生态环境学报 ›› 2025, Vol. 34 ›› Issue (2): 293-301.DOI: 10.16258/j.cnki.1674-5906.2025.02.011
收稿日期:
2024-07-23
出版日期:
2025-02-18
发布日期:
2025-03-03
通讯作者:
*岳林。E-mail: 13976992754@163.com作者简介:
王斌(1988年生),男,高级工程师,研究方向为水文与水资源工程。E-mail: 61896860@qq.com
基金资助:
WANG Bin1(), ZENG Zhaohe1, DONG Lu2, YUE Lin1,*(
)
Received:
2024-07-23
Online:
2025-02-18
Published:
2025-03-03
摘要:
传统的内梅罗指数法在评价过程中未考虑权重,过分强调污染因子中的最大值,从而导致评价结果脱离实际。同时,针对火山岩下伏复式含水层系统的研究,海南省琼北地区比例尺多集中在1꞉200000-1꞉100000之间,中大比例尺的研究工作几乎处于空白。以1꞉50000白莲市幅第2承压含水层(组)(海口组一段)水文地质条件调查研究为基础,对8个点位地下水样品进行采集并分析其水质污染特征和污染成因;运用修正前、后4种内梅罗指数法,选取Fe、As、Hg、Cd、Pb等5个重金属污染因子,对其环境质量进行综合评价。结果表明,修正后的3种内梅罗指数法弥补了传统内梅罗指数法的不足。水质主要受Fe的影响最大,占权重的85%;其次是Cd和Pb,占10%;As和Hg影响最小,占5%。该方法充分考虑污染因子最大值的权重和评分均值,可以对最大污染因子数值进行修正,弥补过于突出最大值,而忽略浓度较小因子贡献值的缺陷,评价结果更符合客观实际。研究区第2承压水水质整体较好,局部有Fe、As等因子超标,但呈零星点状分布;研究区处于集中补给区,玄武岩出露地表,潜水含水层防污性能差,若污染源量大,且有持续性,必将引发区域性地下水污染,应引起足够重视,防患于未然。
中图分类号:
王斌, 曾兆荷, 董璐, 岳林. 内梅罗指数法在地下水水质评价中的修正探讨与实践效果[J]. 生态环境学报, 2025, 34(2): 293-301.
WANG Bin, ZENG Zhaohe, DONG Lu, YUE Lin. The Modification and Practical Effects of Nemerow Index Method in Groundwater Quality Assessment[J]. Ecology and Environment, 2025, 34(2): 293-301.
序号 | 项目 | Ⅰ类 | Ⅱ类 | Ⅲ类 | Ⅳ类 | Ⅴ类 |
---|---|---|---|---|---|---|
1 | 总 (Fe) | ≤0.1 | ≤0.2 | ≤0.3 | ≤1.5 | >1.5 |
2 | 砷 (As) | ≤0.005 | ≤0.01 | ≤0.05 | ≤0.05 | >0.05 |
3 | 汞 (Hg) | ≤0.00005 | ≤0.00005 | ≤0.001 | ≤0.001 | >0.001 |
4 | 镉 (Cd) | ≤0.0001 | ≤0.001 | ≤0.01 | ≤0.01 | >0.01 |
5 | 铅 (Pb) | ≤0.005 | ≤0.01 | ≤0.05 | ≤0.1 | >0.1 |
表1 地下水水质评价指标及限值
Table 1 Evaluation indices and limit value of groundwater quality mg?L?1
序号 | 项目 | Ⅰ类 | Ⅱ类 | Ⅲ类 | Ⅳ类 | Ⅴ类 |
---|---|---|---|---|---|---|
1 | 总 (Fe) | ≤0.1 | ≤0.2 | ≤0.3 | ≤1.5 | >1.5 |
2 | 砷 (As) | ≤0.005 | ≤0.01 | ≤0.05 | ≤0.05 | >0.05 |
3 | 汞 (Hg) | ≤0.00005 | ≤0.00005 | ≤0.001 | ≤0.001 | >0.001 |
4 | 镉 (Cd) | ≤0.0001 | ≤0.001 | ≤0.01 | ≤0.01 | >0.01 |
5 | 铅 (Pb) | ≤0.005 | ≤0.01 | ≤0.05 | ≤0.1 | >0.1 |
井编号 | 样品 编号 | 经度 | 纬度 | 含水层 顶板/m | 含水层 底板/m | 含水层 厚度/m | 数据 来源 |
---|---|---|---|---|---|---|---|
ZK01 | B001 | 110°13′26″E | 19°54′42″N | 224 | 244 | 20 | 实测 |
ZK02 | B002 | 110°10′06″E | 19°57′45″N | 161 | 206 | 45 | 实测 |
ZK03 | B003 | 110°00′53″E | 19°51′44″N | 57 | 81 | 24 | 实测 |
ZK04 | B004 | 110°05′48″E | 19°57′41″N | 180 | 237 | 57 | 实测 |
ZK05 | B005 | 110°04′50″E | 19°54′26″N | 81 | 130 | 49 | 实测 |
ZK06 | B006 | 110°09′54″E | 19°58′52″N | 156 | 195 | 39 | 实测 |
ZK07 | B007 | 110°08′59″ | 19°57′18″N | 148 | 209 | 61 | 实测 |
ZK08 | B008 | 110°11′12″E | 19°59′48″N | 134 | 170 | 36 | 实测 |
表2 监测井基本信息
Table 2 Monitoring well basic information
井编号 | 样品 编号 | 经度 | 纬度 | 含水层 顶板/m | 含水层 底板/m | 含水层 厚度/m | 数据 来源 |
---|---|---|---|---|---|---|---|
ZK01 | B001 | 110°13′26″E | 19°54′42″N | 224 | 244 | 20 | 实测 |
ZK02 | B002 | 110°10′06″E | 19°57′45″N | 161 | 206 | 45 | 实测 |
ZK03 | B003 | 110°00′53″E | 19°51′44″N | 57 | 81 | 24 | 实测 |
ZK04 | B004 | 110°05′48″E | 19°57′41″N | 180 | 237 | 57 | 实测 |
ZK05 | B005 | 110°04′50″E | 19°54′26″N | 81 | 130 | 49 | 实测 |
ZK06 | B006 | 110°09′54″E | 19°58′52″N | 156 | 195 | 39 | 实测 |
ZK07 | B007 | 110°08′59″ | 19°57′18″N | 148 | 209 | 61 | 实测 |
ZK08 | B008 | 110°11′12″E | 19°59′48″N | 134 | 170 | 36 | 实测 |
样品编号 | ρ(Fe)/ (mg∙L−1) | ρ(As)/ (mg∙L−1) | ρ(Hg)/ (mg∙L−1) | ρ(Cd)/ (mg∙L−1) | ρ(Pb)/ (mg∙L−1) |
---|---|---|---|---|---|
B001 | 1.2 | 0.005 | 0.0005 | 0.002 | 0.01 |
B002 | 0.1 | 0.005 | 0.0005 | 0.002 | 0.01 |
B003 | 2 | 0.005 | 0.0005 | 0.002 | 0.01 |
B004 | 2.5 | 0.015 | 0.0005 | 0.002 | 0.01 |
B005 | 1.3 | 0.005 | 0.0005 | 0.002 | 0.01 |
B006 | 0.4 | 0.019 | 0.0005 | 0.002 | 0.01 |
B007 | 0.8 | 0.005 | 0.0005 | 0.002 | 0.01 |
B008 | 0.4 | 0.005 | 0.0005 | 0.002 | 0.01 |
表3 监测数据汇总
Table 3 Summary of monitoring data
样品编号 | ρ(Fe)/ (mg∙L−1) | ρ(As)/ (mg∙L−1) | ρ(Hg)/ (mg∙L−1) | ρ(Cd)/ (mg∙L−1) | ρ(Pb)/ (mg∙L−1) |
---|---|---|---|---|---|
B001 | 1.2 | 0.005 | 0.0005 | 0.002 | 0.01 |
B002 | 0.1 | 0.005 | 0.0005 | 0.002 | 0.01 |
B003 | 2 | 0.005 | 0.0005 | 0.002 | 0.01 |
B004 | 2.5 | 0.015 | 0.0005 | 0.002 | 0.01 |
B005 | 1.3 | 0.005 | 0.0005 | 0.002 | 0.01 |
B006 | 0.4 | 0.019 | 0.0005 | 0.002 | 0.01 |
B007 | 0.8 | 0.005 | 0.0005 | 0.002 | 0.01 |
B008 | 0.4 | 0.005 | 0.0005 | 0.002 | 0.01 |
指标 | Ⅲ类水标准/(mg·L−1) | 权重值 |
---|---|---|
Fe | 0.3 | 0.85 |
As | 0.05 | 0.04 |
Hg | 0.001 | 0.01 |
Cd | 0.01 | 0.05 |
Pb | 0.05 | 0.05 |
表4 各污染因子权重值
Table 4 The weight of each pollution factor
指标 | Ⅲ类水标准/(mg·L−1) | 权重值 |
---|---|---|
Fe | 0.3 | 0.85 |
As | 0.05 | 0.04 |
Hg | 0.001 | 0.01 |
Cd | 0.01 | 0.05 |
Pb | 0.05 | 0.05 |
样品/评价结果 | P | 评价 结果 | P1 | 评价 结果 | P2 | 评价 结果 | P3 | 评价 结果 |
---|---|---|---|---|---|---|---|---|
B001 | 0.87 | Ⅲ | 0.95 | Ⅲ | 0.66 | Ⅱ | 0.87 | Ⅲ |
B002 | 0.11 | Ⅰ | 0.11 | Ⅰ | 0.06 | Ⅰ | 0.07 | Ⅰ |
B003 | 1.45 | Ⅳ | 1.58 | Ⅳ | 1.11 | Ⅳ | 1.44 | Ⅳ |
B004 | 1.81 | Ⅳ | 1.98 | Ⅳ | 1.39 | Ⅳ | 1.81 | Ⅳ |
B005 | 0.94 | Ⅲ | 1.03 | Ⅲ | 0.72 | Ⅲ | 0.94 | Ⅲ |
B006 | 0.3 | Ⅰ | 0.32 | Ⅰ | 0.22 | Ⅰ | 0.29 | Ⅰ |
B007 | 0.31 | Ⅰ | 0.63 | Ⅱ | 0.45 | Ⅰ | 0.58 | Ⅱ |
B008 | 0.29 | Ⅰ | 0.32 | Ⅰ | 0.22 | Ⅰ | 0.29 | Ⅰ |
表5 传统和改进的内梅罗指数法评价结果
Table 5 Evaluation results of traditional and improved Nemerow index method
样品/评价结果 | P | 评价 结果 | P1 | 评价 结果 | P2 | 评价 结果 | P3 | 评价 结果 |
---|---|---|---|---|---|---|---|---|
B001 | 0.87 | Ⅲ | 0.95 | Ⅲ | 0.66 | Ⅱ | 0.87 | Ⅲ |
B002 | 0.11 | Ⅰ | 0.11 | Ⅰ | 0.06 | Ⅰ | 0.07 | Ⅰ |
B003 | 1.45 | Ⅳ | 1.58 | Ⅳ | 1.11 | Ⅳ | 1.44 | Ⅳ |
B004 | 1.81 | Ⅳ | 1.98 | Ⅳ | 1.39 | Ⅳ | 1.81 | Ⅳ |
B005 | 0.94 | Ⅲ | 1.03 | Ⅲ | 0.72 | Ⅲ | 0.94 | Ⅲ |
B006 | 0.3 | Ⅰ | 0.32 | Ⅰ | 0.22 | Ⅰ | 0.29 | Ⅰ |
B007 | 0.31 | Ⅰ | 0.63 | Ⅱ | 0.45 | Ⅰ | 0.58 | Ⅱ |
B008 | 0.29 | Ⅰ | 0.32 | Ⅰ | 0.22 | Ⅰ | 0.29 | Ⅰ |
[1] | AHMED A A, 2019. Evaluation of the suitability of surface water from Riyadh Mainstream Saudi Arabia for a variety of uses[J]. Arabian Journal of Chemistry, 12(8): 2104-2110. |
[2] | CHEN S M, LIU F T, ZHANG Z, et al., 2021. Changes of groundwater flow field of Luanhe River Delta under the human activities and its impact on the ecological environment in the past 30 years[J]. China Geology, 4(3): 455-462. |
[3] | GUO Y, WANG F, QIN D J, et al., 2021. Hydrodynamic characteristics of a typical karst spring system based on time series analysis in northern China[J]. China Geology, 4(3): 433-445. |
[4] | LU X W, LI L Y, LEI K, et al., 2010. Water quality assessment of Wei River, China using fuzzy synthetic evaluation[J]. Environmental Earth Sciences, 60(8): 421-434. |
[5] | PEIBIN G, BAOJIANG S, GANG L, et al., 2012. Fuzzy comprehensive evaluation in well control risk assessment based on AHP: A case study[J]. Advances in Petroleum Exploration and Development, 4(1): 780-794. |
[6] | ZHENG Q L, MA T, WANG Y Y, et al., 2017. Hydrochemical characteristics and quality assessment of shallow groundwater in Xincai River Basin, northern China[J]. Procedia Earth and Planetary Science, 17: 368-371. |
[7] | 蔡晔, 林怡雯, 李月娥, 等, 2015. 利用改进的内梅罗指数法模型评价苏州市内外城河水质[J]. 化学分析计量, 24(2): 84-87. |
CAI H, LIN Y W, LI Y E, et al., 2015. An improved Nemero index model was used to evaluate the water quality of inner and outer city rivers in Suzhou[J]. Chemical Analysis and Meterage, 24(2): 84-87. | |
[8] | 曹龙, 李卫平, 陈秋丽, 等, 2017. 改进内梅罗污染指数法和模糊数学法对昭君岛湿地水质的评价及应用比较[J]. 湖北农业科学, 56(22): 4278-4281. |
CAO L, LI W P, CHEN Q L, et al., 2017. Evaluation and application of improved Nemerow pollution index method and fuzzy mathematics method to the water quality of Zhaojun Island wetland[J]. Agricultural Science of Hubei Province, 56(22): 4278-4281. | |
[9] | 陈攀, 韩丽, 2018. 不同模糊组合模型在水质评价中的应用比较[J]. 人民黄河, 40(12): 100-105. |
CHEN P, HAN L, 2018. Application comparison of different fuzzy combination models in water quality assessment[J]. Yellow River, 40(12): 100-105. | |
[10] | 陈朋, 汪家鼎, 袁亮, 等, 2017. 修正内梅罗指数法和模糊综合评判法在凤凰镇地下水水质评价中的应用[J]. 水土保持学报, 37(2): 165-170. |
CHEN P, WANG J D, YUAN L, et al., 2017. Application of modified Nemero index method and fuzzy comprehensive evaluation method to groundwater quality evaluation in Fenghuang Town[J]. Journal of Soil and Water Conservation, 37(2): 165-170. | |
[11] | 程晓丽, 2022. 改进的内梅罗指数法在衡水湖流域水质评价中的应用[J]. 南方农机, 53(6): 172-174. |
CHENG X L, 2022. Application of improved Nemero index method in water quality assessment of Hengshui Lake Basin[J]. Southern Agricultural Machinery, 53(6): 172-174. | |
[12] | 中华人民共和国地质矿产部, 国家技术监督局, 1993. 地下水环境质量标准:GB/T14848-93 [S]. 北京: 中国标准出版社. |
Ministry of Geology and Mineral Resources of the People’s Republic of China, State Technical Supervision Bureau, 1993. Groundwater Environmental Quality Standards: GB/T 14848-93 [S]. Beijing: China Standard Press. | |
[13] | 付博超, 2022. 基于内梅罗综合污染指数法的秦皇岛水质评价[J]. 水利科学与寒区工程, 5(11): 32-34. |
FU B C, 2022. Water quality evaluation of Qinhuangdao based on Nemerow comprehensive pollution index method[J]. Hydro Science and Cold Zone Engineering, 5(11): 32-34. | |
[14] | 郭纯青, 2003. 海南琼北复式含水层系统水循环特征[J]. 水科学进展, 14(3): 379-383. |
GUO C Q, 2003. Compound aquifer system water cycle characteristics of north Hainan province[J]. Advances in Water Science, 14(3): 379-383. | |
[15] | 国家环境保护总局, 《水和废水监测分析方法》编委会, 2002. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社. |
State Environmental Protection Administration, Water and Wastewater Analysis Methods Committee, 2002. Water and Wastewater Monitoring and Analysis Methods[M]. Fourth Edition. Beijing: China Environmental Science Press. | |
[16] | 金士博, 张孟威, 1980. 内梅罗污染指数公式与漓江水质评价[J]. 环境科学 (2): 1-7. |
JIN S B, ZHANG M W, 1980. Nemero pollution index formula and water quality evaluation of Lijiang River[J]. Environmental Science (2): 1-7. | |
[17] | 李苏, 闫志宏, 徐丹, 等, 2020. 改进的内梅罗指数法在水库水质评价中的应用[J]. 科学技术与工程, 20(31): 13079-13084. |
LI S, YAN Z H, XU D, et al., 2020. Application of improved Nemerow index method in reservoir water quality evaluation[J]. Science Technology and Engineering, 20(31): 13079-13084. | |
[18] | 李小丽, 黎小东, 敖天其, 2016. 改进内梅罗指数法在西充河水质评价中的应用[J]. 人民黄河, 38(8): 65-68. |
LI X L, LI X D, AO T Q, 2016. Application of improved Nemero index method in water quality assessment of Xichong River[J]. Yellow River, 38(8): 65-68. | |
[19] | 林丽, 范薇, 周金龙, 等, 2020. 喀什地区浅层地下水重金属污染健康风险评价[J]. 节水灌溉 (5): 93-98. |
LIN L, FAN W, ZHOU J L, et al., 2020. Health risk assessment of heavy metal pollution in shallow groundwater in Kashgar area[J]. Water Saving Irrigation (5): 93-98. | |
[20] | 刘萌, 陈世, 2016. 基于内梅罗指数与主成分分析的洪湖地区地下水水质评价[J]. 华中师范大学学报(自然科学版), 50(4): 633-640. |
LIU M, CHEN S J, 2016. Groundwater quality evaluation in Honghu area based on Nemerow index and principal component analysis[J]. Journal of Central China Normal University (Natural Science), 50(4): 633-640. | |
[21] | 陆卫军, 张涛, 2009. 几种河流水质评价方法的比较分析[J]. 环境科学与管理, 34(6): 174-176. |
LU W J, ZHANG T, 2009. Comparative analysis of several river water quality evaluation methods[J]. Environmental Science and Management, 34(6): 174-176. | |
[22] | 卢媛, 王栋, 2019. 改进的粗糙集-集对分析的水质评价方法[J]. 华北水利水电大学学报(自然科学版), 40(1): 34-38. |
LU Y, WANG D, 2019. Improved rough set - set pair analysis method for water quality assessment[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 40(1): 34-38. | |
[23] | 罗芳, 伍国荣, 王冲, 等, 2016. 内梅罗污染指数法和单因子评价法在水质评价中的应用[J]. 环境与可持续发展, 41(5): 87-89. |
LUO F, WU G R, WANG C, et al., 2016. Application of Nemerow Pollution index method and single factor evaluation method in water quality assessment[J]. Environment and Sustainable Development, 41(5): 87-89. | |
[24] | 马骁, 张永祥, 王昊, 2017. 改进的尼梅罗污染指数法在地下水水质评价中的应用[J]. 环境工程, 35(3): 158-162. |
MA X, ZHANG Y X, WANG H, 2017. Application of improved Nimero pollution index method in groundwater quality evaluation[J]. Environmental Engineering, 35(3): 158-162. | |
[25] | 宁阳明, 尹发能, 2020. 基于改进内梅罗污染指数法和灰色聚类法的水质评价[J]. 华中师范大学学报(自然科学版), 54(1): 149-155. |
NING Y M, YIN F N, 2020. Water quality evaluation based on improved Nemerow pollution index method and grey clustering method[J]. Journal of Central China Normal University (Natural Science), 54(1): 149-155. | |
[26] |
彭越兮, 徐蔚鸿, 陈沅涛, 等, 2018. 改进量子粒子群算法的模糊神经网络水质评价[J]. 计算机工程与应用, 54(11): 211-216.
DOI |
PENG Y X, XU W H, CHEN Y T, et al., 2018. Fuzzy neural network water quality assessment based on improved quantum particle swarm optimization[J]. Computer Engineering and Applications, 54(11): 211-216. | |
[27] | 邵鹏鲲, 杨银科, 程佳明, 等, 2022. 基于改进PCA-FCA法的陕西省中部典型区域地下水质综合评价[J]. 水电能源科学, 40(9): 86-89. |
SHAO P K, YANG Y K, CHENG J M, et al., 2022. Comprehensive evaluation of groundwater quality in typical areas of central Shaanxi Province based on improved PCA-FCA method[J]. Hydropower Energy Science, 40(9): 86-89. | |
[28] | 申剑, 史淑娟, 周扬, 等, 2014. 基于改进灰色关联分析法的丹江口流域地表水环境质量评价[J]. 中国环境监测, 30(5): 41-46. |
SHEN J, SHI S J, ZHOU Y, et al., 2014. Assessment of surface water environmental quality in Danjiangkou Basin based on improved grey correlation analysis method[J]. Environmental Monitoring in China, 30(5): 41-46. | |
[29] | 荀继萍, 任仲宇, 张永祥, 等, 2015. 物元可拓法在地下水水质评价中的应用[J]. 水资源与水工程学报, 26(5): 87-92. |
XUN J P, REN Z Y, ZHANG Y X, et al., 2015. Application of matter-element extension method in groundwater quality evaluation[J]. Journal of Water Resources and Water Engineering, 26(5): 87-92. | |
[30] | 尹发能, 向燕芸, 2016. 大冶湖水质模糊综合评价[J]. 湿地科学, 14(3): 428-432. |
YIN F N, XIANG Y Y, 2016. Fuzzy comprehensive evaluation of water quality in Daye Lake[J]. Wetland Science, 14(3): 428-432. | |
[31] | 于福荣, 2007. 黄龙工业园水源地地下水数值模拟[D]. 长春: 吉林大学. |
YU F R, 2007. Numerical simulation of groundwater in water source of Huanglong Industrial Park[D]. Changchun: Jilin University. | |
[32] | 袁瑞强, 钟钰翔, 龙西亭, 2021. 洞庭湖上游平原浅层地下水水质综合评价[J]. 水资源保护, 37(6): 121-127. |
YUAN R Q, ZHONG Y X, LONG X T, 2021. Comprehensive evaluation of shallow groundwater quality in the upper plain of Dongting Lake[J]. Water Resources Protection, 37(6): 121-127. | |
[33] | 张安昌, 庄付磊, 申铜菲, 等, 2016. 改进内梅罗指数法在聊城市地下水水质评价中的应用[J]. 治淮 (12): 81-83. |
ZHANG A C, ZHUANG F L, SHEN T F, et al., 2016. Application of improved Nemero index method to groundwater quality evaluation in Liaocheng City[J]. Treatment of Huai River (12): 81-83. | |
[34] | 张玺, 曹升乐, 刘阳, 等, 2018. 基于改进内梅罗指数法的济南饮用水源功能区水质评价[J]. 科学技术与工程, 18(19): 335-340. |
ZHANG X, CAO S L, LIU Y, et al., 2018. Water quality evaluation of functional area of drinking water source in Jinan based on improved Nemerowindex method[J]. Science Technology and Engineering, 18(19): 335-340. | |
[35] | 赵玉, 2020. 渭河干流浅层地下水与地表水中重金属Cd污染特征及风险评价[J]. 地球科学与环境学报, 42(2): 267-277. |
ZHAO Y, 2020. Pollution characteristics and risk assessment of heavy metal Cd in shallow groundwater and surface water of Weihe River main Stream[J]. Journal of Earth Sciences and Environment, 42(2): 267-277. | |
[36] | 朱迪, 梅亚东, 吴贞晖, 等, 2019. 基于分组赋权和改进内梅罗指数的赣江中下游整体水文改变度计算[J]. 武汉大学学报(工学版), 52(12): 1048-1055. |
ZHU D, MEI Y D, WU Z H, et al., 2019. Calculation of global hydrologic change degree in the middle and lower reaches of Ganjiang River based on group weighting and improved Nemero index[J]. Engineering Journal of Wuhan University (Engineering Version), 52(12): 1048-1055. |
[1] | 张传华, 刘力, 代杰, 李曼曼, 张凤太, 邓凌. 基于土壤重金属污染和累积性评价的耕地环境质量类别划分与风险管控[J]. 生态环境学报, 2025, 34(2): 311-320. |
[2] | 常春英, 王刚, 曹浩轩, 邓一荣, 陶亮. 模拟干湿过程对稳定化修复土壤中重金属Ni和Pb的影响[J]. 生态环境学报, 2025, 34(1): 118-125. |
[3] | 韩军超, 郑茂坤, 涂晨, 刘颖, 曹振宇, 邢倩雯, 申卫收, 骆永明. 趋磁细菌在环境污染修复中的应用研究进展与展望[J]. 生态环境学报, 2025, 34(1): 145-155. |
[4] | 丛鑫, 张怀迪, 张荣, 赵琛, 陈坤, 刘寒冰. 基于Meta分析的近10年中国农田土壤重金属污染特征与风险解析[J]. 生态环境学报, 2024, 33(9): 1451-1459. |
[5] | 刘东宜, 屈永华, 冯耀伟, 屈冉. 基于网格搜索优化CatBoost模型的GF-5卫星影像铬离子含量反演研究[J]. 生态环境学报, 2024, 33(9): 1460-1470. |
[6] | 欧阳美凤, 尹宇莹, 张金谌, 刘清霖, 谢意南, 方平. 洞庭湖典型水域重金属含量的空间分布与来源解析[J]. 生态环境学报, 2024, 33(8): 1269-1278. |
[7] | 吴文伟, 沈城, 沙晨燕, 林匡飞, 吴健, 谢雨晴, 周璇. 城市工业地块土壤重金属污染风险评价与源解析[J]. 生态环境学报, 2024, 33(5): 791-801. |
[8] | 肖江, 李晓刚, 赵博, 陈岩, 陈光才. 微纳富磷生物炭对土壤-苏柳系统中Cu和Pb稳定性的影响[J]. 生态环境学报, 2024, 33(3): 439-449. |
[9] | 江润海, 温绍福, 朱城强, 张梅, 杨润玲, 王春雪, 侯秀丽. 铅污染矿区中耐铅解磷菌对玉米的促生及根际铅的固化效应[J]. 生态环境学报, 2024, 33(2): 291-300. |
[10] | 李嘉惠, 童辉, 陈曼佳, 刘承帅, 姜琪, 易秀. 微氧生物亚铁氧化及其重金属固定效应研究进展[J]. 生态环境学报, 2024, 33(2): 310-320. |
[11] | 李璞君, 唐丽, 赵博, 邸东柳, 陈岩, 肖江, 陈光才. 生物炭基土壤改良剂对锑矿区土壤质量及亮叶桦生长的影响[J]. 生态环境学报, 2024, 33(12): 1953-1963. |
[12] | 马志伟, 张丛志, 赵占辉, 吴其聪, 赵金花, 陈卓, 李敬王, 张楠, 薛雅, 王娅茹, 陆芸萱, 张佳宝. 基于木本泥炭的土壤健康培育研究进展[J]. 生态环境学报, 2024, 33(12): 1964-1977. |
[13] | 唐舒娅, 王春辉, 宋靖, 李刚. 环象山港区域土壤重金属污染特征及风险评估[J]. 生态环境学报, 2024, 33(11): 1768-1781. |
[14] | 梁茂厂, 郭晓华, 张影, 马雨萌, 陈弈铭, 龚复俊. 湖北省生态环境质量的时空演变特征及影响因素分析[J]. 生态环境学报, 2024, 33(10): 1634-1647. |
[15] | 冯自贤, 佘璐, 王秀慧, 杨璐, 杨晨. 基于改进遥感生态指数的宁夏生态环境质量时空变化[J]. 生态环境学报, 2024, 33(1): 131-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||