生态环境学报 ›› 2024, Vol. 33 ›› Issue (3): 379-388.DOI: 10.16258/j.cnki.1674-5906.2024.03.006
林丹丹1(), 毕华兴1,2,3,4,*(
), 赵丹阳1, 管凝1, 韩金丹1, 郭艳杰1
收稿日期:
2024-01-09
出版日期:
2024-03-18
发布日期:
2024-05-08
通讯作者:
*毕华兴。E-mail: bhx@bjfu.edu.cn作者简介:
林丹丹(1999年生),女,硕士研究生,研究方向为林业生态工程。E-mail: dandanlin2024@163.com
基金资助:
LIN Dandan1(), BI Huaxing1,2,3,4,*(
), ZHAO Danyang1, GUAN Ning1, HAN Jindan1, GUO Yanjie1
Received:
2024-01-09
Online:
2024-03-18
Published:
2024-05-08
摘要:
明晰不同林分密度下土壤有机碳组分含量及碳库特征,以期为确定刺槐林适宜人工造林密度和评价水土保持效益提供科技支撑。设置不同密度(700、1500、1800、2400、3000、3500 plant∙hm−2)刺槐样地,以荒草地为对照,分析0-40 cm土层土壤有机碳组分及变化规律,计算碳库活度指数(CPAI)、碳库指数(CPI)以及碳库管理指数(CPMI),解析不同密度刺槐林地土壤碳库变化,并探讨土壤理化性质对土壤有机碳及其组分变化的影响。结果表明:不同密度刺槐林地土壤有机碳及其组分的含量均随着土层深度的增加而减少,平均土壤有机碳(SOC)含量为 :6.80 g∙kg−1(1800 plant∙hm−2)>5.01 g∙kg−1 (1500 plant∙hm−2)>4.73 g∙kg−1 (2400 plant∙hm−2)>4.17 g∙kg−1 (3000 plant∙hm−2)>2.78 g∙kg−1 (700 plant∙hm−2)>2.68 g∙kg−1 (3500 plant∙hm−2)>0.52 g∙kg−1 (CK)。随着刺槐人工林密度的增大,土壤有机碳组分及CPMI呈先增大后减小的趋势,中密度刺槐林分土壤有机碳组分含量及CPMI最大。与对照相比,0-40 cm土层,6种林分密度的土壤易氧化有机碳、稳定态有机碳含量、可溶性有机碳、颗粒有机碳和矿质结合态有机碳分别提高了77.3%-94.9%、55.8%-91.3%、86.0%-94.2%、81.4%-93.5%和79.8%-91.2%。6种林分密度土壤碳库管理指数均高于100%。相关关系分析表明土壤总有机碳含量与各有机碳组分均呈极显著正相关(P<0.010);冗余分析表明土壤全氮对土壤有机碳及其组分变化的解释率最大。因此,从森林土壤固碳功能而言,晋西黄土区刺槐人工林的适宜林分密度为1800 plant∙hm−2,该林分密度能较好提高土壤碳养分供给水平与碳库稳定性。
中图分类号:
林丹丹, 毕华兴, 赵丹阳, 管凝, 韩金丹, 郭艳杰. 晋西黄土区不同密度刺槐林土壤有机碳组分及碳库特征[J]. 生态环境学报, 2024, 33(3): 379-388.
LIN Dandan, BI Huaxing, ZHAO Danyang, GUAN Ning, HAN Jindan, GUO Yanjie. Soil Organic Carbon Fractions and Carbon Pool Characteristics of Robinia pseudoacacia Forests with Different Densities in the Loess Region of Western Shanxi Province[J]. Ecology and Environment, 2024, 33(3): 379-388.
样地 | 林分类型 | 林分密度/(plant∙hm−2) | 海拔/m | 坡向 | 郁闭度/% | 枯落物厚度/cm | 林下植被盖度/% | 林下主要植被类型 |
---|---|---|---|---|---|---|---|---|
Ⅰ | 刺槐 | 700 | 1168 | 阳坡 | 20 | 1.20 | 45 | 茅莓 Rubus parvifolius、黄刺玫 Rosa xanthina、青绿薹草 Carex breviculmis |
Ⅱ | 刺槐 | 1500 | 1175 | 半阳坡 | 55 | 2.22 | 60 | 茅莓 Rubus parvifolius、芦苇Phragmites australis、虉草 Phalaris arundinacea |
Ⅲ | 刺槐 | 1800 | 1130 | 阳坡 | 61 | 2.26 | 64 | 茅莓 Rubusparvifolius、黄刺玫Rosaxanthina、铁杆蒿Artemisia gmelinii |
Ⅳ | 刺槐 | 2400 | 1187 | 阳坡 | 65 | 2.00 | 40 | 茅莓 Rubus parvifolius、虉草 Phalaris arundinacea、绣线菊 Spiraea salicifolia |
Ⅴ | 刺槐 | 3000 | 1195 | 半阳坡 | 78 | 1.80 | 32 | 茅莓 Rubus parvifolius、二柱薹草 Carex lithphila、胡枝子 Lespedeza bicolor |
Ⅵ | 刺槐 | 3500 | 1188 | 阳坡 | 90 | 1.36 | 30 | 杠柳 Periploca sepium、白刺花 Sophora davidii、马唐 Digitaria sanguinalis |
CK | 荒草 | - | 992 | 阴坡 | - | - | 70 | 野艾蒿 Artemisia lavandulaefolia、芦苇 Phragmites australis、委陵菜 Potentilla chinensis |
表1 样地基本信息
Table 1 Sample plot survey results
样地 | 林分类型 | 林分密度/(plant∙hm−2) | 海拔/m | 坡向 | 郁闭度/% | 枯落物厚度/cm | 林下植被盖度/% | 林下主要植被类型 |
---|---|---|---|---|---|---|---|---|
Ⅰ | 刺槐 | 700 | 1168 | 阳坡 | 20 | 1.20 | 45 | 茅莓 Rubus parvifolius、黄刺玫 Rosa xanthina、青绿薹草 Carex breviculmis |
Ⅱ | 刺槐 | 1500 | 1175 | 半阳坡 | 55 | 2.22 | 60 | 茅莓 Rubus parvifolius、芦苇Phragmites australis、虉草 Phalaris arundinacea |
Ⅲ | 刺槐 | 1800 | 1130 | 阳坡 | 61 | 2.26 | 64 | 茅莓 Rubusparvifolius、黄刺玫Rosaxanthina、铁杆蒿Artemisia gmelinii |
Ⅳ | 刺槐 | 2400 | 1187 | 阳坡 | 65 | 2.00 | 40 | 茅莓 Rubus parvifolius、虉草 Phalaris arundinacea、绣线菊 Spiraea salicifolia |
Ⅴ | 刺槐 | 3000 | 1195 | 半阳坡 | 78 | 1.80 | 32 | 茅莓 Rubus parvifolius、二柱薹草 Carex lithphila、胡枝子 Lespedeza bicolor |
Ⅵ | 刺槐 | 3500 | 1188 | 阳坡 | 90 | 1.36 | 30 | 杠柳 Periploca sepium、白刺花 Sophora davidii、马唐 Digitaria sanguinalis |
CK | 荒草 | - | 992 | 阴坡 | - | - | 70 | 野艾蒿 Artemisia lavandulaefolia、芦苇 Phragmites australis、委陵菜 Potentilla chinensis |
指标 | 土层深度/ cm | 林分密度/(plant∙hm−2) | ||||||
---|---|---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | CK | ||
容重/ (g∙cm−3) | 0‒10 | 1.134±0.03b | 1.031±0.06a | 0.957±0.03b | 0.999±0.03b | 1.012±0.12a | 1.079±0.11a | 1.068±0.01b |
10‒20 | 1.194±0.12ab | 1.048±0.04a | 1.008±0.03b | 1.116±0.04a | 1.124±0.11a | 1.096±0.04a | 1.151±0.08ab | |
20‒40 | 1.335±0.07a | 1.089±0.00a | 1.121±0.06a | 1.160±0.02a | 1.130±0.08a | 1.193±0.09a | 1.196±0.03a | |
w(水分)/ % | 0‒10 | 18.304±0.02a | 17.280±0.01a | 17.037±0.00a | 12.406±0.01a | 15.058±0.01a | 10.246±0.02a | 20.542±0.00a |
10‒20 | 11.884±0.02b | 12.417±0.02b | 13.148±0.01b | 11.110±0.01b | 11.966±0.03b | 9.529±0.02a | 14.383±0.04b | |
20‒40 | 10.601±0.01b | 8.837±0.00c | 9.525±0.01c | 9.248±0.01c | 8.353±0.00c | 8.855±0.01a | 10.392±0.03b | |
总孔隙度/ % | 0‒10 | 52.320±0.67a | 54.218±0.76a | 55.445±1.18a | 55.135±0.43a | 54.230±0.80a | 53.433±0.50a | 49.115±0.96a |
10‒20 | 50.463±0.75b | 53.535±0.60a | 54.275±0.77ab | 54.758±0.66a | 53.325±0.63ab | 51.668±0.19b | 48.015±0.30a | |
20‒40 | 48.663±0.15c | 49.940±0.58b | 52.963±0.71b | 49.155±0.54b | 52.975±0.42b | 48.503±0.77c | 46.740±0.51b | |
pH | 0‒10 | 7.673±0.02c | 8.163±0.01c | 7.957±0.02c | 7.880±0.02c | 7.723±0.02c | 7.877±0.02c | 8.213±0.02b |
10‒20 | 7.860±0.02b | 8.223±0.02b | 8.083±0.02b | 7.960±0.01b | 7.983±0.02b | 7.950±0.02b | 8.243±0.02b | |
20‒40 | 7.983±0.02a | 8.340±0.02a | 8.140±0.01a | 8.037±0.02a | 8.113±0.01a | 8.200±0.02a | 8.313±0.02a | |
w(氨氮)/ (mg∙kg−1) | 0‒10 | 5.474±1.17a | 7.898±0.56a | 8.015±1.13a | 5.361±0.13a | 7.072±0.69a | 5.991±0.84a | 4.703±1.71a |
10‒20 | 4.997±0.75a | 7.088±1.46a | 7.559±0.68a | 5.059±0.25a | 4.587±1.89ab | 5.041±0.70a | 2.927±1.31ab | |
20‒40 | 4.489±1.17a | 5.611±0.45a | 6.475±0.31a | 4.500±0.22b | 3.994±0.54b | 4.322±1.34a | 1.652±0.23b | |
w(硝氮)/ (mg∙kg−1) | 0‒10 | 5.705±1.23a | 8.252±0.14a | 8.516±1.63a | 7.147±0.28a | 5.922±5.23a | 4.471±1.51a | 4.425±0.72a |
10‒20 | 5.314±0.98a | 7.494±0.36a | 9.887±2.74a | 4.142±0.32a | 5.737±0.54b | 4.136±0.58a | 2.355±0.32b | |
20‒40 | 5.038±0.70a | 3.877±0.75a | 5.950±0.94b | 4.898±0.36a | 3.285±0.71b | 3.280±0.43a | 1.569±0.03 b | |
w(全氮)/ (g∙kg−1) | 0‒10 | 0.581±0.02a | 0.707±0.11a | 0.766±0.23a | 0.544±0.01a | 0.469±0.04a | 0.387±0.11a | 0.119±0.05a |
10‒20 | 0.417±0.07a | 0.549±0.14a | 0.726±0.31a | 0.485±0.07a | 0.451±0.15a | 0.337±0.05a | 0.066±0.01a | |
20‒40 | 0.403±0.10a | 0.526±0.06a | 0.509±0.01a | 0.362±0.07b | 0.389±0.08a | 0.202±0.04a | 0.033±0.01b | |
w(全磷)/ (g∙kg−1) | 0‒10 | 0.679±0.03a | 0.656±0.13a | 0.543±0.01a | 0.467±0.01a | 0.328±0.22a | 0.446±0.04a | 0.509±0.02a |
10‒20 | 0.587±0.08a | 0.533±0.07a | 0.532±0.00a | 0.491±0.05a | 0.509±0.02a | 0.363±0.02ab | 0.520±0.00a | |
20‒40 | 0.574±0.04a | 0.576±0.02a | 0.527±0.01a | 0.463±0.11a | 0.560±0.01a | 0.299±0.01b | 0.406±0.07a | |
w(速效磷)/ (mg∙kg−1) | 0‒10 | 0.627±0.10a | 1.468±0.22a | 1.677±0.33a | 1.428±0.34a | 1.410±0.20a | 0.869±0.32a | 0.519±0.30a |
10‒20 | 0.523±0.22a | 1.198±0.07ab | 1.196±0.09ab | 1.241±0.22a | 1.130±0.31a | 0.829±0.25a | 0.475±0.29a | |
20‒40 | 0.490±0.16a | 1.094±0.05b | 1.150±0.05b | 0.944±0.26a | 0.992±0.14a | 0.603±0.07a | 0.372±0.24a |
表2 不同密度刺槐林土壤理化性质
Table 2 Physical and chemical properties of soil in Robinia pseudoacacia forest of different densities
指标 | 土层深度/ cm | 林分密度/(plant∙hm−2) | ||||||
---|---|---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | CK | ||
容重/ (g∙cm−3) | 0‒10 | 1.134±0.03b | 1.031±0.06a | 0.957±0.03b | 0.999±0.03b | 1.012±0.12a | 1.079±0.11a | 1.068±0.01b |
10‒20 | 1.194±0.12ab | 1.048±0.04a | 1.008±0.03b | 1.116±0.04a | 1.124±0.11a | 1.096±0.04a | 1.151±0.08ab | |
20‒40 | 1.335±0.07a | 1.089±0.00a | 1.121±0.06a | 1.160±0.02a | 1.130±0.08a | 1.193±0.09a | 1.196±0.03a | |
w(水分)/ % | 0‒10 | 18.304±0.02a | 17.280±0.01a | 17.037±0.00a | 12.406±0.01a | 15.058±0.01a | 10.246±0.02a | 20.542±0.00a |
10‒20 | 11.884±0.02b | 12.417±0.02b | 13.148±0.01b | 11.110±0.01b | 11.966±0.03b | 9.529±0.02a | 14.383±0.04b | |
20‒40 | 10.601±0.01b | 8.837±0.00c | 9.525±0.01c | 9.248±0.01c | 8.353±0.00c | 8.855±0.01a | 10.392±0.03b | |
总孔隙度/ % | 0‒10 | 52.320±0.67a | 54.218±0.76a | 55.445±1.18a | 55.135±0.43a | 54.230±0.80a | 53.433±0.50a | 49.115±0.96a |
10‒20 | 50.463±0.75b | 53.535±0.60a | 54.275±0.77ab | 54.758±0.66a | 53.325±0.63ab | 51.668±0.19b | 48.015±0.30a | |
20‒40 | 48.663±0.15c | 49.940±0.58b | 52.963±0.71b | 49.155±0.54b | 52.975±0.42b | 48.503±0.77c | 46.740±0.51b | |
pH | 0‒10 | 7.673±0.02c | 8.163±0.01c | 7.957±0.02c | 7.880±0.02c | 7.723±0.02c | 7.877±0.02c | 8.213±0.02b |
10‒20 | 7.860±0.02b | 8.223±0.02b | 8.083±0.02b | 7.960±0.01b | 7.983±0.02b | 7.950±0.02b | 8.243±0.02b | |
20‒40 | 7.983±0.02a | 8.340±0.02a | 8.140±0.01a | 8.037±0.02a | 8.113±0.01a | 8.200±0.02a | 8.313±0.02a | |
w(氨氮)/ (mg∙kg−1) | 0‒10 | 5.474±1.17a | 7.898±0.56a | 8.015±1.13a | 5.361±0.13a | 7.072±0.69a | 5.991±0.84a | 4.703±1.71a |
10‒20 | 4.997±0.75a | 7.088±1.46a | 7.559±0.68a | 5.059±0.25a | 4.587±1.89ab | 5.041±0.70a | 2.927±1.31ab | |
20‒40 | 4.489±1.17a | 5.611±0.45a | 6.475±0.31a | 4.500±0.22b | 3.994±0.54b | 4.322±1.34a | 1.652±0.23b | |
w(硝氮)/ (mg∙kg−1) | 0‒10 | 5.705±1.23a | 8.252±0.14a | 8.516±1.63a | 7.147±0.28a | 5.922±5.23a | 4.471±1.51a | 4.425±0.72a |
10‒20 | 5.314±0.98a | 7.494±0.36a | 9.887±2.74a | 4.142±0.32a | 5.737±0.54b | 4.136±0.58a | 2.355±0.32b | |
20‒40 | 5.038±0.70a | 3.877±0.75a | 5.950±0.94b | 4.898±0.36a | 3.285±0.71b | 3.280±0.43a | 1.569±0.03 b | |
w(全氮)/ (g∙kg−1) | 0‒10 | 0.581±0.02a | 0.707±0.11a | 0.766±0.23a | 0.544±0.01a | 0.469±0.04a | 0.387±0.11a | 0.119±0.05a |
10‒20 | 0.417±0.07a | 0.549±0.14a | 0.726±0.31a | 0.485±0.07a | 0.451±0.15a | 0.337±0.05a | 0.066±0.01a | |
20‒40 | 0.403±0.10a | 0.526±0.06a | 0.509±0.01a | 0.362±0.07b | 0.389±0.08a | 0.202±0.04a | 0.033±0.01b | |
w(全磷)/ (g∙kg−1) | 0‒10 | 0.679±0.03a | 0.656±0.13a | 0.543±0.01a | 0.467±0.01a | 0.328±0.22a | 0.446±0.04a | 0.509±0.02a |
10‒20 | 0.587±0.08a | 0.533±0.07a | 0.532±0.00a | 0.491±0.05a | 0.509±0.02a | 0.363±0.02ab | 0.520±0.00a | |
20‒40 | 0.574±0.04a | 0.576±0.02a | 0.527±0.01a | 0.463±0.11a | 0.560±0.01a | 0.299±0.01b | 0.406±0.07a | |
w(速效磷)/ (mg∙kg−1) | 0‒10 | 0.627±0.10a | 1.468±0.22a | 1.677±0.33a | 1.428±0.34a | 1.410±0.20a | 0.869±0.32a | 0.519±0.30a |
10‒20 | 0.523±0.22a | 1.198±0.07ab | 1.196±0.09ab | 1.241±0.22a | 1.130±0.31a | 0.829±0.25a | 0.475±0.29a | |
20‒40 | 0.490±0.16a | 1.094±0.05b | 1.150±0.05b | 0.944±0.26a | 0.992±0.14a | 0.603±0.07a | 0.372±0.24a |
图2 不同密度刺槐林0-40 cm土层总有机碳含量 样本重复数n=3,不同小写字母表示同一密度不同土层间差异显著(P<0.050),不同大写字母表示同一土层不同林分密度间差异显著(P<0.050)
Figure 2 Total organic carbon content of 0?40 cm soil layer in Robinia pseudoacacia forest with different densities
图3 不同密度刺槐林土壤有机碳组分及分配比例的分布特征 EOC/SOC:易氧化有机碳与土壤有机碳的比值;NOC/SOC:稳定态有机碳与土壤有机碳的比值;POC/SOC:颗粒有机碳与土壤有机碳的比值;MAOC/SOC:矿物结合态有机碳与土壤有机碳的比值;DOC/SOC:可溶性有机碳与土壤有机碳的比值
Figure 3 Distribution characteristics of soil organic carbon fractions and distribution ratios in Robinia pseudoacacia forest with different densities
指标 | SOC | EOC | NOC | DOC | POC |
---|---|---|---|---|---|
EOC | 0.81** | 1 | |||
NOC | 0.99** | 0.75** | 1 | ||
DOC | 0.88** | 0.74** | 0.84** | 1 | |
POC | 0.87** | 0.86** | 0.86** | 0.66** | 1 |
MAOC | 0.98** | 0.73** | 0.97** | 0.90** | 0.76** |
表3 有机碳与其组分相关系
Table 3 Correlation coefficients of soil organic carbon and its fractions
指标 | SOC | EOC | NOC | DOC | POC |
---|---|---|---|---|---|
EOC | 0.81** | 1 | |||
NOC | 0.99** | 0.75** | 1 | ||
DOC | 0.88** | 0.74** | 0.84** | 1 | |
POC | 0.87** | 0.86** | 0.86** | 0.66** | 1 |
MAOC | 0.98** | 0.73** | 0.97** | 0.90** | 0.76** |
林分密度/ (plant∙hm−2) | 碳库活度 CPA | 碳库活度指数 CPAI | 碳库指数 CPI | 碳库管理指数 CPMI |
---|---|---|---|---|
Ⅰ | 0.24±0.13BC | 1.38±0.55B | 5.15±1.45C | 6.90±1.43CD |
Ⅱ | 0.31±0.09AB | 2.13±1.20A | 9.56±2.18B | 21.69±11.26AB |
Ⅲ | 0.34±0.10A | 2.10±0.58A | 13.77±3.42A | 29.87±11.69A |
Ⅳ | 0.22±0.05BC | 1.43±0.47B | 9.15±1.79B | 13.53±5.13BC |
Ⅴ | 0.22±0.05C | 1.39±0.47B | 8.33±1.92B | 12.06±5.73C |
Ⅵ | 0.19±0.08C | 1.19±0.57B | 5.23±2.21C | 5.72±2.19CD |
CK | 0.18±0.06C | 1.00±0.00B | 1.00±0.00D | 1.00±0.00D |
表4 不同密度刺槐林土壤碳库特征
Table 4 Soil carbon pool management index under in Robinia pseudoacacia forest with different densities
林分密度/ (plant∙hm−2) | 碳库活度 CPA | 碳库活度指数 CPAI | 碳库指数 CPI | 碳库管理指数 CPMI |
---|---|---|---|---|
Ⅰ | 0.24±0.13BC | 1.38±0.55B | 5.15±1.45C | 6.90±1.43CD |
Ⅱ | 0.31±0.09AB | 2.13±1.20A | 9.56±2.18B | 21.69±11.26AB |
Ⅲ | 0.34±0.10A | 2.10±0.58A | 13.77±3.42A | 29.87±11.69A |
Ⅳ | 0.22±0.05BC | 1.43±0.47B | 9.15±1.79B | 13.53±5.13BC |
Ⅴ | 0.22±0.05C | 1.39±0.47B | 8.33±1.92B | 12.06±5.73C |
Ⅵ | 0.19±0.08C | 1.19±0.57B | 5.23±2.21C | 5.72±2.19CD |
CK | 0.18±0.06C | 1.00±0.00B | 1.00±0.00D | 1.00±0.00D |
指标 | SOC | EOC | NOC | DOC | POC | MAOC | BD | SWC | TP1 | PH | 氨态氮 | 硝态氮 | TN | TP2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EOC | 0.96** | 1 | ||||||||||||
NOC | 0.99** | 0.92** | 1 | |||||||||||
DOC | 0.88** | 0.91** | 0.84** | 1 | ||||||||||
POC | 0.93** | 0.97** | 0.89** | 0.88** | 1 | |||||||||
MAOC | 0.95** | 0.85** | 0.98** | 0.78** | 0.77** | 1 | ||||||||
BD | −0.80** | −0.78** | −0.78** | −0.67** | −0.79** | −0.72** | 1 | |||||||
SWC | 0.61** | 0.70** | 0.55* | 0.48* | 0.64** | 0.52* | −0.48* | 1 | ||||||
TP1 | 0.77** | 0.71** | 0.77** | 0.63** | 0.71** | 0.73** | −0.81** | 0.53* | 1 | |||||
pH | −0.01 | 0.01 | −0.02 | 0.19 | 0.05 | −0.06 | 0.04 | −0.47 | −0.26 | 1 | ||||
氨氮 | 0.78** | 0.84** | 0.73** | 0.81** | 0.86** | 0.63** | −0.75** | 0.65** | 0.62** | 0.05 | 1 | |||
硝氮 | 0.79** | 0.84** | 0.75** | 0.79** | 0.82** | 0.67** | −0.61** | 0.66** | 0.58* | −0.02 | 0.80** | 1 | ||
TN | 0.85** | 0.92** | 0.79** | 0.86** | 0.89** | 0.73** | −0.66** | 0.73** | 0.66** | 0.00 | 0.81** | 0.85** | 1 | |
TP2 | 0.27 | 0.34 | 0.23 | 0.33 | 0.24 | 0.27 | 0.07 | 0.41 | 0.11 | 0.07 | 0.19 | 0.35 | 0.59* | 1 |
AP | 0.85** | 0.79** | 0.85** | 0.75** | 0.83** | 0.77** | −0.85** | 0.40 | 0.80** | 0.12 | 0.69** | 0.57* | 0.67** | −0.00 |
表5 不同林分密度刺槐林土壤理化性质与土壤有机碳及其组分的相关性
Table 5 Correlation of soil physical and chemical properties with soil organic carbon and its fractions in Robinia pseudoacacia forest of different densities
指标 | SOC | EOC | NOC | DOC | POC | MAOC | BD | SWC | TP1 | PH | 氨态氮 | 硝态氮 | TN | TP2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EOC | 0.96** | 1 | ||||||||||||
NOC | 0.99** | 0.92** | 1 | |||||||||||
DOC | 0.88** | 0.91** | 0.84** | 1 | ||||||||||
POC | 0.93** | 0.97** | 0.89** | 0.88** | 1 | |||||||||
MAOC | 0.95** | 0.85** | 0.98** | 0.78** | 0.77** | 1 | ||||||||
BD | −0.80** | −0.78** | −0.78** | −0.67** | −0.79** | −0.72** | 1 | |||||||
SWC | 0.61** | 0.70** | 0.55* | 0.48* | 0.64** | 0.52* | −0.48* | 1 | ||||||
TP1 | 0.77** | 0.71** | 0.77** | 0.63** | 0.71** | 0.73** | −0.81** | 0.53* | 1 | |||||
pH | −0.01 | 0.01 | −0.02 | 0.19 | 0.05 | −0.06 | 0.04 | −0.47 | −0.26 | 1 | ||||
氨氮 | 0.78** | 0.84** | 0.73** | 0.81** | 0.86** | 0.63** | −0.75** | 0.65** | 0.62** | 0.05 | 1 | |||
硝氮 | 0.79** | 0.84** | 0.75** | 0.79** | 0.82** | 0.67** | −0.61** | 0.66** | 0.58* | −0.02 | 0.80** | 1 | ||
TN | 0.85** | 0.92** | 0.79** | 0.86** | 0.89** | 0.73** | −0.66** | 0.73** | 0.66** | 0.00 | 0.81** | 0.85** | 1 | |
TP2 | 0.27 | 0.34 | 0.23 | 0.33 | 0.24 | 0.27 | 0.07 | 0.41 | 0.11 | 0.07 | 0.19 | 0.35 | 0.59* | 1 |
AP | 0.85** | 0.79** | 0.85** | 0.75** | 0.83** | 0.77** | −0.85** | 0.40 | 0.80** | 0.12 | 0.69** | 0.57* | 0.67** | −0.00 |
图4 不同林分密度刺槐林土壤有机碳及组分与土壤理化性质冗余分析(RDA) 箭头长度和角度余弦反映了土壤有机碳组分和土壤理化性质之间的关系;虚线表示有机碳组分指标,实线表示土壤理化性质指标
Figure 4 Redundancy analysis (RDA) of soil organic carbon and its fractions with soil physical and chemical properties in Robinia pseudoacacia forest of different densities
指标 | 重要性排序 | 解释量/% | F | P |
---|---|---|---|---|
TN | 1 | 68.1 | 34.1 | 0.002* |
AP | 2 | 64.3 | 28.9 | 0.002* |
硝氮 | 3 | 58.2 | 22.3 | 0.002* |
氨氮 | 4 | 58.1 | 22.1 | 0.002* |
BD | 5 | 57.7 | 21.8 | 0.002* |
TP1 | 6 | 52.3 | 17.6 | 0.002* |
SWC | 7 | 38.5 | 8.9 | 0.004* |
TP2 | 8 | 8.3 | 1.4 | 0.228 |
pH | 9 | 1.2 | 0.2 | 0.772 |
表6 土壤理化因子的重要性排序和显著性检验结果
Table 6 Importance ranking and significance test of soil physical and chemical factors
指标 | 重要性排序 | 解释量/% | F | P |
---|---|---|---|---|
TN | 1 | 68.1 | 34.1 | 0.002* |
AP | 2 | 64.3 | 28.9 | 0.002* |
硝氮 | 3 | 58.2 | 22.3 | 0.002* |
氨氮 | 4 | 58.1 | 22.1 | 0.002* |
BD | 5 | 57.7 | 21.8 | 0.002* |
TP1 | 6 | 52.3 | 17.6 | 0.002* |
SWC | 7 | 38.5 | 8.9 | 0.004* |
TP2 | 8 | 8.3 | 1.4 | 0.228 |
pH | 9 | 1.2 | 0.2 | 0.772 |
[1] | BLAIR G J, LEFROY R D B, SINGH B P, et al., 1997. Development and use of a carbon management index to monitor changes in soil C pool size and turnover rate[J]. Driven by Nature Plant Litter Quality and Decomposition, 46(7): 1459-1466. |
[2] |
JONES D L, WILLETT V B, 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J]. Soil Biology and Biochemistry, 38(5): 991-999.
DOI URL |
[3] |
JIANG X, XU D P, RONG J J, et al., 2021. Landslide and aspect effects on artificial soil organic carbon fractions and the carbon pool management index on road-cut slopes in an alpine region[J]. Catena, 199: 105094.
DOI URL |
[4] | LI Y, FU C C, WANG W Q, et al., 2023. An overlooked soil carbon pool in vegetated coastal ecosystems: National-scale assessment of soil organic carbon stocks in coastal shelter forests of China[J/OL]. Science of the Total Environment, 876: 162823 [2023-04-15]. https://www.sciencedirect.com/science/article/pii/S0048969723014390. |
[5] |
MA W W, LI G, WU J H, et al., 2020. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau[J]. Geoderma, 377: 114565.
DOI URL |
[6] |
TATZBER M, SCHLATTER N, BAUMGARTEN A, et al., 2015. KMnO4 determination of active carbon for laboratory routines: Three longterm field experiments in Austria[J]. Soil Research, 53(2): 190.
DOI URL |
[7] |
WANG S L, MA C, YUAN W B, 2012. Soil physical and chemical properties under four densities of hybrid larch plantations[J]. Advanced Materials Research, 524-527: 2139-2142.
DOI URL |
[8] | WANG C G, LI H X, SUN X X, et al., 2021. Responses of soil microbial biomass and enzyme activities to natural restoration of reclaimed temperate marshes after abandonment[J]. Frontiers in Environmental Science, 9: 1-12. |
[9] |
YANG M X, GUO Q W, TONG T L, et al., 2017. Vegetation type and layer depth influence nitrite-dependent methane-oxidizing bacteria in constructed wetland[J]. Archives of microbiology, 199(3): 505-511.
DOI PMID |
[10] |
ZHANG W, LIU W C, XU M P, et al., 2019. Response of forest growth to C꞉N꞉P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Platea China[J]. Geoderma, 337: 280-289.
DOI URL |
[11] | 白青鸿, 江映, 梁琪, 等, 2019. 土壤有机质检测方法的改进及过程优化[J]. 广东化工, 46(5): 91-92. |
BAI Q H, JIANG Y, LIANG Q, et al., 2019. Improvement and process optimization of soil organic matter detection method[J]. Guangdong Chemical Industry, 46(5): 91-92. | |
[12] | 蔡华, 舒英格, 王昌敏, 等, 2023. 喀斯特地区植被恢复下土壤活性有机碳与碳库管理指数的演变特征[J]. 环境科学, 44(12): 6880-6893. |
CAI H, SHU Y G, WANG C M, et al., 2023. Evolution characteristics of soil active organic carbon and carbon pool management index under vegetation restoration in Karst area[J]. Environmental Science, 44(12): 6880-6893. | |
[13] | 崔艳红, 毕华兴, 侯贵荣, 等, 2021. 晋西黄土残塬沟壑区刺槐林土壤入渗特征及影响因素分析[J]. 北京林业大学学报, 43(1): 77-87. |
CUI Y H, BI H X, HOU G R, et al., 2021. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the Loess Gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 43(1): 77-87. | |
[14] | 戴全厚, 刘国彬, 薛萐, 等, 2008. 黄土丘陵区封禁对土壤活性有机碳与碳库管理指数的影响[J]. 西北林学院学报, 25(4): 18-22. |
DAI Q H, LIU G B, XUE S, et al., 2008. Effect of soil labile organic matter and carbon management index under the closure in Eroded Hilly Loess Plateau[J]. Journal of Northwest Forestry University, 25(4): 18-22. | |
[15] | 冯宜明, 王零, 赵维俊, 等, 2022. 不同林分密度云杉人工林碳储量及其分配格局[J]. 中南林业科技大学学报, 42(12): 112-121, 174. |
FENG Y M, WANG L, ZHAO W J, et al., 2022. Carbon storage and distribution of Picea asperata plantations with different stand densities[J]. Journal of Central South University of Forestry & Technology, 42(12): 112-121, 174. | |
[16] | 傅伯杰, 刘彦随, 曹智, 等, 2023. 黄土高原生态保护和高质量发展现状、问题与建议[J]. 中国科学院院刊, 38(8): 1110-1117. |
FU B J, LIU Y S, CAO Z, et al., 2023. Current conditions, issues, and suggestions for ecological protection and high-quality development in Loess Plateau[J]. Bulletin of Chinese Academy of Sciences, 38(8): 1110-1117. | |
[17] | 谷丽萍, 郭永清, 泽桑梓, 等, 2014. 云南干热河谷不同密度麻疯树人工林土壤活性有机碳特征[J]. 西北林学院学报, 29(2): 26-31. |
GU L P, GUO Y Q, ZE S Z, et al., 2014. Characteristics of soil active organic carbon in Jatropha curcas plantations with different densities in Dry-hot Valley Area of Yunnan Province[J]. Journal of Northwest Forestry University, 29(2): 26-31. | |
[18] | 侯贵荣, 毕华兴, 魏曦, 等, 2019. 黄土残塬沟壑区刺槐林枯落物水源涵养功能综合评价[J]. 水土保持学报, 33(2): 251-257. |
HOU G R, BI H X, WEI X, et al., 2019. Comprehensive evaluation of water conservation function of litters of Robinia pseudoacacia forest lands in Gully region on Loess Plateau[J]. Journal of Soil and Water Conservation, 33(2): 251-257. | |
[19] | 胡亚伟, 施政乐, 刘畅, 等, 2023. 晋西黄土区刺槐林密度对林下植物多样性及土壤理化性质的影响[J]. 生态学杂志, 42(9): 2072-2080. |
HU Y W, SHI Z L, LIU C, et al., 2023. Effects of stand densities on understory vegetation diversity and soil physicochemical properties of Robinia pseudoacacia forest in Loess region of western Shanxi Province[J]. Chinese Journal of Ecology, 42(9): 2072-2080. | |
[20] | 李文杰, 张祯皎, 赵雅萍, 等, 2022. 刺槐林恢复过程中土壤微生物碳降解酶的变化及与碳库组分的关系[J]. 环境科学, 43(2): 1050-1058. |
LI W J, ZHANG Z J, ZHAO Y P, et al., 2012. Changes in soil microbial carbon-degrading enzymes and their relationships with carbon pool components during the restoration Process of Robinia pseudoacacia[J]. Environmental Science, 43(2): 1050-1058. | |
[21] | 李昕竹, 贡璐, 唐军虎, 等, 2022. 塔里木盆地北缘绿洲不同连作年限棉田土壤有机碳组分特征及其与理化因子的相关性[J]. 环境科学, 43(10): 4639-4647. |
LI X Z, GONG L, TANG J H, et al., 2022. Characteristics of soil organic carbon components and their correlation with other soil physical and chemical factors in cotton fields with different continuous cropping years in the oasis on the northern edge of Tarim Basin[J]. Environmental Science, 43(10): 4639-4647. | |
[22] |
刘海英, 王增, 徐耀文, 等, 2022. 不同林分密度毛竹林生态系统碳储量特征[J]. 中国农学通报, 38(35): 17-21.
DOI |
LIU H Y, WANG Z, XU Y W, et al., 2022. Characteristics of carbon storage in Phyllostulis pubescens ecosystem with different stand densities[J]. Chinese Agricultural Science Bulletin, 38(35): 17-21. | |
[23] | 刘先, 索沛蘅, 杜大俊, 等, 2020. 连栽杉木人工林参与土壤碳氮转化过程酶活性及其与土壤理化因子的相关性[J]. 生态学报, 40(1): 247-256. |
LIU X, SUO P H, DU D J, et al., 2020. Soil carbon and nitrogen transformed enzyme activities in continuously cultivated Chinese fir (Cunninghamia lanceolate) plantations and their correlations with soil physicochemical factors[J]. Acta Ecologica Sinica, 40(1): 247-256.
DOI URL |
|
[24] | 马建刚, 宋维峰, 毛頔, 等, 2021. 云南哈尼梯田系统土壤碳氮的时空分布特征[J]. 四川农业大学学报, 39(1): 71-78. |
MA J G, SONG W F, MAO D, et al., 2021. Spatial and temporal distribution characteristics of soil organic carbon and nitrogen in Hani Terrace System[J]. Journal of Sichuan Agricultural University, 39(1): 71-78. | |
[25] | 牟凌, 张丽, 陈子豪, 等, 2020. 四川盆地西缘4种人工林土壤有机碳组分特征[J]. 甘肃农业大学学报, 55(3): 121-126, 133. |
MOU L, ZHANG L, CHEN Z H, et al., 2020. Characteristics of soil organic carbon components of four plantations on the western edge of Sichuan Basin[J]. Journal of Gansu Agricultural University, 55(3): 121-126, 133. | |
[26] | 佟小刚, 韩新辉, 杨改河, 等, 2013. 碳库管理指数对退耕还林土壤有机碳库变化的指示作用[J]. 中国环境科学, 33(3): 466-473. |
TONG X G, HAN X H, YANG G H, et al., 2013. Carbon management index as an indicator for changes in soil organic carbon pool under conversion from cropland to forestland[J]. China Environmental Science, 33(3): 466-473. | |
[27] | 王力, 2020. 退化林成因分析与修复措施: 以宣州区为例[J]. 安徽林业科技, 46(2): 21-24. |
WANG L, 2020. Cause Analysis of and restoration measures for degraded Forest: A case study of Xuanzhou District[J]. Anhui Forestry Science and Technology, 46(2): 21-24. | |
[28] | 王思淇, 张建军, 张彦勤, 等, 2023. 晋西黄土区不同密度刺槐林下植物群落物种多样性[J]. 干旱区研究, 40(7): 1141-1151. |
WANG S Q, ZHANG J J, ZHANG Y Q, et al., 2023. Understory plant community diversity of Robinia pseudoacacia plantation with different densities in the Loess Plateau of western Shanxi Province[J]. Arid Zone Research, 40(7): 1141-1151. | |
[29] | 王卫霞, 杨光, 阿丽娅∙阿力木, 等, 2020. 3种不同农作方式对土壤轻组有机碳的影响[J]. 西南农业学报, 33(11): 2477-2482. |
WANG W X, YANG G, Aliya Alimu, et al., 2020. Effects of three different farming patterns on soil light fraction organic carbon[J]. Southwest China Journal of Agricultural Sciences, 33(11): 2477-2482. | |
[30] | 温晶, 张秋良, 李嘉悦, 等, 2019. 间伐强度对兴安落叶松林林下植被多样性及生物量的影响[J]. 中南林业科技大学学报, 39(5): 95-100, 118. |
WEN J, ZHANG Q L, LI J R, et al., 2019. Effects of thinning intensity on diversity of undergrowth vegetation and biomass in Larix gmelini forest[J]. Journal of Central South University of Forestry & Technology, 39(5): 95-100, 118. | |
[31] | 严毅萍, 曹建华, 杨慧, 等, 2012. 岩溶区不同土地利用方式对土壤有机碳碳库及周转时间的影响[J]. 水土保持学报, 26(2): 144-149. |
YAN Y P, CAO J H, YANG H, et al., 2012. The impact of different soil types on soil organic carbon pool and turnover time in Karst area[J]. Journal of Soil and Water Conservation, 26(2): 144-149. | |
[32] |
杨满元, 杨宁, 2018. 紫色土丘陵坡地不同植被类型土壤活性有机碳组分的比较[J]. 草地学报, 26(2): 380-385.
DOI |
YANG M Y, YANG N, 2018. Comparison of soil active organic carbon components between different vegetation types on slopeing land of purple soil[J]. Acta Agrestia Sinica, 26(2): 380-385. | |
[33] | 杨苏, 刘耀斌, 王静, 等, 2021. 不同有机物料投入下黄河故道土壤有机碳积累特征的研究[J]. 土壤, 53(2): 361-367 |
YANG S, LIU Y B, WANG J, et al., 2021. Soil organic carbon accumulation in old riverway of Yellow River under different organic material inputs[J]. Soils, 53(2): 361-367. | |
[34] | 杨玉盛, 郭剑芬, 陈光水, 等, 2003. 森林生态系统DOM的来源、特性及流动[J]. 生态学报, 23(3): 547-558. |
YANG Y S, GUO J F, CHEN G S, et al., 2003. Origin, property and flux of dissolved organic matter in forest ecosystems[J]. Acta Ecologica Sinica, 23(3): 547-558. | |
[35] | 杨兴, 申腾朝, 余大坤, 等, 2022. 赤水河流域 (云南段) 土地绿化对策研究[J]. 安徽农业科学, 50(14): 167-173. |
YANG X, SHENG T C, YU D K, et al., 2022. Study on countermeasures of land greening in Chishui River Basin (Yunnan Section)[J]. Journal of Anhui Agricultural Sciences, 50(14): 167-173. | |
[36] | 鱼舜尧, 向琳, 喻静, 等, 2022. 林分密度对四川云顶山柏木人工林林下物种多样性和土壤抗冲性的影响[J]. 应用与环境生物学报, 28(6): 1594-1600. |
YU S Y, XIANG L, YU J, et al., 2022. Effects of stand density on understory species diversity and soilantiscourability of Cupressus funebris plantation in Yunding Mountain, Sichuan, China[J]. Chinese Journal of Applied and Environmental Biology, 28(6): 1594-1600. | |
[37] | 云慧雅, 毕华兴, 王珊珊, 等, 2021. 不同林分类型土壤理化特征及其对土壤入渗过程的影响[J]. 水土保持学报, 35(6): 183-189. |
YUN H Y, BI H X, WANG S S, et al., 2021. Soil physical and chemical characteristics of different forest types and their effects on soil infiltration process[J]. Journal of Soil and Water Conservation, 35(6): 183-189. | |
[38] | 张蛟, 崔士友, 胡帅栋, 等, 2020. 水稻种植对沿海滩涂土壤有机碳及碳库管理指数的影响[J]. 中国土壤与肥料, 57(3): 107-112. |
ZHANG J, CUI S Y, HU S D, et al., 2020. Effects of rice cultivation on soil organic carbon and carbon pool management index in coastal areas[J]. Soil and Fertilizer Sciences in China, 57(3): 107-112. | |
[39] | 张柳桦, 齐锦秋, 柳苹玉, 等, 2018. 林分密度对桉树人工林群落结构和物种多样性的影响[J]. 西北植物学报, 38(1): 166-175. |
ZHANG L H, QI J Q, LIU P Y, et al., 2018. Effects of stand density on community structure and species diversity of Eucalyptus robusta plantation[J]. Acta Botanica Boreali-Occidentalia Sinica, 38(1): 166-175. | |
[40] | 张慧玲, 吴建平, 熊鑫, 等, 2018. 南亚热带森林土壤碳库稳定性与碳库管理指数对模拟酸雨的响应[J]. 生态学报, 38(2): 657-667. |
ZHANG H L, WU J P, XIONG X, et al., 2018. Effects of simulated acid rain on soil labile organic carbon and carbon management index in Subtropical forests of China[J]. Acta Ecologica Sinica, 38(2): 657-667. | |
[41] |
张文雯, 韩海荣, 程小琴, 等, 2019. 间伐对华北落叶松人工林土壤活性有机碳含量及酶活性的影响[J]. 应用生态学报, 30(10): 3347-3355.
DOI |
ZHANG W W, HAN H R, CHENG X Q, et al., 2020. Effects of thinning on soil active organic carbon contents and enzyme activities in Larix principis-rupprechtii plantation[J]. Chinese Journal of Applied Ecology, 30(10): 3347-3355. | |
[42] | 张勇强, 李智超, 厚凌宇, 等, 2020. 林分密度对杉木人工林下物种多样性和土壤养分的影响[J]. 土壤学报, 57(1): 239-250. |
ZHANG Y Q, LI Z C, HOU L Y, et al., 2020. Effects of stand density on understory species diversity and soil nutrients in Chinese fir plantation[J]. Acta Pedologica Sinica, 57(1): 239-250. | |
[43] | 郑威, 谭长强, 申文辉, 等, 2020. 不同种植密度对台湾桤木人工林土壤有机碳含量的影响[J]. 广西林业科学, 49(1): 86-90. |
ZHENG W, TAN Z Q, SHEN W H, et al., 2020. Effects of different planting densities on contents of soil organic carbon in Alnus formosana plantations[J]. Guangxi Forestry Science, 49(1): 86-90. | |
[44] | 周萍, 张旭辉, 潘根兴, 2006. 长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机碳含量及深度分布的影响[J]. 植物营养与肥料学报, 12(6): 765-771. |
ZHOU P, ZHANG X H, PAN G X, 2006. Effect of long-term fertilization on content of total and particulate organic carbon and their depth distribution of a paddy soil: An example of huangnitu from the Tai Lake region, China[J]. Journal of Plant Nutrition and Fertilizers, 12(6): 765-771. | |
[45] |
周树平, 梁坤南, 杜健, 等, 2017. 不同密度柚木人工林林下植被及土壤理化性质的研究[J]. 植物研究, 37(2): 200-210.
DOI |
ZHOU S P, LIANG K N, DU J, et al., 2017. Research on understory vegetation and soil physical-chemical properties of teak plantation with difference stand densities[J]. Bulletin of Botanical Research, 37(2): 200-210. | |
[46] | 朱丽琴, 黄荣珍, 段洪浪, 等, 2017. 红壤侵蚀地不同人工恢复林对土壤总有机碳和活性有机碳的影响[J]. 生态学报, 37(1): 249-257. |
ZHU L Q, HUANG R Z, DUAN H L, et al., 2017. Effects of artificially restored forests on soil organic carbon and active organic carbon in eroded red soil[J]. Acta Ecologica Sinica, 37(1): 249-257. | |
[47] | 朱燕, 翟博超, 孙美美, 等, 2023. 黄土丘陵区不同密度刺槐和油松人工林土壤理化性质与化学计量特征[J]. 水土保持研究, 30(6): 160-167. |
ZHU Y, ZHAI B C, SUN M M, et al., 2023. Soil physicochemical properties and stoichiometric characteristics in Robinia pseudoacacia and Pinus tabuliformis plantations across different densities in loess hilly region[J]. Research of Soil and Water Conservation, 30(6): 160-167. |
[1] | 秦佳琪, 肖指柔, 明安刚, 朱豪, 滕金倩, 梁泽丽, 陶怡, 覃林. 针阔人工混交林及其纯林对土壤微生物碳循环功能基因丰度的影响[J]. 生态环境学报, 2023, 32(10): 1719-1731. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||