生态环境学报 ›› 2025, Vol. 34 ›› Issue (2): 311-320.DOI: 10.16258/j.cnki.1674-5906.2025.02.013
张传华1(), 刘力1,*, 代杰2, 李曼曼1, 张凤太1, 邓凌3
收稿日期:
2024-09-07
出版日期:
2025-02-18
发布日期:
2025-03-03
通讯作者:
*刘力。作者简介:
张传华(1978年生),男,副教授,主要从事土壤污染防治研究,E-mail: chongqing0555@163.com
基金资助:
ZHANG Chuanhua1(), LIU Li1,*, DAI Jie2, LI Manman1, ZHANG Fengtai1, DENG Ling3
Received:
2024-09-07
Online:
2025-02-18
Published:
2025-03-03
摘要:
以重庆彭水县大同镇为例,协同采集土壤-玉米样品50套,分析土壤及玉米样品中Cd、Hg、As、Pb和Cr的含量及土壤pH,综合考虑土壤重金属污染及累积性,开展耕地土壤环境质量类别划分,提出风险管控措施建议,以期为地质高背景区耕地土壤风险管控提供技术方法。结果表明,研究区耕地土壤以安全利用类和严格管控类为主,土壤存在明显重金属累积的点位占比为22%,主要的超标及累积因子为Cd和As,土壤重金属污染及累积问题显著。研究区耕地土壤环境质量类别以III类(安全利用类,无明显累积)为主,IV类(安全利用类,有明显累积)和VI类(严格管控类,无明显累积)耕地均分布在研究区西南部。研究区耕地土壤重金属超标整体受地质背景的影响,重金属累积主要与城镇生活污水、禽畜粪肥和部分复合肥施用等人为活动有关,由于外源输入,部分耕地土壤超标程度加剧趋势明显。研究区玉米样品的总体超标率为28%,超标因子为Cd。当土壤pH>6.5时,农产品超标风险显著降低。建议在耕地土壤重金属溯源断源的基础上,根据土壤及农产品污染程度,施用钙质土壤调理剂或钙镁磷肥进行土壤酸化治理,实现“边生产,边修复”,逐渐改善研究区土壤环境质量状况。
中图分类号:
张传华, 刘力, 代杰, 李曼曼, 张凤太, 邓凌. 基于土壤重金属污染和累积性评价的耕地环境质量类别划分与风险管控[J]. 生态环境学报, 2025, 34(2): 311-320.
ZHANG Chuanhua, LIU Li, DAI Jie, LI Manman, ZHANG Fengtai, DENG Ling. Classification and Risk Management of Cultivated Land Environmental Quality Based on Evaluation of Soil Heavy Metal Pollution and Accumulation[J]. Ecology and Environment, 2025, 34(2): 311-320.
指标 | 样品处理方法 | 分析方法 |
---|---|---|
Pb、Cr | 粉末压片法 | X射线荧光光谱法 (XRF) |
Cd | HCl-HNO3-HF-HClO4溶样 | 电感耦合等离子体质谱法 (ICP-MS) |
As、Hg | 王水溶样 | 原子荧光法 (AFS) |
pH | 蒸馏水浸提 | 离子选择性电极法 (ISE) |
表1 样品处理及分析方法
Table 1 Sample treatment and analysis methods
指标 | 样品处理方法 | 分析方法 |
---|---|---|
Pb、Cr | 粉末压片法 | X射线荧光光谱法 (XRF) |
Cd | HCl-HNO3-HF-HClO4溶样 | 电感耦合等离子体质谱法 (ICP-MS) |
As、Hg | 王水溶样 | 原子荧光法 (AFS) |
pH | 蒸馏水浸提 | 离子选择性电极法 (ISE) |
元素 | 用地类型 | 土壤pH | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH≤5.5 | 5.5<pH≤6.5 | 6.5<pH≤7.5 | pH>7.5 | |||||||||
筛选值 | 管制值 | 筛选值 | 管制值 | 筛选值 | 管制值 | 筛选值 | 管制值 | |||||
Cd | 水田 | 0.3 | 1.5 | 0.4 | 2.0 | 0.6 | 3.0 | 0.8 | 4.0 | |||
其他 | 0.3 | 0.3 | 0.3 | 0.6 | ||||||||
Hg | 水田 | 0.5 | 2.0 | 0.5 | 2.5 | 0.6 | 4.0 | 1.0 | 6.0 | |||
其他 | 1.3 | 1.8 | 2.4 | 3.4 | ||||||||
As | 水田 | 30 | 200 | 30 | 150 | 25 | 120 | 20 | 100 | |||
其他 | 40 | 40 | 30 | 25 | ||||||||
Pb | 水田 | 80 | 400 | 100 | 500 | 140 | 700 | 240 | 1000 | |||
其他 | 70 | 90 | 120 | 170 | ||||||||
Cr | 水田 | 250 | 800 | 250 | 850 | 300 | 1000 | 350 | 1300 | |||
其他 | 150 | 150 | 200 | 250 |
表2 农用地土壤污染风险筛选值和管制值
Table 2 Risk screening values and risk intervention values for soil contamination of agricultural land mg?kg?1
元素 | 用地类型 | 土壤pH | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH≤5.5 | 5.5<pH≤6.5 | 6.5<pH≤7.5 | pH>7.5 | |||||||||
筛选值 | 管制值 | 筛选值 | 管制值 | 筛选值 | 管制值 | 筛选值 | 管制值 | |||||
Cd | 水田 | 0.3 | 1.5 | 0.4 | 2.0 | 0.6 | 3.0 | 0.8 | 4.0 | |||
其他 | 0.3 | 0.3 | 0.3 | 0.6 | ||||||||
Hg | 水田 | 0.5 | 2.0 | 0.5 | 2.5 | 0.6 | 4.0 | 1.0 | 6.0 | |||
其他 | 1.3 | 1.8 | 2.4 | 3.4 | ||||||||
As | 水田 | 30 | 200 | 30 | 150 | 25 | 120 | 20 | 100 | |||
其他 | 40 | 40 | 30 | 25 | ||||||||
Pb | 水田 | 80 | 400 | 100 | 500 | 140 | 700 | 240 | 1000 | |||
其他 | 70 | 90 | 120 | 170 | ||||||||
Cr | 水田 | 250 | 800 | 250 | 850 | 300 | 1000 | 350 | 1300 | |||
其他 | 150 | 150 | 200 | 250 |
评价结果 | 无明显累积 | 有明显累积 |
---|---|---|
优先保护 | I | II |
安全利用 | III | IV |
严格管控 | V | VI |
表3 土壤环境质量等级划分方法
Table 3 Classification method of soil environmental quality
评价结果 | 无明显累积 | 有明显累积 |
---|---|---|
优先保护 | I | II |
安全利用 | III | IV |
严格管控 | V | VI |
指标 | 最小值/ (mg·kg−1) | 最大值/ (mg·kg−1) | 平均值/ (mg·kg−1) | 标准差 | 变异系数 | 块金系数 |
---|---|---|---|---|---|---|
Cd | 0.20 | 1.98 | 0.84 | 0.32 | 0.38 | 0.60 |
Hg | 0.08 | 0.18 | 0.12 | 0.02 | 0.18 | 0.10 |
As | 11.09 | 28.86 | 17.05 | 4.20 | 0.25 | 0.52 |
Pb | 22.00 | 34.29 | 25.90 | 4.69 | 0.18 | 0.23 |
Cr | 105.21 | 119.39 | 111.69 | 10.98 | 0.10 | 0.21 |
表4 土壤重金属描述性特征
Table 4 Characteristics of heavy metal content in soil
指标 | 最小值/ (mg·kg−1) | 最大值/ (mg·kg−1) | 平均值/ (mg·kg−1) | 标准差 | 变异系数 | 块金系数 |
---|---|---|---|---|---|---|
Cd | 0.20 | 1.98 | 0.84 | 0.32 | 0.38 | 0.60 |
Hg | 0.08 | 0.18 | 0.12 | 0.02 | 0.18 | 0.10 |
As | 11.09 | 28.86 | 17.05 | 4.20 | 0.25 | 0.52 |
Pb | 22.00 | 34.29 | 25.90 | 4.69 | 0.18 | 0.23 |
Cr | 105.21 | 119.39 | 111.69 | 10.98 | 0.10 | 0.21 |
样品编号 | pH | Cd | Hg | As | Pb | Cr |
---|---|---|---|---|---|---|
复合肥01 | 6.9 | 7.5 | ND | 25.0 | 19.5 | 9.9 |
复合肥02 | 7.6 | ND | ND | 0.2 | 0.1 | 2.7 |
复合肥03 | 6.8 | 0.2 | ND | 3.9 | 1.9 | 22.9 |
猪粪肥 | 6.8 | 0.5 | ND | 45.6 | 4.5 | 3.7 |
鸡鸭粪肥 | 7.0 | 0.3 | ND | 25.4 | 3.2 | 4.1 |
表5 研究区主要农业投入品重金属质量分数
Table 5 Heavy metal content of main agricultural inputs in the studied area mg·kg?1
样品编号 | pH | Cd | Hg | As | Pb | Cr |
---|---|---|---|---|---|---|
复合肥01 | 6.9 | 7.5 | ND | 25.0 | 19.5 | 9.9 |
复合肥02 | 7.6 | ND | ND | 0.2 | 0.1 | 2.7 |
复合肥03 | 6.8 | 0.2 | ND | 3.9 | 1.9 | 22.9 |
猪粪肥 | 6.8 | 0.5 | ND | 45.6 | 4.5 | 3.7 |
鸡鸭粪肥 | 7.0 | 0.3 | ND | 25.4 | 3.2 | 4.1 |
土壤环境质量等级 | 土壤pH | 玉米 样品数 | 超标率/ % | 超标程度 |
---|---|---|---|---|
I | 5.5<pH≤6.5 | 3 | 0 | ‒ |
pH>6.5 | 1 | 0 | ‒ | |
III | pH≤5.5 | 6 | 66.67 | 轻度超标 |
5.5<pH≤6.5 | 22 | 9.09 | 轻度超标 | |
pH>6.5 | 6 | 0 | ‒ | |
IV | pH≤5.5 | 3 | 100 | 轻度超标/重度超标 |
5.5<pH≤6.5 | 2 | 50 | 轻度超标 | |
pH>6.5 | 1 | 0 | ‒ | |
VI | pH≤5.5 | 2 | 100 | 重度超标 |
5.5<pH≤6.5 | 2 | 100 | 重度超标 | |
pH>6.5 | 2 | 0 | ‒ |
表6 不同土壤环境质量等级玉米超标情况统计
Table 6 Statistics of maize exceeding standard in different soil environmental quality grades
土壤环境质量等级 | 土壤pH | 玉米 样品数 | 超标率/ % | 超标程度 |
---|---|---|---|---|
I | 5.5<pH≤6.5 | 3 | 0 | ‒ |
pH>6.5 | 1 | 0 | ‒ | |
III | pH≤5.5 | 6 | 66.67 | 轻度超标 |
5.5<pH≤6.5 | 22 | 9.09 | 轻度超标 | |
pH>6.5 | 6 | 0 | ‒ | |
IV | pH≤5.5 | 3 | 100 | 轻度超标/重度超标 |
5.5<pH≤6.5 | 2 | 50 | 轻度超标 | |
pH>6.5 | 1 | 0 | ‒ | |
VI | pH≤5.5 | 2 | 100 | 重度超标 |
5.5<pH≤6.5 | 2 | 100 | 重度超标 | |
pH>6.5 | 2 | 0 | ‒ |
[1] | CAMBARDELLA C A, MOORMAN T B, PARKIN T B, et al., 1994. Field-scale variability of soil properties in central Iowa soils[J]. Soil Science Society of America Journal, 58(5): 1501-1511. |
[2] |
WANG M E, CHEN W P, PENG C, 2016. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China[J]. Chemosphere, 144: 346-351.
DOI PMID |
[3] | ZHANG K, ZHENG X H, LI H F, et al., 2020. Human health risk assessment and early warning of heavy metal pollution in soil of a coal chemical plant in Northwest China[J]. Soil and Sediment Contamination: An International Journal, 29(5): 481-502. |
[4] | 陈能场, 郑煜基, 何晓峰, 等, 2017. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 36(9): 1689-1692. |
CHEN N C, ZHENG Y J, HE X F, et al., 2017. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 36(9): 1689-1692. | |
[5] | 陈雅丽, 翁莉萍, 马杰, 等, 2019. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 38(10): 2219-2238. |
CHEN Y L, WENG L P, MA J, et al., 2019. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science, 38(10): 2219-2238. | |
[6] | 郭飞宏, 张心良, 汪龙眠, 等, 2012. 太湖地区农村生活污水生物生态处理技术选择分析[J]. 中国给水排水, 28(20): 48-51. |
GUO F H, ZHANG X L, WANG L M, et al., 2012. Selection and analysis of treatment technologies for rural sewage in Taihu Lake area[J]. China Water & Wastewate, 28(20): 48-51. | |
[7] | 黄国鑫, 刘瑞平, 杨瑞杰, 等, 2022. 我国农用地土壤重金属污染风险管控研究进展与实践要求[J]. 环境工程, 40(1): 216-223. |
HUANG G X, LIU R P, YANG R J, et al., 2022. Research process of risk management and control and their application requirements for farmland soil heavy metal contamination in China[J]. Environmental Engineering, 40(1): 216-223. | |
[8] | 李文达, 翟文静, 朱亚飞, 等, 2024. 风险管控思路的土壤重金属污染及防治策略[J]. 环境保护科学, 50(4): 169-174. |
LI W D, ZHAI W J, ZHU Y F, et al., 2024. Research on soil heavy metal pollution and its prevention and control strategies based on risk management approach[J]. Environmental Protection Science, 50(4): 169-174. | |
[9] | 中华人民共和国生态环境部, 国家市场监督管理总局, 2018. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. 北京: 中国环境科学出版社: 2-3. |
Ministry of Environmental Protection of the People’s Republic of China, State Administration for Market Regulation, 2018. Soil environment quality risk control standard for soilcontamination of agriculture land:GB 15618—2018 [S]. Beijing: China Environmental Science Press: 2-3. | |
[10] | 中华人民共和国农业农村部, 2019. 受污染耕地治理与修复导则:NY/T 3499—2019 [S]. 北京: 中国农业出版社: 3-5. |
Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2019. Guidelines for pollution control and soil remediation of contaminated cultivated land:NY/T 3499—2019 [S]. Beijing: China Agriculture Press: 3-5. | |
[11] | 李心, 林大松, 刘岩, 等, 2018. 不同土壤调理剂对镉污染水稻田控镉效应研究[J]. 农业环境科学学报, 37(7): 1511-1520. |
LI X, LIN D S, LIU Y, et al., 2018. Effects of different soil conditioners on cadmium control in cadmium-contaminated paddy fields[J]. Journal of Agro-Environment Science, 37(7): 1511-1520. | |
[12] | 廖书林, 郎印海, 王延松, 等, 2011. 辽河口湿地表层土壤中PAHs的源解析研究[J]. 中国环境科学, 31(3): 490-497. |
LIAO S L, LANG Y H, WANG Y S, et al., 2011. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the topsoil of Liaohe estuarine wetlands[J]. China Environmental Science, 31(3): 490-497. | |
[13] | 林力夫, 2018. 不同土壤调理剂对稻田镉污染的治理效果比较[D]. 广州: 华南农业大学. |
LIN L F, 2018. Comparison of the effects of different soil conditioners on cadmium pollution in paddy fields[D]. Guangzhou: South China Agricultural University. | |
[14] | 穆德苗, 孙约兵, 2022. 西南地质高背景区蔬菜Pb的安全生产阈值与土地质量类别划分[J]. 环境科学, 43(2): 965-974. |
MU D M, SUN Y B, 2022. Safety production threshold and land quality classification of vegetable Pb in high geological background area of Southwest China[J]. Environmental Science, 43(2): 965-974. | |
[15] | 穆虹宇, 庄重, 李彦明, 等, 2020. 我国畜禽粪便重金属含量特征及土壤累积风险分析[J]. 环境科学, 41(2): 986-996. |
MU H Y, ZHUANG Z, LI Y M, et al., 2020. Heavy metal contents in animal manure in China and the related soil accumulation risks[J]. Environmental Science, 41(2): 986-996. | |
[16] | 潘寻, 韩哲, 贲伟伟, 2013. 山东省规模化猪场猪粪及配合饲料中重金属含量研究[J]. 农业环境科学学报, 32(1): 160-165. |
PAN X, HAN Z, BEN W W, 2013. Heavy metal contents in pig manure and pig feeds from intensive pig farms in Shandong Province, China[J]. Journal of Agro-Environment Science, 32(1): 160-165. | |
[17] |
钱海燕, 陈葵, 戴星照, 等, 2014. 农村生活污水分散式处理研究现状及技术探讨[J]. 中国农学通报, 30(33): 176-180.
DOI |
QIAN H Y, CHEN K, DAI X Z, et al., 2014. Present status and technology on decentralized treatment of domestic sewage in rural areas[J]. Chinese Agricultural Science Bulletin, 30(33): 176-180.
DOI |
|
[18] | 单艳红, 应蓉蓉, 李志涛, 2021. 农用地土壤环境质量评估与分区管理研究[M]. 北京: 中国环境出版集团: 97-99. |
SHAN Y H, YING R R, LI Z T, 2021. Research on the assessment and zoning management of soil environmental quality in agricultural land[M]. Beijing: China Environmental Science Press: 97-99. | |
[19] | 宋波, 王佛鹏, 周浪, 等, 2019. 广西高镉异常区水田土壤Cd含量特征及生态风险评价[J]. 环境科学, 40(5): 2443-2452. |
SONG B, WANG F P, ZHOU L, et al., 2019. Cd content characteristics and ecological risk assessment of paddy soil in high cadmium anomaly area of Guangxi[J]. Environmental Science, 40(5): 2443-2452. | |
[20] | 王彬辉, 叶萍, 2021. 我国农用地污染风险管控制度问题及其完善[J]. 湖南农业大学学报 (社会科学版), 22(6): 90-96. |
WANG B H, YE P, 2021. Problems and improvement of soil pollution risk management and control system of agricultural land in China[J]. Journal of Hunan Agricultural University (Social Sciences), 22(6): 90-96. | |
[21] | 王锐, 胡小兰, 张永文, 等, 2020. 重庆市主要农耕区土壤Cd生物有效性及影响因素[J]. 环境科学, 41(4): 353-359. |
WANG R, HU X L, ZHANG Y W, et al., 2020. Bioavailability and influencing factors of soil Cd in the major farming areas of Chongqing[J]. Environmental Science, 41(4): 353-359. | |
[22] | 王锐, 余京, 李瑜, 等, 2022. 地块尺度重金属污染风险耕地安全利用区划方法[J]. 环境科学, 43(8): 4190-4198. |
WANG R, YU J, LI Y, et al., 2022. Study on zoning and safe utilization method of contaminated cultivated land at block scale[J]. Environmental Science, 43(8): 4190-4198. | |
[23] | 吴正祥, 周勇, 木合塔尔·艾买提, 等, 2020. 鄂西北山区耕层土壤pH值空间变异特征及其影响因素研究[J]. 长江流域资源与环境, 29(2): 488-498. |
WU Z X, ZHOU Y, MUHTAR A, et al., 2020. Spatial variability of soil pH value and its influencing factors in the soil layer of northwestern Hubei Province[J]. Resources and Environment in the Yangtze Basin, 29(2): 488-498. | |
[24] | 谢林花, 吴德礼, 张亚雷, 2018. 中国农村生活污水处理技术现状分析及评价[J]. 生态与农村环境学报, 34(10): 865-870. |
XIE L H, WU D L, ZHANG Y L, 2018. Analysis and evaluation of China’s rural domestic sewage treatment technology[J]. Journal of Ecology and Rural Environment, 34(10): 865-870. | |
[25] | 徐建明, 刘杏梅, 2020. “十四五” 土壤质量与食物安全前沿趋势与发展战略[J]. 土壤学报, 57(5): 1143-1154. |
XU J M, LIU X M, 2020. Frontier trends and development strategies of soil quality and food safety in the 14th Five-Year Plan[J]. Acta Pedologica Sinica, 57(5): 1143-1154. |
[1] | 黄连喜, 王泽煌, 田利华, 赵景鹏, 陈伟盛, 林启美, 黄庆, 魏岚. 广东省江门市耕地土壤矿质养分特征及差异[J]. 生态环境学报, 2025, 34(1): 46-55. |
[2] | 林馨, 徐伟铭, 廖云婷, 邵尔辉. 福建省耕地占补时空分异及其对生态系统服务价值的影响研究[J]. 生态环境学报, 2024, 33(12): 1837-1848. |
[3] | 范婉仪, 涂晨, 王顺扬, 吴昕优, 李烜桢, 骆永明. 不同品种烟草对轻度污染耕地土壤中镉的累积特征与减量修复潜力[J]. 生态环境学报, 2023, 32(8): 1516-1524. |
[4] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[5] | 樊慧琳, 张佳敏, 李欢, 王艳玲. 坡耕地稻田剖面磷的储存格局与流失风险研究[J]. 生态环境学报, 2023, 32(2): 283-291. |
[6] | 王洁, 单燕, 马兰, 宋延静, 王向誉. 秸秆/生物质炭协同还田措施对黄河三角洲盐碱土壤的改良效果研究[J]. 生态环境学报, 2023, 32(1): 90-98. |
[7] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[8] | 李美娇, 何凡能, 赵彩杉, 杨帆. 全球历史LUCC数据集新疆地区耕地数据可靠性评估[J]. 生态环境学报, 2022, 31(6): 1215-1224. |
[9] | 朱奕豪, 李青梅, 刘晓丽, 李娜, 宋凤玲, 陈为峰. 不同土地整治类型新增耕地土壤微生物群落特征研究[J]. 生态环境学报, 2022, 31(5): 909-917. |
[10] | 郭丽芳, 杨瑞, 孙蔚旻. 尾矿固氮菌的分离筛选及其植物促生效应研究[J]. 生态环境学报, 2022, 31(11): 2180-2188. |
[11] | 李亮亮, 代良羽, 高维常, 张淑怡, 刘涛泽. 贵州省典型覆膜耕地残膜赋存特征及影响因素[J]. 生态环境学报, 2022, 31(11): 2189-2197. |
[12] | 邢树文, 许佳敏, 黄彬, 高锦婷, 韩丽. 钨尾矿重金属污染对茶园土壤动物群落结构及多样性的影响[J]. 生态环境学报, 2021, 30(9): 1903-1915. |
[13] | 王卫红, 高双全, 杜衍红, 李志丰, 窦飞, 曾晓舵. 镉污染菜地叶面阻隔剂对不同品种辣椒镉积累影响[J]. 生态环境学报, 2021, 30(8): 1751-1756. |
[14] | 牛学奎, 吴学勇, 王薇, 艾志敏, 王舒婷, 侯娟, 周涛. 典型鼓风炉铅冶炼废渣堆场周边优势植物重金属富集特征研究[J]. 生态环境学报, 2021, 30(6): 1293-1298. |
[15] | 李太魁, 张香凝, 寇长林, 吕金岭, 郭战玲, 骆晓声. 不同农艺措施对丹江口库区坡耕地茶园水土和磷素流失的影响[J]. 生态环境学报, 2021, 30(12): 2324-2330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||