生态环境学报 ›› 2024, Vol. 33 ›› Issue (9): 1451-1459.DOI: 10.16258/j.cnki.1674-5906.2024.09.012
丛鑫1(), 张怀迪1,2, 张荣2, 赵琛2, 陈坤2, 刘寒冰2,*(
)
收稿日期:
2024-05-08
出版日期:
2024-09-18
发布日期:
2024-10-18
通讯作者:
*刘寒冰。E-mail: liuhb@craes.org.cn作者简介:
丛鑫(1976年生),女,教授,博士,研究方向为土壤环境化学和生态修复。E-mail: congxin1800@163.com
基金资助:
CONG Xin1(), ZHANG Huaidi1,2, ZHANG Rong2, ZHAO Cen2, CHEN Kun2, LIU Hanbing2,*(
)
Received:
2024-05-08
Online:
2024-09-18
Published:
2024-10-18
摘要:
基于2014-2023年期间在中国知网和Web of Science两个数据库发表的有关中国农田土壤重金属文献数据,采用Meta分析方法探讨了近10年来中国30个行政区中93个城市的农田土壤砷(As)、镉(Cd)、铬(Cr)、铜(Cu)、汞(Hg)、镍(Ni)、铅(Pb)和锌(Zn)的污染现状和空间分布特征,运用地累积指数法和潜在生态风险指数法对农田土壤8种重金属污染程度和潜在生态风险进行了评价,并采用主成分分析法来解析各种活动对重金属污染风险的贡献。研究结果表明,中国农田土壤重金属含量均值普遍超出区域土壤背景值,研究区域农田土壤中8种重金属超标占比为38.2%-84.1%。且研究区域土壤中Cd的算术平均值超过了《土壤环境质量 农用地土壤污染管控标准》(GB 15618—2018)中Cd的风险筛选值。地累积指数评价结果显示农田土壤8种重金属的污染程度由高到低依次为:Hg>Cd>Pb>Zn>Cu>Ni>Cr>As。Cd和Hg的污染等级较高,轻度及以上污染区域分别占到研究区域的69.3%和65.9%。潜在生态风险指数(Ir)计算结果表明,研究区域农田土壤中Cd和Hg元素属于较强生态风险危害范围,Ir>300的区域中Cd占比为41.9%,Hg为45.2%。主成分分析结果表明,研究区域农田土壤重金属污染风险可能主要来自农业活动、工业生产、自然源以及各种活动的混合贡献,3个主成分累计方差贡献为72.3%。
中图分类号:
丛鑫, 张怀迪, 张荣, 赵琛, 陈坤, 刘寒冰. 基于Meta分析的近10年中国农田土壤重金属污染特征与风险解析[J]. 生态环境学报, 2024, 33(9): 1451-1459.
CONG Xin, ZHANG Huaidi, ZHANG Rong, ZHAO Cen, CHEN Kun, LIU Hanbing. Pollution Characteristics and Risk Analysis of Heavy Metal in Farmland Soils of China in Recent 10 Years Based on Meta Analysis[J]. Ecology and Environment, 2024, 33(9): 1451-1459.
地区 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | 文献 |
---|---|---|---|---|---|---|---|---|---|
北京 | 9.70 | 0.074 | 68.1 | 25.4 | 0.069 | 29.0 | 25.4 | 103 | 杨雳等, |
天津 | 9.60 | 0.090 | 84.2 | 21.0 | 0.084 | 33.3 | 21.0 | 79.3 | 杨雳等, |
河北 | 13.6 | 0.094 | 68.3 | 21.5 | 0.036 | 30.8 | 21.5 | 78.4 | 杨雳等, |
山西 | 9.80 | 0.128 | 61.8 | 15.8 | 0.027 | 32.0 | 15.8 | 75.5 | 杨雳等, |
辽宁 | 8.80 | 0.108 | 57.9 | 21.4 | 0.037 | 25.6 | 21.4 | 63.5 | 杨雳等, |
吉林 | 8.00 | 0.099 | 46.7 | 28.8 | 0.037 | 21.4 | 28.8 | 80.4 | 杨雳等, |
黑龙江 | 7.30 | 0.086 | 58.6 | 24.2 | 0.037 | 22.8 | 24.2 | 70.7 | 杨雳等, |
上海 | 9.19 | 0.138 | 70.2 | 25.0 | 0.095 | 29.9 | 25.0 | 81.3 | 杨雳等, |
江苏 | 11.0 | 0.126 | 77.8 | 26.2 | 0.289 | 26.7 | 26.2 | 62.6 | 杨雳等, |
浙江 | 9.20 | 0.070 | 52.9 | 23.7 | 0.086 | 24.6 | 23.7 | 70.6 | 杨雳等, |
安徽 | 9.99 | 0.097 | 66.5 | 26.6 | 0.033 | 29.8 | 26.6 | 62.0 | 杨雳等, |
福建 | 5.78 | 0.054 | 41.3 | 34.9 | 0.081 | 18.2 | 34.9 | 82.7 | 杨雳等, |
江西 | 14.9 | 0.108 | 45.9 | 32.3 | 0.084 | 18.9 | 32.3 | 69.4 | 杨雳等, |
山东 | 9.30 | 0.084 | 66.0 | 25.8 | 0.019 | 25.8 | 25.8 | 63.5 | 杨雳等, |
河南 | 11.4 | 0.074 | 63.8 | 19.6 | 0.034 | 26.7 | 19.6 | 60.1 | 杨雳等, |
湖北 | 12.3 | 0.172 | 86.0 | 26.7 | 0.080 | 37.3 | 26.7 | 83.6 | 杨雳等, |
湖南 | 15.7 | 0.126 | 71.4 | 29.7 | 0.116 | 31.9 | 29.7 | 94.4 | 杨雳等, |
广东 | 8.99 | 0.056 | 50.5 | 36.0 | 0.078 | 14.4 | 36.0 | 47.3 | 杨雳等, |
广西 | 20.5 | 0.267 | 82.1 | 24.0 | 0.152 | 26.6 | 24.0 | 75.6 | 杨雳等, |
四川 | 10.4 | 0.079 | 79.0 | 30.9 | 0.061 | 32.6 | 30.9 | 86.5 | 杨雳等, |
贵州 | 20.0 | 0.659 | 95.9 | 35.2 | 0.110 | 39.1 | 35.2 | 99.5 | 杨雳等, |
云南 | 18.4 | 0.218 | 65.2 | 40.6 | 0.058 | 42.5 | 40.6 | 89.7 | 杨雳等, |
西藏 | 16.2 | 0.074 | 68.0 | 19.4 | 0.021 | 32.1 | 27.6 | 70.7 | 杨雳等, |
陕西 | 11.1 | 0.094 | 62.5 | 21.4 | 0.030 | 28.8 | 21.4 | 69.4 | 杨雳等, |
甘肃 | 12.6 | 0.116 | 70.2 | 18.8 | 0.020 | 35.2 | 18.8 | 68.5 | 杨雳等, |
宁夏 | 11.9 | 0.112 | 60 | 20.9 | 0.021 | 36.5 | 20.9 | 58.8 | 杨雳等, |
新疆 | 11.2 | 0.120 | 49.3 | 19.4 | 0.017 | 26.6 | 19.4 | 68.8 | 杨雳等, |
重庆 | 5.82 | 0.133 | 76.1 | 23.8 | 0.053 | 30.6 | 25.5 | 75.8 | 杨雳等, |
内蒙古 | 6.12 | 0.050 | 39.8 | 13.9 | 0.030 | 18.6 | 16.8 | 56.6 | 高红霞等, |
海南 | 1.14 | 0.050 | 15.2 | 4.95 | 0.030 | 4.12 | 22.3 | 35.1 | 谭凌智等, |
表1 研究区域土壤重金属背景值
Table 1 Background values of heavy metals in soils of survey regions mg·kg?1
地区 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | 文献 |
---|---|---|---|---|---|---|---|---|---|
北京 | 9.70 | 0.074 | 68.1 | 25.4 | 0.069 | 29.0 | 25.4 | 103 | 杨雳等, |
天津 | 9.60 | 0.090 | 84.2 | 21.0 | 0.084 | 33.3 | 21.0 | 79.3 | 杨雳等, |
河北 | 13.6 | 0.094 | 68.3 | 21.5 | 0.036 | 30.8 | 21.5 | 78.4 | 杨雳等, |
山西 | 9.80 | 0.128 | 61.8 | 15.8 | 0.027 | 32.0 | 15.8 | 75.5 | 杨雳等, |
辽宁 | 8.80 | 0.108 | 57.9 | 21.4 | 0.037 | 25.6 | 21.4 | 63.5 | 杨雳等, |
吉林 | 8.00 | 0.099 | 46.7 | 28.8 | 0.037 | 21.4 | 28.8 | 80.4 | 杨雳等, |
黑龙江 | 7.30 | 0.086 | 58.6 | 24.2 | 0.037 | 22.8 | 24.2 | 70.7 | 杨雳等, |
上海 | 9.19 | 0.138 | 70.2 | 25.0 | 0.095 | 29.9 | 25.0 | 81.3 | 杨雳等, |
江苏 | 11.0 | 0.126 | 77.8 | 26.2 | 0.289 | 26.7 | 26.2 | 62.6 | 杨雳等, |
浙江 | 9.20 | 0.070 | 52.9 | 23.7 | 0.086 | 24.6 | 23.7 | 70.6 | 杨雳等, |
安徽 | 9.99 | 0.097 | 66.5 | 26.6 | 0.033 | 29.8 | 26.6 | 62.0 | 杨雳等, |
福建 | 5.78 | 0.054 | 41.3 | 34.9 | 0.081 | 18.2 | 34.9 | 82.7 | 杨雳等, |
江西 | 14.9 | 0.108 | 45.9 | 32.3 | 0.084 | 18.9 | 32.3 | 69.4 | 杨雳等, |
山东 | 9.30 | 0.084 | 66.0 | 25.8 | 0.019 | 25.8 | 25.8 | 63.5 | 杨雳等, |
河南 | 11.4 | 0.074 | 63.8 | 19.6 | 0.034 | 26.7 | 19.6 | 60.1 | 杨雳等, |
湖北 | 12.3 | 0.172 | 86.0 | 26.7 | 0.080 | 37.3 | 26.7 | 83.6 | 杨雳等, |
湖南 | 15.7 | 0.126 | 71.4 | 29.7 | 0.116 | 31.9 | 29.7 | 94.4 | 杨雳等, |
广东 | 8.99 | 0.056 | 50.5 | 36.0 | 0.078 | 14.4 | 36.0 | 47.3 | 杨雳等, |
广西 | 20.5 | 0.267 | 82.1 | 24.0 | 0.152 | 26.6 | 24.0 | 75.6 | 杨雳等, |
四川 | 10.4 | 0.079 | 79.0 | 30.9 | 0.061 | 32.6 | 30.9 | 86.5 | 杨雳等, |
贵州 | 20.0 | 0.659 | 95.9 | 35.2 | 0.110 | 39.1 | 35.2 | 99.5 | 杨雳等, |
云南 | 18.4 | 0.218 | 65.2 | 40.6 | 0.058 | 42.5 | 40.6 | 89.7 | 杨雳等, |
西藏 | 16.2 | 0.074 | 68.0 | 19.4 | 0.021 | 32.1 | 27.6 | 70.7 | 杨雳等, |
陕西 | 11.1 | 0.094 | 62.5 | 21.4 | 0.030 | 28.8 | 21.4 | 69.4 | 杨雳等, |
甘肃 | 12.6 | 0.116 | 70.2 | 18.8 | 0.020 | 35.2 | 18.8 | 68.5 | 杨雳等, |
宁夏 | 11.9 | 0.112 | 60 | 20.9 | 0.021 | 36.5 | 20.9 | 58.8 | 杨雳等, |
新疆 | 11.2 | 0.120 | 49.3 | 19.4 | 0.017 | 26.6 | 19.4 | 68.8 | 杨雳等, |
重庆 | 5.82 | 0.133 | 76.1 | 23.8 | 0.053 | 30.6 | 25.5 | 75.8 | 杨雳等, |
内蒙古 | 6.12 | 0.050 | 39.8 | 13.9 | 0.030 | 18.6 | 16.8 | 56.6 | 高红霞等, |
海南 | 1.14 | 0.050 | 15.2 | 4.95 | 0.030 | 4.12 | 22.3 | 35.1 | 谭凌智等, |
项目 | 地积累指数污染程度等级 | ||||
---|---|---|---|---|---|
Igeo | 3<Igeo | 2<Igeo≤3 | 1<Igeo≤2 | 0<Igeo≤1 | Igeo≤0 |
分级 | 4 | 3 | 2 | 1 | 0 |
污染程度 | 严重污染 | 重度污染 | 中度污染 | 轻度污染 | 无污染 |
表2 地累积指数污染分级标准
Table 2 Pollution classification standard of ground accumulation index
项目 | 地积累指数污染程度等级 | ||||
---|---|---|---|---|---|
Igeo | 3<Igeo | 2<Igeo≤3 | 1<Igeo≤2 | 0<Igeo≤1 | Igeo≤0 |
分级 | 4 | 3 | 2 | 1 | 0 |
污染程度 | 严重污染 | 重度污染 | 中度污染 | 轻度污染 | 无污染 |
项目 | 潜在生态风险等级 | ||||
---|---|---|---|---|---|
潜在风险 | 轻微风险 | 中等风险 | 较强风险 | 很强风险 | 极强风险 |
Ir, i | Ir, i ≤40 | 40<Ir, i≤80 | 80<Ir, i≤160 | 160<Ir, i≤320 | Ir,i>320 |
Ir | Ir≤150 | 150<Ir≤300 | 300<Ir≤600 | 600<Ir≤1200 | Ir>1200 |
表3 潜在生态风险指数分级标准
Table 3 Grading standards of potential ecological hazard index
项目 | 潜在生态风险等级 | ||||
---|---|---|---|---|---|
潜在风险 | 轻微风险 | 中等风险 | 较强风险 | 很强风险 | 极强风险 |
Ir, i | Ir, i ≤40 | 40<Ir, i≤80 | 80<Ir, i≤160 | 160<Ir, i≤320 | Ir,i>320 |
Ir | Ir≤150 | 150<Ir≤300 | 300<Ir≤600 | 600<Ir≤1200 | Ir>1200 |
元素 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|
最大值 | 34.63 | 3.915 | 149.6 | 167.6 | 20.90 | 96.11 | 141.3 | 333.5 |
最小值 | 2.420 | 0.043 | 9.710 | 0.350 | 0.003 | 5.600 | 10.04 | 31.65 |
中位数 | 8.368 | 0.250 | 56.33 | 25.62 | 0.285 | 26.24 | 28.16 | 70.55 |
算数平均值 | 10.93 | 0.391 | 60.96 | 29.59 | 0.495 | 25.06 | 34.20 | 85.47 |
几何平均值 | 7.399 | 0.309 | 38.06 | 22.86 | 0.321 | 21.61 | 25.71 | 59.46 |
标准差 | 5.960 | 0.596 | 24.75 | 23.09 | 1.249 | 14.72 | 17.53 | 55.93 |
变异系数/% | 54.53 | 152.4 | 40.60 | 78.05 | 252.3 | 58.74 | 51.25 | 65.44 |
超背景值占比/% | 43.53 | 84.09 | 38.20 | 55.29 | 80.49 | 43.04 | 65.93 | 60.49 |
表4 2014-2023年研究区域农田土壤重金属质量分数统计结果
Table 4 Statistical results of heavy metal content in farmland soils in study areas from 2014 to 2023 mg·kg?1
元素 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|
最大值 | 34.63 | 3.915 | 149.6 | 167.6 | 20.90 | 96.11 | 141.3 | 333.5 |
最小值 | 2.420 | 0.043 | 9.710 | 0.350 | 0.003 | 5.600 | 10.04 | 31.65 |
中位数 | 8.368 | 0.250 | 56.33 | 25.62 | 0.285 | 26.24 | 28.16 | 70.55 |
算数平均值 | 10.93 | 0.391 | 60.96 | 29.59 | 0.495 | 25.06 | 34.20 | 85.47 |
几何平均值 | 7.399 | 0.309 | 38.06 | 22.86 | 0.321 | 21.61 | 25.71 | 59.46 |
标准差 | 5.960 | 0.596 | 24.75 | 23.09 | 1.249 | 14.72 | 17.53 | 55.93 |
变异系数/% | 54.53 | 152.4 | 40.60 | 78.05 | 252.3 | 58.74 | 51.25 | 65.44 |
超背景值占比/% | 43.53 | 84.09 | 38.20 | 55.29 | 80.49 | 43.04 | 65.93 | 60.49 |
成分 | 初始特征值 | 提取平方和载入 | 旋转平方和载入 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总计 | 方差/ % | 累计/ % | 总计 | 方差/ % | 累计/ % | 总计 | 方差/ % | 累计/ % | |||
1 | 2.80 | 35.0 | 35.0 | 2.80 | 35.0 | 35.0 | 2.58 | 32.28 | 32.3 | ||
2 | 1.76 | 22.0 | 57.0 | 1.76 | 22.0 | 57.0 | 1.97 | 24.6 | 56.9 | ||
3 | 1.23 | 15.3 | 72.30 | 1.23 | 15.3 | 72.3 | 1.23 | 15.4 | 72.3 | ||
4 | 0.784 | 9.80 | 82.1 | ||||||||
5 | 0.566 | 7.08 | 89.2 | ||||||||
6 | 0.337 | 4.21 | 93.4 | ||||||||
7 | 0.311 | 3.89 | 97.3 | ||||||||
8 | 0.219 | 2.74 | 100 |
表5 研究区域主成分总方差解析
Table 5 Interpretation of total variance of principal components in study areas
成分 | 初始特征值 | 提取平方和载入 | 旋转平方和载入 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总计 | 方差/ % | 累计/ % | 总计 | 方差/ % | 累计/ % | 总计 | 方差/ % | 累计/ % | |||
1 | 2.80 | 35.0 | 35.0 | 2.80 | 35.0 | 35.0 | 2.58 | 32.28 | 32.3 | ||
2 | 1.76 | 22.0 | 57.0 | 1.76 | 22.0 | 57.0 | 1.97 | 24.6 | 56.9 | ||
3 | 1.23 | 15.3 | 72.30 | 1.23 | 15.3 | 72.3 | 1.23 | 15.4 | 72.3 | ||
4 | 0.784 | 9.80 | 82.1 | ||||||||
5 | 0.566 | 7.08 | 89.2 | ||||||||
6 | 0.337 | 4.21 | 93.4 | ||||||||
7 | 0.311 | 3.89 | 97.3 | ||||||||
8 | 0.219 | 2.74 | 100 |
主成分 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|
1 | 0.061 | 0.805 | 0.442 | 0.692 | 0.041 | 0.418 | 0.772 | 0.836 |
2 | −0.178 | −0.325 | 0.720 | 0.295 | −0.360 | 0.791 | −0.426 | −0.283 |
3 | −0.755 | −0.130 | 0.141 | −0.168 | 0.750 | 0.123 | 0.083 | 0.071 |
表6 研究区域农田土壤重金属元素主成分分析
Table 6 Principal component analysis of heavy metals in farmland soils in study areas
主成分 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|
1 | 0.061 | 0.805 | 0.442 | 0.692 | 0.041 | 0.418 | 0.772 | 0.836 |
2 | −0.178 | −0.325 | 0.720 | 0.295 | −0.360 | 0.791 | −0.426 | −0.283 |
3 | −0.755 | −0.130 | 0.141 | −0.168 | 0.750 | 0.123 | 0.083 | 0.071 |
[1] | CHI H J, LIU X, YANG X F, et al., 2024. Risk assessment and source identification of soil heavy metals: A case study of farmland soil along a river in the southeast of a mining area in Southwest China[J]. Environmental Geochemistry and Health, 46(2): 39.1-39.16. |
[2] | FEI X F, LOU Z H, XIAO R, et al., 2020. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models[J]. Science of the Total Environment, 747: 141293. |
[3] | HA H, OLSON J R, BIAN L, et al., 2014. Analysis of heavy metal sources in soil using kriging interpolation on principal components[J]. Environmental Science & Technology, 48(9): 4999-5007. |
[4] | HE F T, LUO X X, HEMAN A, et al., 2024. Anthropogenic perturbations on heavy metals transport in sediments in a river-dominated estuary (Modaomen, China) during 2003-2021[J]. Marine Pollution Bulletin, 199: 115970. |
[5] |
LI Y, WANG Y B, GOU X, et al., 2006. Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China[J]. Journal of Environmental Sciences, 18(6):1124-1134.
DOI PMID |
[6] |
LUO L, MA Y B, ZHANG S Z, et al., 2009. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 90(8): 2524-2530
DOI PMID |
[7] |
MACASKILL P, WALTER S D, IRWIG L, 2001. A comparison of methods to detect publication bias in meta-analysis[J]. Statistics in Medicine, 20(4): 641-654.
DOI PMID |
[8] | NICHOLSON F A, SMITH S R, ALLOWAY B J, et al., 2003. An inventory of heavy metals inputs to agricultural soils in England and Wales[J]. The Science of the Total Environment, 311(1-3): 205-219. |
[9] | ZHANG L, 2022. Evaluation of heavy metal contamination of soil in a planting area in Hengshui City, Hebei Province[J]. Academic Journal of Environment & Earth Science, 4(7): 1-10. |
[10] |
ZHANG X W, WEI S, SUN Q Q, et al., 2018. Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis[J]. Ecotoxicology and Environmental Safety, 159: 354-362.
DOI PMID |
[11] |
陈世宝, 王萌, 李杉杉, 等, 2019. 中国农田土壤重金属污染防治现状与问题思考[J]. 地学前缘, 26(6): 35-41.
DOI |
CHEN S B, WANG M, LI S S, et al., 2019. Current status of and discussion on farmland heavy metal pollution prevention in China[J]. Earth Science Frontiers, 26(6): 35-41.
DOI |
|
[12] | 陈文轩, 李茜, 王珍, 等, 2020. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 41(6): 2822-2833. |
CHEN W X, LI Q, WANG Z, et al., 2020. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J]. Environmental Science, 41(6): 2822-2833. | |
[13] | 崔艳红, 孙鹏, 曹冬梅, 等, 2022. 松嫩平原产油区农田土壤重金属含量及污染风险评价[J]. 土壤通报, 53(5): 1182-1193. |
CUI Y H, SUN P, CAO D M, et al., 2022. Heavy metal contents and pollution risk assessment in farmland soil of the oil producing areas on the Songnen Plain[J]. Chinese Journal of Soil Science, 53(5): 1182-1193. | |
[14] | 范晨子, 郭威, 袁继海, 等, 2022. 西南地区典型工矿业城市土壤-作物系统中重金属和硒元素特征及评价[J]. 西南农业学报, 35(8): 1909-1919. |
FAN C Z, GUO W, YUAN J H, et al., 2022. Characteristics and evaluation of heavy metals and selenium in the soil-crop system of a typical industrial and mining city in southwest of China[J]. Southwest China Journal of Agricultural Sciences, 35(8): 1909-1919. | |
[15] | 范亚宁, 冯园, 张倩, 2023. 基于文献计量的关中地区农田土壤重金属污染特征及源解析[J]. 环境生态学, 5(9): 19-27. |
FAN Y N, FENG Y, ZHANG Q, 2023. Characteristics of heavy metal pollution and source analysis in farmland soil of Guangzhong area based on bibliometric analysis[J]. Environmental Ecology, 5(9): 19-27. | |
[16] | 冯博鑫, 徐多勋, 张宏宇, 等, 2023. 基于最小数据集的周至地区土壤重金属地球化学特征及成因分析[J]. 西北地质, 56(1): 284-292. |
FENG B X, XU D X, ZHANG H Y, et al., 2023. Geochemical characteristic of heavy metal in Zhouzhi area and analysis of their causes based on minimum data set[J]. Northwestern Geology, 56(1): 284-292. | |
[17] | 冯韶华, 俞一帆, 张旭峰, 等, 2023. 中国农田土壤重金属污染源解析研究进展[J]. 环境污染与防治, 45(9): 1300-1306. |
FENG S H, YU Y F, ZHANG X F, et al., 2023. Source apportionment of heavy metals in agricultural soil in China: A review[J]. Environmental Pollution and Control, 45(9): 1300-1306. | |
[18] | 高红霞, 王喜宽, 张青, 等, 2007. 内蒙古河套地区土壤背景值特征[J]. 地质与资源, 16(3): 209-212. |
GAO H X, WANG X K, ZHANG Q, et al., 2007. Characteristics of soil background value in Hetao area, inner Mongolia[J]. Geology and Resources, 16(3): 209-212. | |
[19] | 龚雪刚, 张云芝, 孙伟, 等, 2023. 北京地区农用地土壤重金属污染与健康风险评价[J]. 有色金属 (冶炼部分) (8): 112-119. |
GONG X G, ZHANG Y Z, SUN W, et al., 2023. Heavy metal pollution and health risk assessment of agricultural land soil in Beijing area[J]. Nonferrous Metals (Extractive Metallurgy) (8): 112-119. | |
[20] | 胡文友, 陶婷婷, 田康, 等, 2021. 中国农田土壤环境质量管理现状与展望[J]. 土壤学报, 58(5): 1094-1109. |
HU W Y, TAO T T, TIAN K, 2021. Status and prospect of farmland soil environmental quality management in China[J]. Acta Pedologica Sinica, 58(5): 1094-1109. | |
[21] | 姬丽, 马琨, 谢铁娜, 等, 2023. 宁夏供港蔬菜田土壤重金属分布特征及生态风险评价[J]. 环境科学, 45(6): 3512-3522. |
JI L, MA K, XIE T N, et al., 2023. Evaluation of heavy metal distribution characteristics and ecological risk of soil at vegetable-land for Hong Kong in Ningxia[J]. Environmental Science, 45(6): 3512-3522. | |
[22] | 鞠铁男, 雷梅, 2022. 地累积指数法评价多金属环境质量的方法优化探索: 以农业发达地区为例[J]. 环境科学, 43(2): 957-964. |
JU T N, LEI M, 2022. Geo-accumulation index method to optimize the evaluation method of polymetallic environment quality: Taking developed agricultural areas as an example[J]. Environmental Science, 43(2): 957-964. | |
[23] | 李鹏, 张惠娟, 徐莉, 等, 2022. 麦玉轮作区农田土壤重金属调查及评价[J]. 农业环境科学学报, 41(1): 46-54. |
LI P, ZHANG H J, XU L, et al., 2022. Investigation and evaluation of soil heavy metals in a wheat-maize cropping system in upland China[J]. Journal of Agro-Environment Science, 41(1): 46-54. | |
[24] | 刘国辉, 买文选, 田长彦, 2023. 施用有机肥对盐碱土的改良效果: Meta分析[J]. 农业资源与环境学报, 40(1): 86-96. |
LIU G H, MAI W X, TIAN C Y, 2023. Effects of organic fertilizer application on the improvement of saline soils: Meta analysis[J]. Journal of Agricultural Resources and Environment, 40(1): 86-96. | |
[25] | 刘坤, 李雨桐, 余海, 等, 2024. 重庆某工业园土壤重金属污染特征、风险及源解析[J]. 中国环境监测, 40(2): 74-83. |
LIU K, LI Y T, YU H, et al., 2024. Pollution characteristics, risk assessment and sources analysis of soil heavy metals in an industrial park of Chongqing[J]. Environmental Monitoring in China, 40(2): 74-83. | |
[26] | 吕玉娟, 王秋月, 孙雪梅, 等, 2023. 浙江省某尾矿库周边农田土壤重金属污染特征及来源解析[J]. 环境工程技术学报, 13(4): 1464-1475. |
LÜ Y J, WANG Q Y, SUN X M, et al., 2023. Pollution characteristics and source identification of heavy metals in farmland soils around a tailing pond in Zhejiang Province[J]. Journal of Environmental Engineering Technology, 13(4): 1464-1475. | |
[27] | 罗豪杰, 潘俊, 陈小霞, 等, 2024. 基于Monte-Carlo模拟的湖南省典型工厂周边农田土壤重金属区域潜在生态风险特征及来源解析[J]. 环境科学, 45(2): 1038-1048. |
LUO H J, PAN J, CHEN X X, et al., 2024. Potential ecological risk characteristics and source apportionment of heavy metals in farmland soils around typical factories in Hunan province based on monte-carlo simulation[J]. Environmental Science, 45(2): 1038-1048. | |
[28] | 马成卫, 孟建军, 上官宇先, 等, 2022. 四川盆地西北部农田土壤-玉米作物重金属富集及相关性评价[J]. 农业研究与应用, 35(3): 59-67. |
MA C W, MENG J J, SHANGGUAN Y X, et al., 2022. Enrichment and correlation evaluation of heavy metals in farmland soil and maize in the northwestern Sichuan Basin[J]. Agricultural Research and Application, 35(3): 59-67. | |
[29] | 任晓雨, 梁梦婷, 曹冬梅, 等, 2021. 黑龙江省绿豆主产区土壤重金属污染特征及生态风险评估[J]. 现代食品科技, 37(10): 308-316. |
REN X Y, LIANG M T, CAO D M, et al., 2021. Pollution characteristics and ecological risks of soil heavy metals in major mung bean producing areas in Heilongjiang Province of China[J]. Modern Food Science and Technology, 37(10): 308-316. | |
[30] | 沈宸宇, 闫钰, 于瑞莲, 等, 2022. APCS-MLR结合PMF模型解析厦门杏林湾近郊流域沉积物金属来源[J]. 环境科学, 43(5): 2476-2488. |
SHEN C Y, YAN Y, YU R L, et al., 2022. APCS-MLR combined with PMF model to analyze the source of metals in sediment of Xinglin bay suburban watershed, Xiamen[J]. Environmental Science, 43(5): 2476-2488. | |
[31] | 生态环境部, 国家市场监督管理总局, 2018. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. 北京: 中国环境出版集团: 1-4. |
Ministry of Ecology and Environment, State Administration for Market Regulation, 2018. Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (Trial): GB 15618—2018[S]. Beijing: China Environmental Publishing Group: 1-4. | |
[32] | 谭凌智, 祁士华, 傅杨荣, 等, 2010. 海南八门湾高位池养殖区表层土壤重金属污染调查与评价[J]. 环境化学, 29(2): 335-336. |
TAN L Z, QI S H, FU Y R, et al., 2010. Investigation and evaluation of heavy metal pollution in surface soil in the culture area of Bamenwan High Pond, Hainan Province[J]. Environmental Chemistry, 29(2): 335-336. | |
[33] | 唐瑞玲, 徐进力, 刘彬, 等, 2024. 西南典型碳酸盐岩高地质背景区农田重金属化学形态、影响因素及回归模型[J]. 环境科学, 45(5): 2995-3004. |
TANG R L, XU J L, LIU B, et al., 2024. Chemical speciation, influencing factors, and regression model of heavy metals in farmland of typical carbonate area with high geological background, Southwest China[J]. Environmental Science, 45(5): 2995-3004. | |
[34] | 吴灿萍, 周罕, 付俊, 等, 2024. 铜选冶厂周边农田土壤重金属污染特征及来源解析[J]. 环境化学, 43(1): 311-322. |
WU C P, ZHOU H, FU J, et al., 2024. Analysis of heavy metal contamination characteristics and sources in farmland soil around copper dressing and smelting plant[J]. Environmental Chemistry, 43(1): 1-12. | |
[35] | 伍福琳, 陈丽, 易廷辉, 等, 2018. 重庆市农地重金属基线值的厘定及其积累特征分析[J]. 环境科学, 39(11): 5116-5126. |
WU F L, CHEN L, YI T H, et al., 2018. Determination of heavy metal baseline values and analysis of its accumulation characteristics in agricultural land in Chongqing[J]. Environmental Science, 39(11): 5116-5126. | |
[36] | 徐艳, 王曙光, 郭振, 等, 2019. 主成分分析在矿区农田土壤污染分析中的应用[J]. 环境科学与技术, 42(S2): 9-13. |
XU Y, WANG S G, GUO Z, et al., 2019. Application of principal component analysis method in heavy metal contaminated soil in mining area[J]. Environmental Science & Technology, 42(S2): 9-13. | |
[37] | 晏利晶, 姜淼, 赵庆良, 等, 2023. 基于Meta分析的中国工矿业场地土壤重金属污染评价[J]. 环境科学研究, 36(1): 9-18. |
YAN L J, JIANG M, ZHAO Q L, et al., 2023. Evaluation of soil heavy metal pollution in China’s industrial and mining sites based on meta-analysis[J]. Research of Environmental Sciences, 36(1): 9-18. | |
[38] | 杨海龙, 张珂, 白保勋, 等, 2023. 城市郊区典型区块农田土壤重金属污染风险评估——以郑州为例[J]. 江西农业学报, 35(9): 143-148. |
YANG H L, ZHANG K, BAI B X, et al., 2023. Risk assessment of heavy metal pollution in farmland soil in typical blocks of urban suburbs: A case study of Zhengzhou[J]. Acta Agriculturae Jiangxi, 35(9): 143-148. | |
[39] | 杨雳, 白宗旭, 薄文浩, 等, 2023. 中国农田土壤重金属污染分析与评价[J]. 环境科学, 45(5): 2913-2925. |
YANG L, BAI Z X, BO W H, et al., 2023. Analysis and evaluation of heavy metal pollution in farmland soil in China: A meta-analysis[J]. Environmental Science, 45(5): 2913-2925. | |
[40] | 杨琰琥, 陈潇涵, 张晓晴, 等, 2024. 基于Meta分析的2000-2022年中国茶园土壤重金属污染风险评价与来源分析[J]. 茶叶科学, 44(1): 37-52. |
YANG Y H, CHEN X H, ZHANG X Q, et al., 2024. Risk assessment and source analysis of heavy metal pollution in Chinese tea gardens in 2000-2022 based on meta-analysis[J]. Journal of Tea Science, 44(1): 37-52. | |
[41] | 张恬雨, 胡恭任, 于瑞莲, 等, 2022. 基于PMF模型的垃圾焚烧厂周边农田土壤重金属源解析[J]. 环境科学, 43(12): 5718-5727. |
ZHANG T Y, HU G R, YU R L, et al., 2022. Source analysis of heavy metals in farmland soil around a waste incineration plant based on PMF model[J]. Environmental Science, 43(12): 5718-5727. | |
[42] | 张永江, 李璐, 马双, 等, 2023. 典型锰矿区周边农田土壤重金属污染风险评价及其来源分析[J]. 有色金属(冶炼部分) (10): 138-148. |
ZHANG Y J, LI L, MA S, et al., 2023. Pollution evaluation and source analysis of heavy metals in farmland soils around the typical manganese mining area[J]. Nonferrous Metals (Extractive Metallurgy) (10): 138-148. |
[1] | 刘东宜, 屈永华, 冯耀伟, 屈冉. 基于网格搜索优化CatBoost模型的GF-5卫星影像铬离子含量反演研究[J]. 生态环境学报, 2024, 33(9): 1460-1470. |
[2] | 欧阳美凤, 尹宇莹, 张金谌, 刘清霖, 谢意南, 方平. 洞庭湖典型水域重金属含量的空间分布与来源解析[J]. 生态环境学报, 2024, 33(8): 1269-1278. |
[3] | 张俊美, 王志宇, 杨本勇, 杨书申, 杨凌霄. PM2.5中水溶性有机碳的污染特征、吸光特性和来源研究[J]. 生态环境学报, 2024, 33(7): 1072-1078. |
[4] | 吴文伟, 沈城, 沙晨燕, 林匡飞, 吴健, 谢雨晴, 周璇. 城市工业地块土壤重金属污染风险评价与源解析[J]. 生态环境学报, 2024, 33(5): 791-801. |
[5] | 张腾云, 王静, 高健磊, 葛文静, 王宗耀, 韩龙. 碱性农田土壤冬小麦不同生育期镉的迁移转化研究[J]. 生态环境学报, 2024, 33(3): 450-459. |
[6] | 肖江, 李晓刚, 赵博, 陈岩, 陈光才. 微纳富磷生物炭对土壤-苏柳系统中Cu和Pb稳定性的影响[J]. 生态环境学报, 2024, 33(3): 439-449. |
[7] | 江润海, 温绍福, 朱城强, 张梅, 杨润玲, 王春雪, 侯秀丽. 铅污染矿区中耐铅解磷菌对玉米的促生及根际铅的固化效应[J]. 生态环境学报, 2024, 33(2): 291-300. |
[8] | 李嘉惠, 童辉, 陈曼佳, 刘承帅, 姜琪, 易秀. 微氧生物亚铁氧化及其重金属固定效应研究进展[J]. 生态环境学报, 2024, 33(2): 310-320. |
[9] | 杨正桥, 邹奇, 韦行, 周凯, 陈志良. 金属尾矿微生物对尾矿环境的适应与调控机制研究进展[J]. 生态环境学报, 2024, 33(1): 156-166. |
[10] | 蒋伯琪, 浮天, 程昳璇, 苏枞枞, 沈建东, 于谨铖, 于兴娜. 沈阳市臭氧污染特征及其影响因素[J]. 生态环境学报, 2024, 33(1): 72-79. |
[11] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[12] | 唐志伟, 翁颖, 朱夏童, 蔡洪梅, 代雯慈, 王捧娜, 郑宝强, 李金才, 陈翔. 秸秆还田下中国农田土壤微生物生物量碳变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(9): 1552-1562. |
[13] | 王宁, 刘效东, 甘先华, 苏宇乔, 吴国章, 黄芳芳, 张卫强. 亚热带典型林分降水过程中的水质效应[J]. 生态环境学报, 2023, 32(8): 1365-1375. |
[14] | 刘炳妤, 王一佩, 姚作芳, 杨钙仁, 徐晓楠, 邓羽松, 黄钰涵. 沼液还田下不同种植模式的重金属风险评价及安全消纳量分析[J]. 生态环境学报, 2023, 32(8): 1507-1515. |
[15] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||