生态环境学报 ›› 2025, Vol. 34 ›› Issue (1): 145-155.DOI: 10.16258/j.cnki.1674-5906.2025.01.016
韩军超1,2(), 郑茂坤3(
), 涂晨2,**(
), 刘颖2, 曹振宇2, 邢倩雯2,4, 申卫收1,**(
), 骆永明2
收稿日期:
2024-10-15
出版日期:
2025-01-18
发布日期:
2025-01-21
通讯作者:
申卫收。E-mail: wsshen@nuist.edu.cn作者简介:
韩军超(2000年生),男,硕士研究生,主要研究方向为土壤污染与生物修复。E-mail: hanjcpp@163.com* 这些作者对这项工作的贡献相等:郑茂坤
基金资助:
HAN Junchao1,2(), ZHENG Maokun3(
), TU Chen2,**(
), LIU Ying2, CAO Zhenyu2, XING Qianwen2,4, SHEN Weishou1,**(
), LUO Yongming2
Received:
2024-10-15
Online:
2025-01-18
Published:
2025-01-21
摘要:
趋磁细菌是一类能通过生物矿化在细胞内形成磁性纳米颗粒——磁小体的微生物,广泛分布于多种自然环境中。趋磁细菌利用体内的磁小体进行定向运动。磁小体主要由磁铁矿(Fe3O4)或胶黄铁矿(Fe3S4)构成,具有独特的生物相容性和超顺磁性。趋磁细菌在医学、生物学、地质学和环境污染治理与修复领域都具有显著的应用潜力。该文首先介绍了趋磁细菌的分布及其特性,其次归纳了从自然界样品中富集趋磁细菌的主要方法和装置并概述趋磁细菌的培养方法,总结国内外趋磁细菌在环境污染治理与修复领域,尤其是在重金属修复领域的研究进展。现有的研究证明,趋磁细菌能有效去除废水中的金、铬、镉、铜等重金属离子,且对环境中的部分有机污染物也具有一定的去除效果。同时,该文也提出目前趋磁细菌的应用遇到的问题和挑战。趋磁细菌的高密度培养难度大、分离回收设备不完善以及应用场景局限,这些因素都限制了趋磁细菌在环境污染治理与修复领域中的应用。最后展望了趋磁细菌在环境修复领域的应用研究应聚焦于优化培养条件以实现大量培养,并研发基于趋磁细菌的修复功能菌剂与技术,为环境中各种污染物尤其是重金属的减量修复提供新方案。
中图分类号:
韩军超, 郑茂坤, 涂晨, 刘颖, 曹振宇, 邢倩雯, 申卫收, 骆永明. 趋磁细菌在环境污染修复中的应用研究进展与展望[J]. 生态环境学报, 2025, 34(1): 145-155.
HAN Junchao, ZHENG Maokun, TU Chen, LIU Ying, CAO Zhenyu, XING Qianwen, SHEN Weishou, LUO Yongming. Research Progresses and Prospects on the Application of Magnetotactic Bacteria in Environmental Remediation[J]. Ecology and Environment, 2025, 34(1): 145-155.
菌株 | 金属离子 | pH | 细菌投加量 | t/h | 初始质量浓度/(g·L−1) | 吸附率/% | 参考文献 |
---|---|---|---|---|---|---|---|
Stenotrophomonas. sp. | Au3+ | 2 | 10 g·L−1 | 1 | 80 | 100 | Song et al., |
RS-1 | Cd2+ | 7 | 6.9×107 ind·mL−1 | 250 | 1.3 | 96 | Afrooz et al., |
MSR-1 | Ag+ | 4.0 | 10 g·L−1 | 0.16 | 80 | 91 | Wang et al., |
Cu2+ | 5.0 | 62 | |||||
magnetotatic bacteria | Cu2+ | 2.0—4.5 | 10 g·L−1 | 0.16 | 80 | 98 | Song et al., |
Au3+ | 1.0—5.5 | 99 | |||||
AMB-1 | Au3+ | — | 6.9×107 ind·mL−1 | 168 | 0.4 | 42 | Tanaka et al., |
MSR-1 | Cr6+ | 7 | — | 40 | 10 | 100 | Qu et al., |
MTB-KTN90 | Cobalt | 7 | 0.015 g·L−1 | 1 | 115 | 88 | Tajer-Mohammad-Ghazvini et al., 2016 |
(干质量) |
表1 趋磁细菌在重金属吸附去除领域的应用
Table 1 Applications of magnetotactic bacteria in heavy metal adsorption and removal
菌株 | 金属离子 | pH | 细菌投加量 | t/h | 初始质量浓度/(g·L−1) | 吸附率/% | 参考文献 |
---|---|---|---|---|---|---|---|
Stenotrophomonas. sp. | Au3+ | 2 | 10 g·L−1 | 1 | 80 | 100 | Song et al., |
RS-1 | Cd2+ | 7 | 6.9×107 ind·mL−1 | 250 | 1.3 | 96 | Afrooz et al., |
MSR-1 | Ag+ | 4.0 | 10 g·L−1 | 0.16 | 80 | 91 | Wang et al., |
Cu2+ | 5.0 | 62 | |||||
magnetotatic bacteria | Cu2+ | 2.0—4.5 | 10 g·L−1 | 0.16 | 80 | 98 | Song et al., |
Au3+ | 1.0—5.5 | 99 | |||||
AMB-1 | Au3+ | — | 6.9×107 ind·mL−1 | 168 | 0.4 | 42 | Tanaka et al., |
MSR-1 | Cr6+ | 7 | — | 40 | 10 | 100 | Qu et al., |
MTB-KTN90 | Cobalt | 7 | 0.015 g·L−1 | 1 | 115 | 88 | Tajer-Mohammad-Ghazvini et al., 2016 |
(干质量) |
[1] | AFROOZ M R, MOGHADAS B K, TANJID S, 2022. Performance of functionalized bacterial as bio-adsorbent for intensifying heavy metal uptake from wastewater: A review study[J]. Journal of Alloys and Compounds, 893:162321. |
[2] | AZEEZ N A, DASH S S, GUMMAD S N, et al., 2021. Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr(VI)][J]. Chemosphere, 266:129204. |
[3] | BAHAJ A S, CROUDCE I W, JAMES P A B, et al., 1998. Continuous radionuclide recovery from wastewater using magnetotactic bacteria[J]. Journal of Magnetism Magnetic Materials, 184(2):241-244. |
[4] |
BAZYLINSKI D A, FRANKEL R B, 2004. Magnetosome formation in prokaryotes[J]. Nature Reviews. Microbiology, 2(3):217-230.
PMID |
[5] | BAZYLINSKI D A, WILLIAMS T J, LEFEVER C T, et al., 2013a. Magnetovibrio blakemorei gen. nov., sp. nov., a magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh[J]. International Journal of Systematic and Evolutionary Microbiology, 63(Part 5):1824-1833. |
[6] | BAZYLINSKI D A, WILLIAMS T J, LEFEVER C T, et al., 2013b. Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria[J]. International Journal of Systematic and Evolutionary Microbiology, 63(Part 3):801-808. |
[7] | BERNY C, LEFEVERE R, GUYOT F, et al., 2020. A method for producing highly pure magnetosomes in large quantity for medical applications using Magnetospirillum gryphiswaldense MSR-1 magnetotactic bacteria amplified in minimal growth media[J]. Frontiers in Bioengineering and Biotechnology, 8:16. |
[8] | BLAKEMORE R P, 1975. Magnetotactic Bacteria[J]. Science, 4212(190):377-379. |
[9] |
BLAKEMORE R P, MARAREA D, WOLFE R S, 1979. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium[J]. Journal of Bacteriology, 140(2):720-729.
DOI PMID |
[10] | CHEN C Y, WANG P P, CHEN H T, et al., 2022. Smart magnetotactic bacteria enable the inhibition of neuroblastoma under an alternating magnetic field[J]. ACS Applied Materials & Interfaces, 14(12):14049-14058. |
[11] | DU H J, ZHANG R, ZHANG W Y, et al., 2017. Characterization of uncultivated magnetotactic bacteria from the sediments of Yuehu Lake, China[J]. Acta Oceanologica Sinica, 36(2):94-104. |
[12] | GINET N, PARDOUX R, ADRYANCZYK G, et al., 2011. Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes[J]. Plos One, 6(6):e21442. |
[13] | GOSWAMI P, HE K, LI J H, et al., 2022. Magnetotactic bacteria and magnetofossils: Ecology, evolution and environmental implications[J]. NPJ Biofilms & Microbiomes, 8(1):43. |
[14] | HE K, ROUD S C, GILDER S A, et al., 2018. Seasonal variability of magnetotactic bacteria in a freshwater pond[J]. Geophysical Research Letters, 45(5):2294-2302. |
[15] | HESLOP D, ROBERTS A P, CHANG L, et al., 2013. Quantifying magnetite magnetofossil contributions to sedimentary magnetizations[J]. Earth and Planetary Science Letters, 382:58-65. |
[16] | HEYEN U, SCHÜLER D, 2003. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor[J]. Applied Microbiology and Biotechnology, 61(5-6):536-544. |
[17] |
HONDA T, TANAKA T, YOSHINO T, 2015. Stoichiometrically controlled immobilization of multiple enzymes on magnetic nanoparticles by the magnetosome display system for efficient cellulose hydrolysis[J]. Biomacromolecules, 16(12):3863-3868.
DOI PMID |
[18] |
JOGLER C, LIN W, MEYERDIERKS A, et al., 2009. Toward cloning of the magnetotactic metagenome: Identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments[J]. Applied and Environmental Microbiology, 75(12):3972-3979.
DOI PMID |
[19] | KLUMPP S, FAIVRE D, 2016. Magnetotactic bacteria: Magnetic navigation on the microscale[J]. The European Physical Journal. St, Special Topics, 225(11-12):2173-2188. |
[20] | KOLINKO S, JOGLER C, KATZMANN E, et al., 2011. Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3[J]. Environmental Microbiology, 14(7):1709-1721. |
[21] |
KOZYAEVA V V, GTOUZDEV D S, DZIUBA M V, et al., 2017. Diversity of magnetotactic bacteria of the Moskva River[J]. Mikrobiologiia, 86(1):99-106.
PMID |
[22] | LI J B, ZHANG D Y, LI B, et al., 2022. Identifying the active phenanthrene degraders and characterizing their metabolic activities at the single-cell level by the combination of magnetic-nanoparticle-mediated isolation, stable-isotope probing, and raman-activated cell sorting (MMI-SIP-RACS)[J]. Environmental Science & Technology, 56(4):2289-2299. |
[23] | LIN W, PAN Y X, 2015. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria[J]. Environmental Microbiology Reports, 7(2):237-242. |
[24] |
LIN W, PAN Y X, Bazylinski D A. 2017. Diversity and ecology of and biomineralization by magnetotactic bacteria[J]. Environmental Microbiology Reports, 9(4):345-35.
DOI PMID |
[25] | LIN S U, FREITAS F, KEIM C N, et al., 2003. Simple homemade apparatus for harvesting uncultured magnetotactic microorganisms[J]. Brazilian Journal of Microbiology, 34(2):111-116. |
[26] | MATHIEU B, AONGUS M C, DMITRI F, et al., 2014. Influence of magnetic fields on magneto-aerotaxis[J]. PLoS One, 9(7):e101150. |
[27] | MATSUNAGA T, OKAMURA Y, FUKUDA Y, et al., 2005. Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1[J]. DNA Research, 12(3):157-166. |
[28] | OESTREICHER Z, PÉREZ-GUZMÁN L, CASILLAS-ITUARYE N N, et al., 2022. Thermophilic Magnetotactic Bacteria from Mickey Hot Springs, an Arsenic-Rich Hydrothermal System in Oregon[J]. ACS earth and space chemistry, 6(3):530-540. |
[29] | PAN Y F, LIU S, TIAN F, et al., 2022. Tetrabromobisphenol A and hexabromocyclododecanes in sediments from fishing ports along the coast of South China: Occurrence, distribution and ecological risk[J]. Chemosphere, 302:134872. |
[30] | PRIYA A K, GNANASEKARAN L, DUTTA K, et al., 2022. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms[J]. Chemosphere, 307(Part 4):135957. |
[31] | QU Y M, ZHANG X M, XU J, et al., 2014. Removal of hexavalent chromium from wastewater using magnetotactic bacteria[J]. Separation And Purification Technology, 136:10-17. |
[32] | SALAM M A, KORKMAZ N, CUCIL L M, et al., 2023. Isolation, microscopic and magnetotactic characterization of Magnetospirillum moscoviense MS-24 from Banjosa Lake, Pakistan[J]. Biotechnology Letters, 45(8):967-979. |
[33] |
SANNIGRAHI S, SUTHINDHIRAN K, 2019. Metal recovery from printed circuit boards by magnetotactic bacteria[J]. Hydrometallurgy, 187:113-124.
DOI |
[34] | SCHLEIFER K H, SCHÜKER D, SPRING S, et al., 1991. The genus Magnetospirillum gen. nov. description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. Nov[J]. Systematic and Applied Microbiology, 14(4):379-385. |
[35] |
SHEN J, PATERSON G A, WANG Y Z, et al., 2023. Renaissance for magnetotactic bacteria in astrobiology[J]. ISME Journal, 17(10):1526-1534.
DOI PMID |
[36] | SONG H P, LI X G, SUN J S, et al., 2007. Biosorption equilibrium and kinetics of Au(III) and Cu(II) on magnetotactic bacteria[J]. Chinese Journal of Chemical Engineering, 15(6):847-854. |
[37] | SONG H P, LI X G, SUN J S, et al., 2008. Application of a magnetotactic bacterium, Stenotrophomonas sp. to the removal of Au(III) from contaminated wastewater with a magnetic separator[J]. Chemosphere, 72(4):616-621. |
[38] | SONG S J, MAYORGA-MARTINEZ C C, VYSKOCIL J, et al., 2023. Precisely navigated biobot swarms of bacteria magnetospirillum magneticum for Water Decontamination[J]. ACS Applied Materials & Interfaces, 15(5):7023-7029. |
[39] | SOMU P, NARAYANASAMY S, GOMEZ L A, et al., 2022. Immobilization of enzymes for bioremediation: A future remedial and mitigating strategy[J]. Environmental Research, 212(Part D): 113411. |
[40] | SPRING S, AMANN R, LUDWIG W, et al., 1992. Phylogenetic diversity and identification of nonculturable magnetotactic bacteria[J]. Systematic and Applied Microbiology, 15(1):116-122. |
[41] | SPRING S, AMANN R, LUDWIG W, et al., 1995. Phylogenetic Analysis of uncultured magnetotactic bacteria from the Alpha-subclass of proteobacteria[J]. Systematic and Applied Microbiology, 17(4):501-508. |
[42] | SUN J B, ZHAO F, TANG T, et al., 2008. High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air[J]. Applied Microbiology and Biotechnology, 79(3):389-397. |
[43] | TAKAHASHI H, KIKURA H, IWASA T, et al., 2008. The effect of magnetic field on magnetotactic bacteria behaviors[J]. Advances in Science & Technology, 57:61-66. |
[44] |
TANAKA M, ARAKAKI A, STANILAND S S, et al., 2010. Simultaneously discrete biomineralization of magnetite and tellurium nanocrystals in magnetotactic bacteria[J]. Applied and Environmental Microbiology, 76(16):5526-5532.
DOI PMID |
[45] | TANAKA M, KAWASE M, TANAKA T, et al., 2009. Gold biorecovery from plating waste by magnetotactic bacterium, Magnetospirillum magneticum AMB-1[J]. MRS Online Proceedings Library, 1169(1). |
[46] | TANAKA M, NAKATA Y, MORI T, et al., 2008. Development of a cell surface display system in a magnetotactic bacterium, “Magnetospirillum magneticum” AMB-1[J]. Applied and Environmental Microbiology, 74:3342-3348. |
[47] | TAN S M, ISMAIL M H, CAO B, 2021. Biodiversity of magnetotactic bacteria in the tropical marine environment of Singapore revealed by metagenomic analysis[J]. Environmental Research, 194:110714. |
[48] | TAJER-MOHAMMAND-GHAZVINI P, KASRA-KERMANSHAHI R, NOZAD-GOLIKAND A, et al., 2016. Cobalt separation by Alphaproteobacterium MTB-KTN90: Magnetotactic bacteria in bioremediation[J]. Bioprocess And Biosystems Engineering, 39(12):1899-1911. |
[49] | TAY A, PFEIFFER D, ROWE K, et al., 2018. High-throughput microfluidic sorting of live magnetotactic bacteria[J]. Applied and Environmental Microbiology, 84(17):e01308-18. |
[50] |
UZUN M, ALEKSEEVA L, KRUTKINA M, et al., 2020. Unravelling the diversity of magnetotactic bacteria through analysis of open genomic databases[J]. Scientific Data, 7(1):252.
DOI PMID |
[51] | UZUN M, KOZIAEVA V, DZIUBA M, et al., 2022. Detection of interphylum transfers of the magnetosome gene cluster in magnetotactic bacteria[J]. Frontiers in Microbiology, 13:945734. |
[52] |
WANG P P, CHEN C Y, WANG Q M, et al., 2022. Tumor inhibition via magneto-mechanical oscillation by magnetotactic bacteria under a swing MF[J]. Journal of Controlled Release, 351:941-953.
DOI PMID |
[53] | WANG X J, LI Y, ZHAO J, et al., 2020. Magnetotactic bacteria: Characteristics and environmental applications[J]. Frontiers of Environmental Science & Engineering, 14(4):3-16. |
[54] | WANG Y H, GAO H, SUN J S, et al., 2011. Selective reinforced competitive biosorption of Ag(I) and Cu(II) on Magnetospirillum gryphiswaldense[J]. Desalination, 270(1-3):258-263. |
[55] | WANG Q, WANG X, ZHANG W J, et al., 2017. Physiological characteristics of Magnetospirillum gryphiswaldense MSR-1 that control cell growth under high-iron and low-oxygen conditions[J]. Scientific Reports, 7:2800. |
[56] | WOLFE R S, THAUER R K, PFENNING N, 1987. A ‘capillary racetrack’ method for isolation of magnetotactic bacteria[J]. Fems Microbiology Letters, 45(1):31-35. |
[57] | WU S C, HSIAO W C, ZHAO Y C, et al., 2023. Hexavalent chromate bioreduction by a magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1 and the effect of magnetosome synthesis[J]. Chemosphere, 330:138739. |
[58] | WU S, TIAN J S, XUE X L, et al., 2024. Biosynthesis of magnetosome-nanobody complex in Magnetospirillum gryphiswaldense MSR-1 and a magnetosome-nanobody-based enzyme-linked immunosorbent assay for the detection of tetrabromobisphenola in water[J]. Analytical and Bioanalytical Chemistry, 416(1):141-149. |
[59] |
XIE J, CHEN K, CHEN X Y, 2009. Production, Modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria[J]. Nano Research, 2(4):261-278.
DOI PMID |
[60] | XU J J, MA S J, ZHENG H L, et al., 2022. Biomanufacturing biotinylated magnetic nanomaterial via construction and fermentation of genetically engineered magnetotactic bacteria[J]. Bioengineering-Basel, 9(8):356. |
[61] | YAASHIKAA P R, DECI M K, KUAMAR P S, 2022. Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review[J]. Chemosphere, 299:134390. |
[62] | YANG C D, TAKETAMA H, MATSUNAGA T, 2001. Iron feeding optimization and plasmid stability in production of recombinant bacterial magnetic particles by Magnetospirillum magneticum AMB-1 in fed-batch culture[J]. Journal of Bioscience and Bioengineering, 91(2):213-216. |
[63] | YANG J, LI S Q, HUANG X L, et al., 2013. A key time point for cell growth and magnetosome synthesis of Magnetospirillum gryphiswaldense based on real-time analysis of physiological factors[J]. Frontiers in Microbiology, 4:210. |
[64] | ZHOU Y P, LISOWSKI W, ZHOU Y, et al., 2017. Genetic improvement of Magnetospirillum gryphiswaldense for enhanced biological removal of phosphate[J]. Biotechnology Letters, 39(10):1509-1514. |
[65] | 曹振宇, 2024. 趋磁细菌对水和土壤中镉的吸附减量修复与细菌磁性分离研究[D]. 南京: 中国科学院南京土壤研究所. |
CAO Z Y, 2024. Preliminary study on the adsorpticvely reducded remediation of cadmiun polluted water and soils by the magnetotactic bacteria and their magnetic separation[D]. Nanjing: Institute of Soil Science, Chinese Academy of Sciences. | |
[66] | 何敏, 林巍, 张文斯, 等, 2018. 北京莲花池趋磁细菌的群落多样性研究[J]. 地球科学, 43(S1):106-114. |
HE M, LIN W, ZHANG W S, et al., 2018. Morphological and phylogenetic diversity of magnetotactic bacteriain pond Lianhua, Beijing[J]. Earth Science, 43(S1):106-114. | |
[67] | 江淼, 马胜伟, 吴洽儿, 2017. 趋磁细菌研究进展[J]. 生物学杂志, 34(5):93-97. |
JIANG M, MA S W, WU Q E, 2017. Advances in magnetic bacteria chemotaxis[J]. Journal of Biology, 34(5):93-97. | |
[68] | 林巍, 潘永信, 2018. 微生物的趋磁性与磁小体的生物矿化[J]. 地球科学, 43(S1):115-126. |
LIN W, PAN Y X, 2018. Magnetotaxis and magnetosome biomineralization in microorganisms[J]. Earth Science, 43(S1):115-126. | |
[69] |
刘琴, 赵坤, 2021. 趋磁细菌运动特性的研究进展[J]. 生物技术通报, 37(3):198-205.
DOI |
LIU Q, ZHAO K, 2021. Research progress on the movement characteristics of magnetotactic bacteria[J]. Biotechnology Bulletin, 37(3):198-205.
DOI |
|
[70] | 骆永明, 2023. 如何突破耕地重金属的靶向快速经济安全减污技术[M] 北京: 中国科学技术出版社:121-126. |
LUO Y M, 2023. How to Break through a Rapid, Economic and Safe In-Situ Remediation Technology for Targeted Reduction of Heavy Metal Pollution in Cultivated Farmland[M]. Beijing: China Science and Technology Press:121-126. | |
[71] | 宋慧平, 2007. 趋磁细菌对贵金属离子的选择性吸附行为及溶液中金的回收研究[D]. 天津: 天津大学. |
SONG H P, 2007. Selective biosorption behavior of precious metal ions on magnetotactic bacteria and gold recovery from gold(III) contained solution[D]. Tianjin:Tianjin University. | |
[72] | 宋慧平, 李鑫钢, 孙津生, 等, 2007. 生物磁分离新技术处理含铬废水最佳条件的研究[J]. 环境工程学报, 1(10):22-26. |
SONG H P, LI X G, SUN J S, et al., 2007. A novel technology for treatment of wastewater containing Cr(Ⅲ) ions[J]. Chinese Journal of Environmental Engineering, 1(10):22-26. | |
[73] | 孙秀兰, 刘伟伟, 张银志, 等, 2011. 趋磁细菌研究进展[J]. 中国微生态学杂志, 23(6):570-573. |
SUN X L, LIU W W, ZHANG Y Z, et al., 2011. Advances in magnetic bacteria chemotaxis[J]. Chinese Journal of Microecology, 23(6):570-573. | |
[74] | 徐丛, 陈海涛, 张文燕, 等, 2016. 三亚天涯海角潮间带趋磁细菌特性[J]. 海洋科学, 40(7):8-16. |
XU C, CHEN H T, ZHANG W Y, et al., 2016. Characterization of magnetotactic bacteria found in the intertidal zone of Tianyahaijiao, Sanya, China[J]. Marine Sciences, 40(7):8-16. | |
[75] | 王艳红, 2005. 磁场-趋磁细菌处理重金属离子废水[D]. 天津: 天津大学. |
WANG Y H, 2005. Magnetic field-magnetotactic bacteria’treating wastewater with heavy metal ions[D]. Tianjin:Tianjin University. |
[1] | 常春英, 王刚, 曹浩轩, 邓一荣, 陶亮. 模拟干湿过程对稳定化修复土壤中重金属Ni和Pb的影响[J]. 生态环境学报, 2025, 34(1): 118-125. |
[2] | 曹振宇, 涂晨, 刘颖, 韩军超, 邢倩雯, 骆永明. 趋磁细菌Magnetospirillum gryphiswaldense MSR-1对镉的生物吸附初步研究[J]. 生态环境学报, 2025, 34(1): 99-107. |
[3] | 丛鑫, 张怀迪, 张荣, 赵琛, 陈坤, 刘寒冰. 基于Meta分析的近10年中国农田土壤重金属污染特征与风险解析[J]. 生态环境学报, 2024, 33(9): 1451-1459. |
[4] | 刘东宜, 屈永华, 冯耀伟, 屈冉. 基于网格搜索优化CatBoost模型的GF-5卫星影像铬离子含量反演研究[J]. 生态环境学报, 2024, 33(9): 1460-1470. |
[5] | 欧阳美凤, 尹宇莹, 张金谌, 刘清霖, 谢意南, 方平. 洞庭湖典型水域重金属含量的空间分布与来源解析[J]. 生态环境学报, 2024, 33(8): 1269-1278. |
[6] | 吴文伟, 沈城, 沙晨燕, 林匡飞, 吴健, 谢雨晴, 周璇. 城市工业地块土壤重金属污染风险评价与源解析[J]. 生态环境学报, 2024, 33(5): 791-801. |
[7] | 肖江, 李晓刚, 赵博, 陈岩, 陈光才. 微纳富磷生物炭对土壤-苏柳系统中Cu和Pb稳定性的影响[J]. 生态环境学报, 2024, 33(3): 439-449. |
[8] | 江润海, 温绍福, 朱城强, 张梅, 杨润玲, 王春雪, 侯秀丽. 铅污染矿区中耐铅解磷菌对玉米的促生及根际铅的固化效应[J]. 生态环境学报, 2024, 33(2): 291-300. |
[9] | 李嘉惠, 童辉, 陈曼佳, 刘承帅, 姜琪, 易秀. 微氧生物亚铁氧化及其重金属固定效应研究进展[J]. 生态环境学报, 2024, 33(2): 310-320. |
[10] | 李璞君, 唐丽, 赵博, 邸东柳, 陈岩, 肖江, 陈光才. 生物炭基土壤改良剂对锑矿区土壤质量及亮叶桦生长的影响[J]. 生态环境学报, 2024, 33(12): 1953-1963. |
[11] | 马志伟, 张丛志, 赵占辉, 吴其聪, 赵金花, 陈卓, 李敬王, 张楠, 薛雅, 王娅茹, 陆芸萱, 张佳宝. 基于木本泥炭的土壤健康培育研究进展[J]. 生态环境学报, 2024, 33(12): 1964-1977. |
[12] | 唐舒娅, 王春辉, 宋靖, 李刚. 环象山港区域土壤重金属污染特征及风险评估[J]. 生态环境学报, 2024, 33(11): 1768-1781. |
[13] | 杨正桥, 邹奇, 韦行, 周凯, 陈志良. 金属尾矿微生物对尾矿环境的适应与调控机制研究进展[J]. 生态环境学报, 2024, 33(1): 156-166. |
[14] | 王宁, 刘效东, 甘先华, 苏宇乔, 吴国章, 黄芳芳, 张卫强. 亚热带典型林分降水过程中的水质效应[J]. 生态环境学报, 2023, 32(8): 1365-1375. |
[15] | 刘炳妤, 王一佩, 姚作芳, 杨钙仁, 徐晓楠, 邓羽松, 黄钰涵. 沼液还田下不同种植模式的重金属风险评价及安全消纳量分析[J]. 生态环境学报, 2023, 32(8): 1507-1515. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||