2.19±0.29Aa |
20-40 | 0.89±0.21Aab | 1.03±0.35Aa | 1.92±0.44Aa | |
40-60 | 0.69±0.19Abc | 0.87±0.30Aab | 1.57±0.48Aab | |
60-80 | 0.47±0.31Ac | 0.51±0.22Abc | 0.98±0.51Abc | |
80-100 | 0.34±0.10Ac | 0.17±0.07Ac | 0.51±0.10ABc | |
板栗林地 | 0-20 | 0.93±0.15Aa | 0.74±0.27Aa | 1.67±0.34Aa |
20-40 | 0.65±0.23Aab | 0.63±0.25ABa | 1.28±0.47ABab | |
40-60 | 0.67±0.24Aab | 0.41±0.20Bab | 1.08±0.18ABb | |
60-80 | 0.47±0.12Abc | 0.45±0.18Aab | 0.92±0.30Abc | |
80-100 | 0.28±0.09Ac | 0.21±0.14ABb | 0.50±0.10ABc |
表2 不同土地利用类型下土壤中的活性有机碳、惰性有机碳与总有机碳的质量分数
Table 2 The contents of liable organic carbon, and recalcitrant organic carbon, soil total organic carbon in soils of different land uses
土地利用类型 | 土壤深度/ cm | 活性有机碳 质量分数/% | 惰性有机碳 质量分数/% | 总有机碳 质量分数/% |
---|---|---|---|---|
耕地 | 0-20 | 1.15±0.06Aa | 0.77±0.21Aa | 1.92±0.21Aa |
20-40 | 0.72±0.04Ab | 0.50±0.05Bb | 1.22±0.03Bb | |
40-60 | 0.51±0.05Ac | 0.43±0.17Bb | 0.94±0.16Bbc | |
60-80 | 0.43±0.12Ac | 0.34±0.11Ab | 0.78±0.24Ac | |
80-100 | 0.42±0.16Ac | 0.34±0.08Ab | 0.76±0.24Ac | |
荒地 | 0-20 | 1.40±1.05Aa | 0.84±0.14Aa | 2.24±0.97Aa |
20-40 | 0.69±0.25Aab | 0.64±0.10ABa | 1.33±0.34ABab | |
40-60 | 0.56±0.48Aab | 0.38±0.18Bb | 0.94±0.37Bbc | |
60-80 | 0.49±0.52Aab | 0.21±0.14Abc | 0.70±0.43Ac | |
80-100 | 0.25±0.01Ab | 0.12±0.05Bc | 0.37±0.04Bc | |
灌丛林地 | 0-20 | 1.12±0.22Aa | 1.07±0.18Aa | 2.19±0.29Aa |
20-40 | 0.89±0.21Aab | 1.03±0.35Aa | 1.92±0.44Aa | |
40-60 | 0.69±0.19Abc | 0.87±0.30Aab | 1.57±0.48Aab | |
60-80 | 0.47±0.31Ac | 0.51±0.22Abc | 0.98±0.51Abc | |
80-100 | 0.34±0.10Ac | 0.17±0.07Ac | 0.51±0.10ABc | |
板栗林地 | 0-20 | 0.93±0.15Aa | 0.74±0.27Aa | 1.67±0.34Aa |
20-40 | 0.65±0.23Aab | 0.63±0.25ABa | 1.28±0.47ABab | |
40-60 | 0.67±0.24Aab | 0.41±0.20Bab | 1.08±0.18ABb | |
60-80 | 0.47±0.12Abc | 0.45±0.18Aab | 0.92±0.30Abc | |
80-100 | 0.28±0.09Ac | 0.21±0.14ABb | 0.50±0.10ABc |
图1 土壤活性有机碳和惰性有机碳与总有机碳的相关性
Figure 1 Correlations between liable organic carbon and soil total organic carbon, and between recalcitrant organic carbon and soil total organic carbon
图2 不同土地利用类型下各深度土壤中的活性有机碳、惰性有机碳与总有机碳的储量 n=3,下同;不同小写字母表示同一类型不同深度间在p<0.05水平下的显著性差异;不同大写字母表示同一深度不同类型间在p<0.05水平下的显著性差异
Figure 2 The storage of liable organic carbon, recalcitrant organic carbon, and soil total organic carbon in each soil depth of different land uses
图3 不同土地利用类型下0-100 cm土壤中的活性有机碳、惰性有机碳以及总有机碳的总储量
Figure 3 The total storage of liable organic carbon, recalcitrant organic carbon, soil total organic carbon within 0-100 cm soil depth under different land uses
图4 不同土地利用类型下0-100 cm土壤中的活性有机碳库和惰性有机碳库对总有机碳库的贡献
Figure 4 The contribution of liable organic carbon and recalcitrant organic carbon to soil total organic carbon within 0-100 cm soil depth under different land uses
[1] | BAI Y X, ZHOU Y C, 2020. The main factors controlling spatial variability of soil organic carbon in a small karst watershed, Guizhou Province, China[J]. Geoderma, 357: 113938. |
[2] | BELAY-TEDLA A, ZHOU X H, SU B, et al., 2009. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping[J]. Soil Biology and Biochemistry, 41(1): 110-116. |
[3] | CHABBI A, LEHMANN J, CIAIS P, et al., 2017. Aligning agriculture and climate policy[J]. Nature Climate Change, 7(5): 307-309. |
[4] |
CHEN X B, HU Y J, XIA Y H, et al., 2021. Contrasting pathways of carbon sequestration in paddy and upland soils[J]. Global Change Biology, 27(11): 2478-2490.
DOI PMID |
[5] | CHENG X L, CHEN J Q, LUO Y Q, et al., 2008. Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes[J]. Geoderma, 145(3-4): 177-184. |
[6] | COCHRAN R L, COLLINS H P, KENNEDY A, et al., 2007. Soil carbon pools and fluxes after land conversion in a semiarid shrub-steppe ecosystem[J]. Biology and Fertility of Soils, 43(4): 479-489. |
[7] | FEYISSA A, YANG F, FENG J, et al., 2020. Soil labile and recalcitrant carbon and nitrogen dynamics in relation to functional vegetation groups along precipitation gradients in secondary grasslands of South China[J]. Environmental Science and Pollution Research, 27(10): 10528-10540. |
[8] | KALHORO S A, XU X X, CHEN W Y, et al., 2017. Effects of different land-use systems on soil aggregates: A case study of the Loess Plateau (Northern China)[J]. Sustainability, 9(8): 1349. |
[9] |
LAL R, 2004. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 304(5677): 1623-1627.
DOI PMID |
[10] | LAL R, 2019. Accelerated soil erosion as a source of atmospheric CO2[J]. Soil and Tillage Research, 188: 35-40. |
[11] | LAN G Y, LIU C, WANG H, et al., 2021. The effect of land use change and soil redistribution on soil organic carbon dynamics in karst graben basin of China[J]. Journal of Soils and Sediments, 21: 2511-2524. |
[12] | LIU X, LI L H, QI Z M, et al., 2017. Land-use impacts on profile distribution of labile and recalcitrant carbon in the Ili River Valley, northwest China[J]. Science of the Total Environment, 586: 1038-1045. |
[13] | MAYES M A, HEAL K R, BRANDT C C, et al., 2012. Relation between soil order and sorption of dissolved organic carbon in temperate subsoils[J]. Soil Science Society of America Journal, 76(3): 1027-1037. |
[14] | PENG X Y, HUANG Y, DUAN X W, et al., 2023. Particulate and mineral-associated organic carbon fractions reveal the roles of soil aggregates under different land-use types in a karst faulted basin of China[J]. Catena, 220(Part B): 106721. |
[15] | POEPLAU C, DON A, SIX J, et al., 2018. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils: A comprehensive method comparison[J]. Soil Biology and Biochemistry, 125: 10-26. |
[16] | QI S Z, GUO J M, JIA R, et al., 2020. Land use change induced ecological risk in the urbanized karst region of North China: A case study of Jinan city[J]. Environmental Earth Sciences, 79: 1-8. |
[17] | QIN Z L, YANG X M, SONG Z L, et al., 2021. Vertical distributions of organic carbon fractions under paddy and forest soils derived from black shales: Implications for potential of long-term carbon storage[J]. Catena, 198: 105056. |
[18] | ROVIRA P, ROMANYÀ J, DUGUY B, 2012. Long-term effects of wildfires on the biochemical quality of soil organic matter: A study on Mediterranean shrublands[J]. Geoderma, 179-180: 9-19. |
[19] | ROVIRA P, VALLEJO V R, 2002. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach[J]. Geoderma, 107(1-2): 109-141. |
[20] | ROVIRA P, VALLEJO V R, 2007. Labile, recalcitrant, and inert organic matter in Mediterranean forest soils[J]. Soil Biology and Biochemistry, 39(1): 202-215. |
[21] |
RUMPEL C, AMIRASLANI F, CHENU C, et al., 2020. The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy[J]. Ambio, 49: 350-360.
DOI PMID |
[22] | TENG M J, ZENG L X, XIAO W F, et al., 2017. Spatial variability of soil organic carbon in Three Gorges Reservoir area, China[J]. Science of the Total Environment, 599-600: 1308-1316. |
[23] | YANG X M, SONG Z L, VAN ZWIETEN L, et al., 2024. Significant accrual of soil organic carbon through long-term rice cultivation in paddy fields in China[J]. Global Change Biology, 30(3): e17213. |
[24] | 陈高起, 傅瓦利, 沈艳, 等, 2015. 岩溶区不同土地利用类型对土壤有机碳及其组分的影响[J]. 水土保持学报, 29(3): 123-129. |
CHEN G Q, FU W L, SHEN Y, et al., 2015. Effects of land use types on soil organic carbon and its fractions in karst area[J]. Journal of Soil and Water Conservation, 29(3): 123-129. | |
[25] | 陈坚淇, 贾亚男, 贺秋芳, 等, 2024. 不同土地利用类型对岩溶区土壤有机碳组分稳定性的影响[J]. 环境科学, 45(1): 335-342. |
CHEN J Q, JIA Y N, HE Q F, et al., 2024. Effect of land use on the stability of soil organic carbon in a karst region[J]. Environmental Science, 45(1): 335-342. | |
[26] | 程琨, 潘根兴, 2016. “千分之四全球土壤增碳计划” 对中国的挑战与应对策略[J]. 气候变化研究进展, 12(5): 457-464. |
CHENG K, PAN G X, 2016. “Four for mille initiative: soils for food security and climate” challenges and strategies for China’s action[J]. Climate Change Research, 12(5): 457-464. | |
[27] | 程志辉, 李法云, 荣湘民, 等, 2016. 辽河保护区不同土地利用方式下土壤的有机碳含量特征[J]. 湖南农业大学学报(自然科学版), 42(6): 670-675. |
CHENG Z H, LI F Y, RONG X M, et al., 2016. Characteristics of soil carbon pools under different land use patterns in reserve of Liaohe River[J]. Journal of Hunan Agricultural University (Natural Sciences), 42(6): 670-675. | |
[28] | 黄先飞, 周运超, 张珍明, 2017. 喀斯特石漠化区不同土地利用类型下土壤有机碳分布特征[J]. 水土保持学报, 31(5): 215-221. |
HUANG X F, ZHOU Y C, ZHANG Z M, 2017. Distribution characteristics of soil organic carbon under different land uses in a karst rocky desertification area[J]. Journal of Soil and Water Conservation, 31(5): 215-221. | |
[29] |
黄先飞, 周运超, 张珍明, 2018. 土地利用类型下土壤有机碳特征及影响因素——以后寨河喀斯特小流域为例[J]. 自然资源学报, 33(6): 1056-1067.
DOI |
HUANG X F, ZHOU Y C, ZHANG Z M, 2018. Characteristics and affecting factors of soil organic carbon under land uses: A case study in Houzhai River Basin[J]. Journal of Natural Resources, 33(6): 1056-1067. | |
[30] | 蒋莉沙, 甘凤玲, 谭晓红, 等, 2024. 岩层倾向对喀斯特槽谷区不同土地利用类型土壤分离能力的影响[J]. 水土保持学报, 38(3): 130-139. |
JIANG L S, GAN F L, TAN X H, et al., 2024. Effect of rock strata dip on soil detachment capacity of different land use types in karst trough valley area[J]. Journal of Soil and Water Conservation, 38(3): 130-139. | |
[31] | 蒋忠诚, 袁道先, 曹建华, 等, 2012. 中国岩溶碳汇潜力研究[J]. 地球学报, 33(2): 129-134. |
JIANG Z C, YUAN D X, CAO J H, et al., 2012. A study of carbon sink capacity of karst processes in China[J]. Acta Geoscientica Sinica, 33(2): 129-134. | |
[32] | 李令, 贺慧丹, 未亚西, 等, 2017. 三江源农牧交错区植被群落及土壤固碳持水能力对退耕还草措施的响应[J]. 草业科学, 34(10): 1999-2008. |
LI L, HE H D, WEI Y X, et al., 2017. Response of vegetation community structure, soil carbon sequestration, and water-holding capacity in returning farmland to grassland plots, in the agro-pastoral transitional zone in the Three Rivers Source Region[J]. Pratacultural Science, 34(10): 1999-2008. | |
[33] |
梁启鹏, 余新晓, 庞卓, 等, 2010. 不同林分土壤有机碳密度研究[J]. 生态环境学报, 19(4): 889-893.
DOI |
LIANG Q P, YU X X, PANG Z, et al., 2010. Study on soil organic carbon density of different forest types[J]. Ecology and Environmental Sciences, 19(4): 889-893. | |
[34] | 李睿, 江长胜, 郝庆菊, 2015. 缙云山不同土地利用类型下土壤团聚体中活性有机碳分布特征[J]. 环境科学, 36(9): 3429-3437. |
LI R, JIANG C S, HAO Q J, 2015. Impact of land utilization pattern on distributing characters of labile organic carbon in soil aggregates in Jinyun Mountain[J]. Environmental Science, 36(9): 3429-3437. | |
[35] | 李泽霞, 董彦丽, 马涛, 2020. 黄土区梯化坡地不同土地利用类型对土壤理化性质的影响[J]. 水土保持通报, 40(3): 43-49. |
LI Z X, DONG Y L, MA T, 2020. Effects of land use types on soil physical and chemical properties in terraced sloping land of loess areas[J]. Bulletin of Soil and Water Conservation, 40(3): 43-49. | |
[36] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2000. Methods of soil and agrochemical analysis[M]. Beijing: China Agricultural Science and Technology Press. | |
[37] | 覃智莲, 杨孝民, 宋照亮, 等, 2020. 成土母质和土地利用类型对土壤有机碳化学组成的影响[J]. 土壤通报, 51(3): 621-629. |
QIN Z L, YANG X M, SONG Z L, et al., 2020. Effects of parent materials and land uses on soil organic carbon fractions[J]. Chinese Journal of Soil Science, 51(3): 621-629. | |
[38] | 申楷慧, 魏识广, 李林, 等, 2024. 漓江流域喀斯特森林土壤有机碳空间分布格局及其驱动因子[J]. 环境科学, 45(1): 323-334. |
SHEN K H, WEI S G, LI L, et al., 2024. Spatial distribution patterns of soil organic carbon in karst forests of the Lijiang River Basin and its driving factors[J]. Environmental Science, 45(1): 323-334. | |
[39] | 文丽, 李超, 程凯凯, 等, 2023. 不同农田模式下土壤有机碳、氮、磷及化学计量比的垂直分布特征[J]. 湖南农业科学 (2): 38-42. |
WEN L, LI C, CHENG K K, et al., 2023. Vertical distribution characteristics of soil organic carbon, nitrogen and phosphorus and their stoichiometric ratios in different types of cropland[J]. Hunan Agricultural Sciences (2): 38-42. | |
[40] | 王磊, 应蓉蓉, 石佳奇, 等, 2017. 土壤矿物对有机质的吸附与固定机制研究进展[J]. 土壤学报, 54(4): 805-818. |
WANG L, YING R R, SHI J Q, et al., 2017. Advancement in study on adsorption of organic matter on soil minerals and its mechanism[J]. Acta Pedologica Sinica, 54(4): 805-818. | |
[41] | 文雯, 周宝同, 汪亚峰, 等, 2015. 黄土高原羊圈沟小流域土地利用时空变化的土壤有机碳效应[J]. 生态学报, 35(18): 6060-6069. |
WEN W, ZHOU B T, WANG Y F, et al., 2015. Effects of spatio-temporal changes of land-use on soil organic carbon in Yangjuangou watershed in Loess Plateau, China[J]. Acta Ecologica Sinica, 35(18): 6060-6069. | |
[42] | 余佳琪, 刘博, 王勇, 等, 2024. 秸秆覆盖对坡耕地黑土土壤有机碳的影响[J/OL]. 吉林农业大学学报, 1-10 [2024-10-31]. https://link.cnki.net/urlid/22.1100.S.20240718.1526.009. |
YU J Q, LIU B, WANG Y, et al., 2024. Effects of straw mulching on soil organic carbon in black soil of sloping cultivated land[J/OL]. Journal of Jilin Agricultural University, 1-10 [2024-10-31]. https://link.cnki.net/urlid/22.1100.S.20240718.1526.009. | |
[43] | 张凤祥, 刘海涛, 2018. 土壤固碳能力受生态型土地整治工程的影响研究[J]. 绿色环保建材 (2): 172-173. |
ZHANG F X, LIU H T, 2018. Influence of ecological land consolidation project on soil carbon sequestration capacity[J]. Green Environmental Protection Building Materials (2): 172-173. | |
[44] | 左超, 罗彩云, 赵亮, 等, 2024. 不同土地利用类型对土壤惰性碳的影响[J]. 草原与草坪, 44(2): 96-105. |
ZUO C, LUO C Y, ZHAO L, et al., 2024. Effects of different land use methods on inert soil carbon[J]. Grassland and Turf, 44(2): 96-105. |
[1] | 周乐乐, 万霞, 丁黎明, 魏星宇, 王建平, 陈静, 李鑫, 樊敏, 黎猛, 喻萧斌. 四川省碳排放-碳储存与碳供需比空间分布特征研究[J]. 生态环境学报, 2025, 34(3): 368-379. |
[2] | 李建付, 黄志霖, 和成忠, 姜昕, 宋琳, 刘佳鑫, 陈利顶. 滇东喀斯特断陷盆地土壤有机碳空间分布特征及其关键影响因子[J]. 生态环境学报, 2024, 33(9): 1339-1352. |
[3] | 石含之, 熊振乾, 曹怡然, 吴志超, 文典, 李富荣, 李冬琴, 王旭. 外源秸秆添加对红壤及黑土有机碳固定的影响[J]. 生态环境学报, 2024, 33(9): 1372-1383. |
[4] | 罗庆, 何清, 吴慧秋, 寇力月, 方旭, 张鑫雨, 李缘, 柴育廷, 张瑞生, 代文举. 辽河口湿地土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2024, 33(3): 333-340. |
[5] | 林丹丹, 毕华兴, 赵丹阳, 管凝, 韩金丹, 郭艳杰. 晋西黄土区不同密度刺槐林土壤有机碳组分及碳库特征[J]. 生态环境学报, 2024, 33(3): 379-388. |
[6] | 唐舒娅, 王春辉, 宋靖, 李刚. 环象山港区域土壤重金属污染特征及风险评估[J]. 生态环境学报, 2024, 33(11): 1768-1781. |
[7] | 常博然, 陈茹岚, 王彪, 蓝天, 邓琳, 薛会英. 藏东南折拉山不同林分类型土壤有机碳及其组分分布特征[J]. 生态环境学报, 2024, 33(10): 1495-1505. |
[8] | 梁鑫, 韩亚峰, 郑柯, 王旭刚, 陈志怀, 杜鹃. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 2023, 32(9): 1615-1622. |
[9] | 王铁铮, 瞿心悦, 刘春香, 李有志. 东江湖水质时空变化规律及其与流域土地利用的关系[J]. 生态环境学报, 2023, 32(4): 722-732. |
[10] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[11] | 秦佳琪, 肖指柔, 明安刚, 朱豪, 滕金倩, 梁泽丽, 陶怡, 覃林. 针阔人工混交林及其纯林对土壤微生物碳循环功能基因丰度的影响[J]. 生态环境学报, 2023, 32(10): 1719-1731. |
[12] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
[13] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
[14] | 龚玲玄, 王丽丽, 赵建宁, 刘红梅, 杨殿林, 张贵龙. 不同覆盖作物模式对茶园土壤理化性质及有机碳矿化的影响[J]. 生态环境学报, 2022, 31(6): 1141-1150. |
[15] | 陈金凤, 余世钦, 符加方, 徐国良, 于波, 赖晓群, 胡思源, 张开渠, 刘家华. 华南红层地貌区不同利用方式土壤质量特征及其影响因素——以南雄盆地为例[J]. 生态环境学报, 2022, 31(5): 918-930. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||