生态环境学报 ›› 2023, Vol. 32 ›› Issue (3): 450-458.DOI: 10.16258/j.cnki.1674-5906.2023.03.003
收稿日期:
2022-08-07
出版日期:
2023-03-18
发布日期:
2023-06-02
通讯作者:
*齐实(1964年生),男,教授,主要从事水土保持与流域治理研究。Email: qishi@bjfu.edu.cn作者简介:
张林(1996年生),男,博士研究生,主要从事水土保持与流域治理研究。E-mail: 1822892459@qq.com
基金资助:
ZHANG Lin(), QI Shi*(
), ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan
Received:
2022-08-07
Online:
2023-03-18
Published:
2023-06-02
摘要:
探究生物因子和非生物因子与土壤有机碳含量的关系,解析影响土壤有机碳含量变异的主导因素,可为生态系统碳平衡协调发展提供理论依据。以北京山区针阔混交林为研究对象,基于64个样地的实测数据,采用结构方程模型筛选出影响土层(0-10、10-20、20-30 cm)有机碳含量的主导因素,并结合结构方程模型探究了各因子对土壤有机碳含量的直接和间接影响。结果表明,(1)林龄、根系生物量、凋落物质量、土壤全氮和土壤容重对0-10 cm的土壤有机碳含量的影响极显著(P<0.01),植物多样性对0-10 cm的土壤有机碳含量影响显著(P<0.05);直接效应依次为土壤全氮 (0.73)>根系生物量 (0.59)>凋落物质量 (0.56)>林龄 (0.47)>土壤容重 (-0.44)>物种香农维纳指数(0.21),间接效应依次为林龄 (0.31)>根系生物量 (0.29)>凋落物质量 (0.27)>物种香农维纳指数(0.11)。(2)海拔、土壤全氮和土壤容重对10-20 cm的土壤有机碳含量影响极显著(P<0.01),根系生物量、林龄对10-20 cm的土壤有机碳含量影响显著(P<0.05);直接效应依次为土壤全氮 (0.69)>土壤容重 (-0.53)>海拔 (0.32)>根系生物量 (0.27)>林龄(0.24),间接效应依次为海拔 (0.23)>林龄 (0.14)>根系生物量(0.09)。(3)海拔、土壤全氮和土壤容重对20-30 cm的土壤有机碳含量影响极显著(P<0.01),pH值对20-30 cm的土壤有机碳含量影响显著(P<0.05);直接效应依次为土壤全氮 (0.59)>土壤容重 (-0.47)>海拔 (0.43)>pH值(-0.15),间接效应依次为海拔 (0.14)>pH值(-0.04)。综上,土壤全氮和土壤容重主要通过直接作用影响土壤有机碳含量,而根系生物量、凋落物质量、林龄、植物多样性、土壤pH值对土壤有机碳含量不仅存在直接影响,而且还通过其他因子的作用而产生间接影响。
中图分类号:
张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458.
ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas[J]. Ecology and Environment, 2023, 32(3): 450-458.
林分 类型 | 主要 树种 | 针阔 混交比 | 林分密度/ (plant∙hm-2) | 林龄/ a | 平均树高/ cm | 平均胸径/ cm | 样地 数量 |
---|---|---|---|---|---|---|---|
侧柏- 针阔混交林 | 侧柏 Platycladus orientalis、元宝枫 Acer truncatum、核桃 Juglans regia L.、榆树 Ulmus spp、刺槐 Robinia pseudoacacia、五角枫 Acer pictum subsp. mono、椴树 Tilia amurensis、山桃 Prunus davidiana、胡桃 Juglans regia L.、小叶杨 Populus simonii | 6꞉4 | 925-1575 | 31-65 | 5.2-7.9 | 4.8-9.7 | 21 |
油松- 针阔混交林 | 油松 Pinus tabulaeformis、黄栌 Cotinus coggygria、山杏 Armeniaca sibirica L.、臭椿 Ailanthus altissima (Mill.) Swingle、栓皮栎 Quercus variabilis BL、元宝枫 Acer Truncatum Bunge、核桃 Juglans regia L.、 刺槐 Robinia pseudoacacia、白蜡 Fraxinus chinensis、板栗 Castanea mollissima、槭树 Castanopsis fargesii、五角枫 Acer pictum subsp. mono | 4꞉6 | 950-1550 | 34-59 | 5.3-7.6 | 4.9-9.2 | 21 |
侧柏、油松- 针阔混交林 | 侧柏 Platycladus orientalis、油松 Pinus tabulaeformis、黄栌 Cotinus coggygria、山杏 Armeniaca sibirica L.、臭椿 Ailanthus altissima (Mill.) Swingle、栓皮栎 Quercus variabilis BL、元宝枫 Acer Truncatum Bunge、 榆树 Ulmus spp、刺槐 Robinia pseudoacacia、板栗 Castanea mollissima、槭树 Castanopsis fargesii、五角枫 Acer pictum subsp. mono、山桃 Prunus davidiana、胡桃 Juglans regia L. | 5꞉5 | 1025-1650 | 29-68 | 4.7-8.1 | 4.5-10.2 | 22 |
表1 样地基本信息
Table 1 Basic information of sample plots
林分 类型 | 主要 树种 | 针阔 混交比 | 林分密度/ (plant∙hm-2) | 林龄/ a | 平均树高/ cm | 平均胸径/ cm | 样地 数量 |
---|---|---|---|---|---|---|---|
侧柏- 针阔混交林 | 侧柏 Platycladus orientalis、元宝枫 Acer truncatum、核桃 Juglans regia L.、榆树 Ulmus spp、刺槐 Robinia pseudoacacia、五角枫 Acer pictum subsp. mono、椴树 Tilia amurensis、山桃 Prunus davidiana、胡桃 Juglans regia L.、小叶杨 Populus simonii | 6꞉4 | 925-1575 | 31-65 | 5.2-7.9 | 4.8-9.7 | 21 |
油松- 针阔混交林 | 油松 Pinus tabulaeformis、黄栌 Cotinus coggygria、山杏 Armeniaca sibirica L.、臭椿 Ailanthus altissima (Mill.) Swingle、栓皮栎 Quercus variabilis BL、元宝枫 Acer Truncatum Bunge、核桃 Juglans regia L.、 刺槐 Robinia pseudoacacia、白蜡 Fraxinus chinensis、板栗 Castanea mollissima、槭树 Castanopsis fargesii、五角枫 Acer pictum subsp. mono | 4꞉6 | 950-1550 | 34-59 | 5.3-7.6 | 4.9-9.2 | 21 |
侧柏、油松- 针阔混交林 | 侧柏 Platycladus orientalis、油松 Pinus tabulaeformis、黄栌 Cotinus coggygria、山杏 Armeniaca sibirica L.、臭椿 Ailanthus altissima (Mill.) Swingle、栓皮栎 Quercus variabilis BL、元宝枫 Acer Truncatum Bunge、 榆树 Ulmus spp、刺槐 Robinia pseudoacacia、板栗 Castanea mollissima、槭树 Castanopsis fargesii、五角枫 Acer pictum subsp. mono、山桃 Prunus davidiana、胡桃 Juglans regia L. | 5꞉5 | 1025-1650 | 29-68 | 4.7-8.1 | 4.5-10.2 | 22 |
指数 | 均值 | 范围 |
---|---|---|
物种香农维纳指数 | 1.73 | 1.13-2.06 |
物种辛普森指数 | 0.79 | 0.53-0.92 |
物种丰富度指数 | 2.15 | 1.53-2.85 |
表2 各指数计算结果
Table 2 Calculation results of each index
指数 | 均值 | 范围 |
---|---|---|
物种香农维纳指数 | 1.73 | 1.13-2.06 |
物种辛普森指数 | 0.79 | 0.53-0.92 |
物种丰富度指数 | 2.15 | 1.53-2.85 |
土层 深度/cm | 物种香农维纳指数 | 物种辛普森指数 | 物种丰富度指数 | 林龄/ a | 根系生物量/ g | 凋落物质量/ g | 海拔/ m | 坡度/ (°) | 容重/ (g∙cm-3) | w(全氮)/ (g∙kg-1) | w(全磷)/ (g∙kg-1) | w(全钾)/ (g∙kg-1) | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0-10 | 0.276* | 0.034 | 0.126 | 0.634** | 0.649** | 0.703** | 0.204 | -0.190 | -0.549** | 0.936** | 0.129 | -0.168 | -0.080 |
10-20 | 0.070 | 0.066 | 0.044 | 0.222* | 0.234* | 0.082 | 0.336** | -0.076 | -0.631** | 0.705** | 0.164 | -0.188 | -0.139 |
20-30 | 0.124 | 0.110 | 0.040 | 0.137 | 0.007 | 0.180 | 0.569** | -0.028 | -0.721** | 0.820** | 0.130 | -0.174 | -0.272* |
表3 生物因子和非生物因子与各土层土壤有机碳含量的相关性分析
Table 3 Correlation analysis between biological factors and abiotic factors and soil organic carbon content in each soil layer
土层 深度/cm | 物种香农维纳指数 | 物种辛普森指数 | 物种丰富度指数 | 林龄/ a | 根系生物量/ g | 凋落物质量/ g | 海拔/ m | 坡度/ (°) | 容重/ (g∙cm-3) | w(全氮)/ (g∙kg-1) | w(全磷)/ (g∙kg-1) | w(全钾)/ (g∙kg-1) | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0-10 | 0.276* | 0.034 | 0.126 | 0.634** | 0.649** | 0.703** | 0.204 | -0.190 | -0.549** | 0.936** | 0.129 | -0.168 | -0.080 |
10-20 | 0.070 | 0.066 | 0.044 | 0.222* | 0.234* | 0.082 | 0.336** | -0.076 | -0.631** | 0.705** | 0.164 | -0.188 | -0.139 |
20-30 | 0.124 | 0.110 | 0.040 | 0.137 | 0.007 | 0.180 | 0.569** | -0.028 | -0.721** | 0.820** | 0.130 | -0.174 | -0.272* |
土层深度/cm | 卡方和自由比 | 均方根误差 | 比较拟合指数 |
---|---|---|---|
0-10 | 2.35 | 0.06 | 0.96 |
10-20 | 1.95 | 0.04 | 0.91 |
20-30 | 1.78 | 0.06 | 0.93 |
表4 最优结构方程模型的拟合度指标
Table 4 Fitting index of optimal structural equation model
土层深度/cm | 卡方和自由比 | 均方根误差 | 比较拟合指数 |
---|---|---|---|
0-10 | 2.35 | 0.06 | 0.96 |
10-20 | 1.95 | 0.04 | 0.91 |
20-30 | 1.78 | 0.06 | 0.93 |
图4 20-30 cm土壤有机碳含量影响因素的最优结构方程模型 实线表示具有显著性,虚线箭头表明不具备显著性,*P<0.05,**P<0.01
Figure 4 20-30 cm Optimal structural equation model of influencing factors of soil organic carbon content
土层深度/cm | 影响因子 | 直接效应 | 间接效应 | 总效应 |
---|---|---|---|---|
0-10 | 林龄 | 0.47 | 0.31 | 0.78 |
根系生物量 | 0.59 | 0.29 | 0.88 | |
凋落物质量 | 0.56 | 0.27 | 0.83 | |
物种香农维纳指数 | 0.21 | 0.11 | 0.32 | |
土壤容重 | -0.44 | -0.44 | ||
土壤全氮 | 0.73 | 0.73 | ||
10-20 | 林龄 | 0.24 | 0.14 | 0.38 |
根系生物量 | 0.27 | 0.09 | 0.36 | |
海拔 | 0.32 | 0.23 | 0.55 | |
土壤全氮 | 0.69 | 0.69 | ||
土壤容重 | -0.53 | -0.53 | ||
20-30 | 海拔 | 0.43 | 0.14 | 0.57 |
土壤全氮 | 0.59 | 0.59 | ||
土壤容重 | -0.47 | -0.47 | ||
pH值 | -0.15 | -0.04 | -0.19 |
表5 各土层有机碳含量影响因素的影响效应
Table 5 Effect of influencing factors of organic carbon content in each soil layer
土层深度/cm | 影响因子 | 直接效应 | 间接效应 | 总效应 |
---|---|---|---|---|
0-10 | 林龄 | 0.47 | 0.31 | 0.78 |
根系生物量 | 0.59 | 0.29 | 0.88 | |
凋落物质量 | 0.56 | 0.27 | 0.83 | |
物种香农维纳指数 | 0.21 | 0.11 | 0.32 | |
土壤容重 | -0.44 | -0.44 | ||
土壤全氮 | 0.73 | 0.73 | ||
10-20 | 林龄 | 0.24 | 0.14 | 0.38 |
根系生物量 | 0.27 | 0.09 | 0.36 | |
海拔 | 0.32 | 0.23 | 0.55 | |
土壤全氮 | 0.69 | 0.69 | ||
土壤容重 | -0.53 | -0.53 | ||
20-30 | 海拔 | 0.43 | 0.14 | 0.57 |
土壤全氮 | 0.59 | 0.59 | ||
土壤容重 | -0.47 | -0.47 | ||
pH值 | -0.15 | -0.04 | -0.19 |
[1] |
CHEN S P, WANG W T, XU W T, et al., 2018. Plant diversity enhances productivity and soil carbon storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(16): 4027-4032.
DOI PMID |
[2] |
CORNELIA R, FARSHAD A, LYDIE-STELLA K, et al., 2018. Put more carbon in soils to meet paris climate pledges[J]. Nature, 564(7734): 32-34.
DOI |
[3] |
DE D G B, CORNELISSEN J H C, BARDGEET R D, 2008. Plant functional traits and soil carbon sequestration in contrasting biomes[J]. Ecology Letters, 11(5): 516-531.
DOI PMID |
[4] |
HAGHVERDI K, KOOCH Y, 2019. Effects of diversity of tree species on nutrient cycling and soil-related processes[J]. Catena, 178(7): 335-344.
DOI URL |
[5] |
HE Y J, QIN L, LI Z Y, et al., 2013. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China[J]. Forest Ecology and Management, 295(13): 193-198.
DOI URL |
[6] |
HOU G R, BI H X, HUO Y M, et al., 2020. Determining the optimal vegetation coverage for controlling soil erosion in Cynodon dactylon grassland in North China[J]. Journal of Cleaner Production, 244: 118771.
DOI URL |
[7] | JUNGKUNST H F, GOPEL J, THOMAS H, et al., 2022. Global soil organic carbon-climate interactions: Why scales matter[J]. Wiley Interdisciplinary Reviews: Climate Change, 13(4): e780. |
[8] | LU X K, PETER M, MAO Q J, et al., 2021. Nitrogen deposition accelerates soil carbon sequestration in tropical forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 118(16): e2020790118. |
[9] |
LAURENT A, ANTRA B, 2022. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon[J]. Nature Communications, 13(1): 1097.
DOI PMID |
[10] |
MELISSA M, ANDREA P, NOEMI C, et al., 2022. Mercury in a birch forest in SW Europe: Deposition flux by litterfall and pools in aboveground tree biomass and soils[J]. The Science of the Total Environment, 856(1): 158937.
DOI URL |
[11] |
PETE S, 2016. Soil carbon sequestration and biochar as negative emission technologies[J]. Global Change Biology, 22(3): 1315-1324.
DOI PMID |
[12] |
XIANG S R, ALLEN D, HOLDEN P A, et al., 2008. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology and Biochemistry, 40(9): 2281-2289.
DOI URL |
[13] |
WANG M Y, YANG J, GAO H Y, et al., 2020. Interspecific plant competition increases soil labile organic carbon and nitrogen contents[J]. Forest Ecology and Management, 462: 117991.
DOI URL |
[14] |
WEI X, BI H X, LIANG W J et al., 2018. Relationship between soil characteristics and stand structure of Robinia pseudoacacia L. and Pinus tabulaeformis Carr. mixed plantations in the Caijiachuan Watershed: An application of structural equation modeling[J]. Forests, 9(3): 124.
DOI URL |
[15] |
WANG T, LIU X X, ZOU D F, et al., 2019. Modeling soil organic carbon spatial distribution for a complex terrain based on geographically weighted regression in the eastern Qinghai-Tibetan Plateau[J]. Catena, 187: 104399.
DOI URL |
[16] | WU B C, ZHOU L J Z, QI S, et al., 2021. Effect of habitat factors on the understory plant diversity of Platycladus orientalis plantations in Beijing mountainous areas based on MaxEnt model[J]. Ecological Indicators, 129(4): 107-117. |
[17] |
WEN X, LU X M, YING J Y, et al., 2022. Disentangling the effects of nitrogen availability and soil acidification on microbial taxa and soil carbon dynamics in natural grasslands[J]. Soil Biology and Biochemistry, 164(7): 108495.
DOI URL |
[18] |
SAYER E J, HEARD M S, GRANT H K, et al., 2011. Soil carbon release enhanced by increased tropical forest litterfall[J]. Nature Climate Change, 1(6): 304-307.
DOI |
[19] |
YANG J J, QIN R Z, SHI X P, et al., 2022. The effects of plastic film mulching and straw mulching on licorice root yield and soil organic carbon content in a dryland farming[J]. Science of the Total Environment, 826(6): 154113.
DOI URL |
[20] |
ZHANG X, LI X, JI X D, et al., 2021. Elevation and total nitrogen are the critical factors that control the spatial distribution of soil organic carbon content in the shrubland on the Bashang Plateau, China[J]. Catena, 204(9): 105415.
DOI URL |
[21] |
ZHAO C M, CHEN W L, TIAN Z Q, et al., 2005. Altitudinal pattern of plant species diversity in shennongjia mountains, central China[J]. Journal of Integrative Plant Biology, 47(12): 1431-1449.
DOI URL |
[22] |
ZHOU G, XU S, CIAIS P, et al., 2019. Climate and litter C/N ratio constrain soil organic carbon accumulation[J]. National Science Review, 6(4): 746-757.
DOI |
[23] | 曹小玉, 李际平, 委霞, 2020. 中亚热带典型林分空间结构对土壤养分含量的影响[J]. 林业科学, 56(1): 20-28. |
CAO X Y, LI J P, WEI X, 2020. Effects of spatial structure on soil nutrient content in typical forests in the contral-subtropics of China[J]. Scientia Silvae Sinicae, 56(1): 20-28. | |
[24] |
丁访军, 高艳平, 周凤娇, 等, 2012. 贵州西部4种林型土壤有机碳及其剖面分布特征[J]. 生态环境学报, 21(1): 38-43.
DOI |
DING F J, GAO Y P, ZHOU F J, et al., 2012. Soil organic carbon and its distribution characteristics in the soil profile for four forest types in west Guizhou[J]. Ecology and Environmental Sciences, 21(1): 38-43. | |
[25] |
杜雪, 王海燕, 邹佳何, 等, 2022. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 31(4): 663-669.
DOI |
DU X, WANG H Y, ZHOU J H, et al., 2022. Distribution characteristics and influencing factors of soil organic carbon in Spruce-fir broad-leaved mixed forest on north slope of Changbai mountains[J]. Ecology and Environmental Sciences, 31(4): 663-669. | |
[26] |
郭月峰, 祁伟, 姚云峰, 等, 2020. 小流域梯田土壤有机碳与土壤物理性质的关系研究[J]. 生态环境学报, 29(4): 748-756.
DOI |
GUO Y F, QI W, YAO Y F, et al., 2020. Soil organic carbon in small watershed terraces and association with physical properties[J]. Ecology and Environmental Sciences, 29(4): 748-756. | |
[27] | 刘波, 陈林, 庞丹波, 等, 2021. 六盘山华北落叶松土壤有机碳沿海拔梯度的分布规律及其影响因素[J]. 生态学报, 41(17): 6773-6785. |
LIU B, CHEN L, PANG D B, et al., 2021. Altitudinal distribution rule of Larix principi-muprehi forest's soil organic carbon and its influencing factors in Liupan Mountain[J]. Acla Ecologica Sinica, 41(17): 6773-6785. | |
[28] | 刘姝媛, 刘月秀, 叶金盛, 等, 2010. 广东省桉树人工林土壤有机碳密度及其影响因子[J]. 应用生态学报, 21(8): 1981-1985. |
LIU S Y, LIU Y X, YE J S, et al., 2010. Soil organic carbon density and its influencing factors of Eucalyptus plantation in Guangdong Province[J]. Journal of Applied Ecology, 21(8): 1981-1985. | |
[29] |
罗永清, 赵学勇, 王涛, 等, 2017. 沙地植物根系特征及其与土壤有机碳和总氮的关系[J]. 草业学报, 26(8): 200-206.
DOI |
LUO Y Q, ZHAO X Y, WANG T, et al., 2017. Characteristics of the plant-root system and its relationships with soil organic carbonand total nitrogen in a degraded sandy grassland[J]. Acta Prataculturae Sinica, 26(8): 200-206. | |
[30] | 吕小娜, 2021. 山西省耕地土壤养分分析——评《土壤农化分析 (第三版)》[J]. 灌溉排水学报, 40(10): 145. |
LÜ X N, 2021, Analysis of soil nutrients of cultivated land in Shanxi province: Comment on analysis of soil agrochemistry (3rd Edition)[J]. Journal of Lrrigation and Drainage, 40(10): 145. | |
[31] |
马辉英, 李昕竹, 马鑫钰, 等, 2022. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 31(6): 1124-1131.
DOI |
MA H Y, LI X Z, MA X Y, et al., 2022. Characteristics and driving factors of soil organic carbon fractions under different vegetation types of the mid-Northern piedmont of the Tianshan Mountains, Xinjiang[J]. Ecology and Environmental Sciences, 31(6): 1124-1131. | |
[32] | 宁一泓, 王海燕, 侯文宁, 等, 2022. 重庆笋溪河流域土壤有机碳特征及影响因素[J]. 森林与环境学报, 42(5): 552-560. |
NING Y H, WANG H Y, HOU W N, et al., 2022. Characteristics and influencing factors of soil organic carbon in the Sunxi River Basin, Chongqing[J]. Journal of Forest and Environment, 42(5): 552-560. | |
[33] | 邱思慧, 林少颖, 王维奇, 2022. 中国东部地区不同海拔梯度土壤有机碳库特征及其影响因素综述[J]. 中国水土保持科学, 20(3): 142-150. |
QIU S H, LIN S Y, WANG W Q, 2022. Characteristics of soil organic carbon pool at different altitude gradients in eastern china and its influencing factors: A review[J]. Science of Soil and Water Conservation, 20(3): 142-150. | |
[34] |
王瑾, 陈书涛, 丁司丞, 等, 2021. 土壤和气候因素对土壤有机碳平均周转时间的影响[J]. 生态环境学报, 30(6): 1192-1201.
DOI |
WANG J, CHEN S T, DING S C, et al., 2021. Effects of the soil and climate factors on the mean turnover times of soil organic carbon[J]. Ecology and Environmental Sciences, 30(6): 1192-1201. | |
[35] | 王淑芳, 王效科, 欧阳志云, 2014. 环境因素对密云水库上游流域土壤有机碳和全氮含量影响的通径分析[J]. 生态环境学报, 23(8): 1378-1383. |
WANG S F, WANG X K, OUYANG Z Y, 2014. Path analysis on environmental factors controlling soil organic carbon and total nitrogen contents in the upstream watershed of Miyun reservoir, North China[J]. Ecology and Environmental Sciences, 23(8): 1378-1383. | |
[36] | 徐广平, 李艳琼, 沈育伊, 等, 2019. 桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征[J]. 环境科学, 40(3): 1491-1503. |
XU G P, LI Y Q, SHENG Y Y, et al., 2019. Soil organic carbon distribution and components in different plant communities along a water table gradient in the Huixian karst wetland in Guilin[J]. Environmental Science, 40(3): 1491-1503.
DOI URL |
|
[37] |
闫蒙, 王旭洋, 周立业, 等, 2022. 科尔沁沙地沙漠化过程中土壤有机碳含量变化特征及影响因素[J]. 中国沙漠, 42(5): 221-231.
DOI |
YAN M, WANG X Y, ZHOU L Y, et al., 2022. Characteristics and influencing factors of soil organic carbon in the process of desertification in Horqin Sandy Land[J]. Journal of Desert Research, 42(5): 221-231.
DOI |
|
[38] |
尤海舟, 毕君, 王超, 等, 2018. 河北小五台山不同海拔白桦林土壤有机碳密度分布特征及影响因素[J]. 生态环境学报, 27(3): 432-437.
DOI |
YOU H Z, BI J, WANG C, et al., 2018. Altitudinal distribution rule of betula platyphylla forest's soil organic carbon density and its influencing factors in Xiaowutai Mountain in Hebei[J]. Ecology and Environmental Sciences, 27(3): 432-437. | |
[39] |
张恒宇, 孙树臣, 吴元芝, 等, 2022. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征[J]. 生态环境学报, 31(5): 875-884.
DOI |
ZHANG H Y, SUN S C, WU Y Z, et al., 2022. Distribution characteristics of soil water, carbon and nitrogen under different vegetation densities in Loess Plateau[J]. Ecology and Environmental Sciences, 31(5): 875-884. | |
[40] |
张林, 齐实, 周飘, 等, 2022. 北京山区侧柏林下草本植物多样性的影响因素分析[J]. 草地学报, 30(8): 2199-2206.
DOI |
ZHANG L, QI S, ZHOU P, et al., 2022. Analysis of influencing factors on the understory herbaceous plant diversity of Platycladus orientalis forest in Beijing mountainous areas[J]. Acta Agrestia Sinica, 30(8): 2199-2206. | |
[41] | 张乾, 汪依妮, 柳鑫, 等, 2022. 不同石漠化草地根系对土壤有机碳的贡献[J]. 生态科学, 41(6): 26-32. |
ZHANG Q, WANG Y N, LIU X, et al., 2022. The contribution of roots to soil organic carbon in different rocky desertifi-cation grasslands[J]. Ecological Science, 41(6): 26-32. | |
[42] | 赵晗, 王海燕, 罗鹏, 等, 2022. 微地形对云冷杉阔叶混交林土壤有机碳和全氮的影响[J]. 北京林业大学学报, 44(8): 88-97. |
ZHAO H, WANG H Y, LUO P, et al., 2022. Effects of micro-topography on soil organic carbon and total nitrogen in mixed spruce-fir-broadleaf forest[J]. Journal of Beijing Foresty University, 44(8): 88-97. | |
[43] | 赵青, 刘爽, 陈凯, 等, 2021. 武夷山自然保护区不同海拔甜槠天然林土壤有机碳变化特征及影响因素[J]. 生态学报, 41(13): 5328-5339. |
ZHAO Q, LIU S, CHEN K, et al., 2021. Change characteristics and influencing factors of soil organic carbon in Castanopsis eyrei natural forests at different altitudes in Wuyishan Nature Reserve[J]. Journal of Ecology, 41(13): 5328-5339. |
[1] | 王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897. |
[2] | 李建辉, 党争, 陈琳. 黄河几字弯都市圈PM2.5时空特征及影响因素分析[J]. 生态环境学报, 2023, 32(4): 697-705. |
[3] | 何艳虎, 龚镇杰, 吴海彬, 蔡宴朋, 杨志峰, 陈晓宏. 粤港澳大湾区城市生态效率时空演变及影响因素[J]. 生态环境学报, 2023, 32(3): 469-480. |
[4] | 郝金虎, 韦玮, 李胜男, 马牧源, 李肖夏, 杨洪国, 姜琦宇, 柴沛东. 基于GEE平台的京津冀长时序水体时空格局及其影响因素[J]. 生态环境学报, 2023, 32(3): 556-566. |
[5] | 徐晨, 裴顺祥, 吴莎, 郭慧, 马淑敏, 吴迪, 章尧想, 法蕾. 北京九龙山不同林型林间大气主要BVOCs组成研究[J]. 生态环境学报, 2023, 32(2): 245-255. |
[6] | 张莉, 李铖, 谭皓泽, 韦家怡, 程炯, 彭桂香. 广州典型城市林地对大气颗粒物的削减效应及影响因素[J]. 生态环境学报, 2023, 32(2): 341-350. |
[7] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[8] | 袁林江, 李梦博, 冷钢, 钟冰冰, 夏大朋, 王景华. 厌氧环境下硫酸盐还原与氨氧化的协同作用[J]. 生态环境学报, 2023, 32(1): 207-214. |
[9] | 刘希林, 卓瑞娜. 崩岗崩积体坡面初始产流时间影响因素及其临界阈值[J]. 生态环境学报, 2023, 32(1): 36-46. |
[10] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[11] | 苏泳松, 宋松, 陈叶, 叶子强, 钟润菲, 王昭尧. 珠江三角洲人类活动净氮输入时空特征及其影响因素[J]. 生态环境学报, 2022, 31(8): 1599-1609. |
[12] | 陈文裕, 夏丽华, 徐国良, 余世钦, 陈行, 陈金凤. 2000—2020年珠江流域NDVI动态变化及影响因素研究[J]. 生态环境学报, 2022, 31(7): 1306-1316. |
[13] | 张博文, 秦娟, 任忠明, 陈子齐, 姚舜佳, 刘烨, 宋炎玉. 坡向对北亚热带区马尾松纯林及不同针阔混交林型林下植物多样性的影响[J]. 生态环境学报, 2022, 31(6): 1091-1100. |
[14] | 段文军, 李达, 李冲. 5种不同林龄尾巨桉人工林林下植物多样性及其影响因素分析[J]. 生态环境学报, 2022, 31(5): 857-864. |
[15] | 杜雪, 王海燕, 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 2022, 31(4): 663-669. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||