生态环境学报 ›› 2024, Vol. 33 ›› Issue (11): 1768-1781.DOI: 10.16258/j.cnki.1674-5906.2024.11.011
唐舒娅1,2,3,4(), 王春辉1,3,4, 宋靖1,4,*(
), 李刚1,3,4
收稿日期:
2024-04-22
出版日期:
2024-11-18
发布日期:
2024-12-06
通讯作者:
*宋靖。E-mail: jsong@iue.ac.cn作者简介:
唐舒娅(1999年生),女,硕士研究生,从事区域土壤环境质量与安全研究。E-mail: sytang@iue.ac.cn
基金资助:
TANG Shuya1,2,3,4(), WANG Chunhui1,3,4, SONG Jing1,4,*(
), LI Gang1,3,4
Received:
2024-04-22
Online:
2024-11-18
Published:
2024-12-06
摘要:
探究典型港湾区域不同土地利用类型土壤重金属污染的时空分布特征及其潜在生态风险,可为相关区域的生态环境保护及土壤重金属污染治理提供科学依据。于2023年4-5月在浙江省宁波市象山港采集了不同土地利用类型下的表层(0-20 cm)土壤样品(共计216个),利用电感耦合等离子体质谱法(ICP-MS)测定了重金属铜(Cu)、锌(Zn)、砷(As)、铬(Cr)、镍(Ni)、铅(Pb)、镉(Cd)、锰(Mn)的质量分数,并分析其分布特征。结果显示,重金属Cu、Zn、As、Cr、Ni、Pb、Cd、Mn质量分数的中值分别为19.0、93.7、17.4、32.0、13.5、35.4、0.170、605 mg·kg-1。其中,As、Cd和Mn的污染较严重,尤其是As和Cd达到强生态风险水平,而Cu、Zn、Pb、Ni和Cr的质量分数取值相对较低,大多低于其背景值或轻度污染标准。利用潜在生态风险指数法评估表明,环象山港区域土壤综合潜在生态风险属于中等水平,耕地土壤的生态风险最高,需引起重视。通过相关分析法、主成分分析法和正定矩阵因子分解法等多种源解析方法发现,农业活动、自然源、交通、工业及成土母质混合源分别对重金属污染贡献了22.0%、27.5%、14.4%、22.2%和13.9%。宁波环象山港区域已经出现了一定程度的重金属污染问题,尤其是As和Cd的污染情况较严重,未来应加强对该区域土壤重金属的污染监测与治理,以确保区域生态环境的可持续发展。
中图分类号:
唐舒娅, 王春辉, 宋靖, 李刚. 环象山港区域土壤重金属污染特征及风险评估[J]. 生态环境学报, 2024, 33(11): 1768-1781.
TANG Shuya, WANG Chunhui, SONG Jing, LI Gang. Characteristics and Risk Assessment of Soil Heavy Metal Pollution in the Xiangshan Bay Area[J]. Ecology and Environment, 2024, 33(11): 1768-1781.
土地利用类型 | pH | w(SOM)/(g·kg-1) | MC/% | w(NH4+-N)/(mg·kg-1) | w(NO3--N)/(mg·kg-1) | w(TN)/(g·kg-1) |
---|---|---|---|---|---|---|
耕地 | 5.70±0.940b | 47.2±12.3b | 20.3±4.51a | 54.2±18.1b | 58.4±25.6a | 3.04±0.490a |
林地 | 5.03±0.330c | 58.6±16.4a | 19.2±4.04a | 68.2±23.5a | 17.6±7.90b | 3.07±0.570a |
建设用地 | 6.60±0.820a | 44.0±11.0b | 16.1±2.56b | 45.0±15.2c | 36.5±17.6a | 2.95±0.390a |
表1 表层土壤理化指标
Table 1 Physical and chemical indicators of topsoil
土地利用类型 | pH | w(SOM)/(g·kg-1) | MC/% | w(NH4+-N)/(mg·kg-1) | w(NO3--N)/(mg·kg-1) | w(TN)/(g·kg-1) |
---|---|---|---|---|---|---|
耕地 | 5.70±0.940b | 47.2±12.3b | 20.3±4.51a | 54.2±18.1b | 58.4±25.6a | 3.04±0.490a |
林地 | 5.03±0.330c | 58.6±16.4a | 19.2±4.04a | 68.2±23.5a | 17.6±7.90b | 3.07±0.570a |
建设用地 | 6.60±0.820a | 44.0±11.0b | 16.1±2.56b | 45.0±15.2c | 36.5±17.6a | 2.95±0.390a |
Er | RI | 污染评价 |
---|---|---|
Er<40 | RI<60 | 轻微 |
40≤Er<80 | 60≤RI<130 | 中等 |
80≤Er<160 | 130≤RI<250 | 强 |
160≤Er<320 | RI>250 | 很强 |
Er ≥320 | 极强 |
表2 基于Er和RI的重金属环境风险评级标准
Table 2 Assessment of heavy metal ecological risks based on single and comprehensive index
Er | RI | 污染评价 |
---|---|---|
Er<40 | RI<60 | 轻微 |
40≤Er<80 | 60≤RI<130 | 中等 |
80≤Er<160 | 130≤RI<250 | 强 |
160≤Er<320 | RI>250 | 很强 |
Er ≥320 | 极强 |
土地利用类型 | 统计因子 | Cu | Zn | As | Cr | Ni | Pb | Cd | Mn |
---|---|---|---|---|---|---|---|---|---|
耕地 (n=89) | 最大值 | 81.6 | 183 | 32.4 | 214 | 146 | 122 | 0.51 | 2.05×103 |
最小值 | 7.16 | 55.8 | 1.49 | 10.5 | 4.64 | 22.5 | 0.08 | 94.2 | |
中位数 | 22.2 | 96.9 | 18.8 | 33.9 | 12.4 | 38.7 | 0.2 | 484 | |
平均值 | 24.6 | 100 | 17.4 | 44.9 | 20.6 | 42.7 | 0.21 | 554 | |
标准差 | 10.4 | 27.0 | 8.40 | 32.2 | 20.4 | 15.9 | 0.08 | 338 | |
变异系数 | 42.3 | 27.0 | 48.2 | 71.8 | 98.8 | 37.2 | 39.2 | 61.0 | |
林地 (n=55) | 最大值 | 44.2 | 244 | 30.4 | 113 | 73.7 | 138 | 0.72 | 1.71×103 |
最小值 | 4.70 | 33.3 | 1.32 | 5.03 | 2.65 | 19.8 | 0.06 | 115 | |
中位数 | 12.1 | 82.1 | 16.8 | 25.3 | 10.6 | 31.3 | 0.15 | 502 | |
平均值 | 14.2 | 92.7 | 15.5 | 28.5 | 12.9 | 41.1 | 0.18 | 616 | |
标准差 | 9.53 | 41.5 | 7.37 | 20.6 | 11.1 | 25.3 | 0.1 | 377 | |
变异系数 | 66.9 | 44.8 | 47.4 | 72.3 | 86.0 | 61.4 | 57.7 | 61.2 | |
建设用地 (n=72) | 最大值 | 126 | 664 | 34.9 | 110 | 42.7 | 254 | 0.9 | 1.59×103 |
最小值 | 7.45 | 47.5 | 3.43 | 9.51 | 5.00 | 18.2 | 0.06 | 152 | |
中位数 | 18.6 | 99.0 | 14.2 | 35.5 | 16.5 | 35.7 | 0.16 | 773 | |
平均值 | 21.6 | 120 | 14.6 | 39.2 | 17.5 | 46.3 | 0.2 | 811 | |
标准差 | 15.9 | 85.2 | 8.25 | 18.1 | 7.08 | 36.9 | 0.15 | 286 | |
变异系数 | 73.4 | 71.2 | 56.6 | 46.2 | 40.4 | 79.7 | 73.7 | 35.3 | |
三门湾沿岸背景值*1) | 23.6 | 84.7 | 9.50 | 71.9 | 32.3 | 31.6 | 0.11 | ‒ | |
宁波市土壤背景值** 2) | 23.1 | 86.6 | 5.75 | 56.1 | 20.7 | 36.2 | 0.16 | 571 | |
全国土壤背景值***3) | 22.6 | 74.2 | 11.2 | 61.0 | 26.9 | 26.0 | 0.1 | 583 |
表3 不同土地利用类型土壤中重金属质量分数的描述性统计
Table 3 Descriptive statistics of heavy metal concentrations in soils under different land use types g·kg-1
土地利用类型 | 统计因子 | Cu | Zn | As | Cr | Ni | Pb | Cd | Mn |
---|---|---|---|---|---|---|---|---|---|
耕地 (n=89) | 最大值 | 81.6 | 183 | 32.4 | 214 | 146 | 122 | 0.51 | 2.05×103 |
最小值 | 7.16 | 55.8 | 1.49 | 10.5 | 4.64 | 22.5 | 0.08 | 94.2 | |
中位数 | 22.2 | 96.9 | 18.8 | 33.9 | 12.4 | 38.7 | 0.2 | 484 | |
平均值 | 24.6 | 100 | 17.4 | 44.9 | 20.6 | 42.7 | 0.21 | 554 | |
标准差 | 10.4 | 27.0 | 8.40 | 32.2 | 20.4 | 15.9 | 0.08 | 338 | |
变异系数 | 42.3 | 27.0 | 48.2 | 71.8 | 98.8 | 37.2 | 39.2 | 61.0 | |
林地 (n=55) | 最大值 | 44.2 | 244 | 30.4 | 113 | 73.7 | 138 | 0.72 | 1.71×103 |
最小值 | 4.70 | 33.3 | 1.32 | 5.03 | 2.65 | 19.8 | 0.06 | 115 | |
中位数 | 12.1 | 82.1 | 16.8 | 25.3 | 10.6 | 31.3 | 0.15 | 502 | |
平均值 | 14.2 | 92.7 | 15.5 | 28.5 | 12.9 | 41.1 | 0.18 | 616 | |
标准差 | 9.53 | 41.5 | 7.37 | 20.6 | 11.1 | 25.3 | 0.1 | 377 | |
变异系数 | 66.9 | 44.8 | 47.4 | 72.3 | 86.0 | 61.4 | 57.7 | 61.2 | |
建设用地 (n=72) | 最大值 | 126 | 664 | 34.9 | 110 | 42.7 | 254 | 0.9 | 1.59×103 |
最小值 | 7.45 | 47.5 | 3.43 | 9.51 | 5.00 | 18.2 | 0.06 | 152 | |
中位数 | 18.6 | 99.0 | 14.2 | 35.5 | 16.5 | 35.7 | 0.16 | 773 | |
平均值 | 21.6 | 120 | 14.6 | 39.2 | 17.5 | 46.3 | 0.2 | 811 | |
标准差 | 15.9 | 85.2 | 8.25 | 18.1 | 7.08 | 36.9 | 0.15 | 286 | |
变异系数 | 73.4 | 71.2 | 56.6 | 46.2 | 40.4 | 79.7 | 73.7 | 35.3 | |
三门湾沿岸背景值*1) | 23.6 | 84.7 | 9.50 | 71.9 | 32.3 | 31.6 | 0.11 | ‒ | |
宁波市土壤背景值** 2) | 23.1 | 86.6 | 5.75 | 56.1 | 20.7 | 36.2 | 0.16 | 571 | |
全国土壤背景值***3) | 22.6 | 74.2 | 11.2 | 61.0 | 26.9 | 26.0 | 0.1 | 583 |
图4 土壤重金属含量与基本理化性质之间的相关性热图 **在0.01水平(双侧)上显著相关,*在0.05水平(双侧)上显著相关;红色表示正相关,蓝色表示负相关;颜色越深、椭圆越扁表示相关系数值越大
Figure 4 Heat map of correlation between soil heavy metal content and basic physicochemical properties
重金属 | 因子载荷 | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
Cu | 0.81 | -0.02 | -0.40 | -0.02 |
Zn | 0.67 | 0.52 | -0.18 | 0.09 |
As | 0.41 | -0.38 | -0.11 | 0.79 |
Cr | 0.77 | -0.51 | 0.01 | -0.29 |
Ni | 0.76 | -0.54 | 0.07 | -0.27 |
Pb | 0.26 | 0.68 | -0.05 | -0.06 |
Cd | 0.53 | 0.68 | 0.03 | -0.03 |
Mn | 0.54 | 0.13 | 0.79 | 0.15 |
特征值 | 3.09 | 1.92 | 0.83 | 0.82 |
方差贡献率/% | 38.6 | 24.0 | 10.4 | 10.2 |
累积方差贡献率/% | 38.6 | 62.5 | 72.9 | 83.1 |
表4 土壤重金属主成分分析结果
Table 4 Results of principal component analysis of soil heavy metals
重金属 | 因子载荷 | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
Cu | 0.81 | -0.02 | -0.40 | -0.02 |
Zn | 0.67 | 0.52 | -0.18 | 0.09 |
As | 0.41 | -0.38 | -0.11 | 0.79 |
Cr | 0.77 | -0.51 | 0.01 | -0.29 |
Ni | 0.76 | -0.54 | 0.07 | -0.27 |
Pb | 0.26 | 0.68 | -0.05 | -0.06 |
Cd | 0.53 | 0.68 | 0.03 | -0.03 |
Mn | 0.54 | 0.13 | 0.79 | 0.15 |
特征值 | 3.09 | 1.92 | 0.83 | 0.82 |
方差贡献率/% | 38.6 | 24.0 | 10.4 | 10.2 |
累积方差贡献率/% | 38.6 | 62.5 | 72.9 | 83.1 |
图6 重金属元素在3种土地利用类型中的单因子潜在生态风险指数(Er) 图中红色直线为中度-重度风险分界;红色虚线为轻度-中度风险分界;星号代表异常值
Figure 6 Potential ecological risk index (Er) of heavy metals across three types of land use
土地利用类型 | 项目 | Cu | Zn | As | Cr | Ni | Pb | Cd | Mn |
---|---|---|---|---|---|---|---|---|---|
耕地 (n=89) | 最大值 | 17.7 | 2.11 | 56.4 | 7.65 | 14.1 | 16.9 | 95.5 | 3.59 |
最小值 | 1.55 | 0.64 | 2.59 | 0.37 | 0.45 | 3.10 | 15.0 | 0.16 | |
中位数 | 5.31 | 1.16 | 30.3 | 1.60 | 1.99 | 5.90 | 40.14 | 0.97 | |
平均值 | 4.81 | 1.12 | 32.6 | 1.21 | 1.20 | 5.34 | 37.2 | 0.85 | |
标准差 | 2.25 | 0.31 | 14.6 | 1.15 | 1.97 | 2.20 | 15.7 | 0.59 | |
风险等级 | S | S | S | S | S | S | M | S | |
林地 (n=55) | 最大值 | 9.56 | 2.82 | 52.9 | 4.03 | 7.12 | 19.0 | 135 | 2.99 |
最小值 | 1.02 | 0.38 | 2.29 | 0.18 | 0.26 | 2.73 | 10.5 | 0.20 | |
中位数 | 3.08 | 1.07 | 27.0 | 1.02 | 1.25 | 5.68 | 34.1 | 1.08 | |
平均值 | 2.62 | 0.95 | 29.2 | 0.90 | 1.02 | 4.32 | 28.4 | 0.88 | |
标准差 | 2.06 | 0.48 | 12.8 | 0.73 | 1.07 | 3.49 | 19.7 | 0.66 | |
风险等级 | S | S | S | S | S | S | S | S | |
建设用地 (n=72) | 最大值 | 27.4 | 7.67 | 60.7 | 3.91 | 4.13 | 35.0 | 1.70×103 | 2.79 |
最小值 | 1.61 | 0.55 | 5.96 | 0.34 | 0.48 | 2.52 | 10.7 | 0.27 | |
中位数 | 4.67 | 1.38 | 25.4 | 1.40 | 1.69 | 6.39 | 37.8 | 1.42 | |
平均值 | 4.03 | 1.14 | 24.7 | 1.26 | 1.60 | 4.93 | 29.6 | 1.35 | |
标准差 | 3.43 | 0.98 | 14.4 | 0.65 | 0.68 | 5.09 | 27.8 | 0.50 | |
风险等级 | S | S | S | S | S | S | S | S |
表5 土壤重金属单因子潜在生态风险指数Er
Table 5 Single factor potential ecological risk index (Er) of soil heavy metals
土地利用类型 | 项目 | Cu | Zn | As | Cr | Ni | Pb | Cd | Mn |
---|---|---|---|---|---|---|---|---|---|
耕地 (n=89) | 最大值 | 17.7 | 2.11 | 56.4 | 7.65 | 14.1 | 16.9 | 95.5 | 3.59 |
最小值 | 1.55 | 0.64 | 2.59 | 0.37 | 0.45 | 3.10 | 15.0 | 0.16 | |
中位数 | 5.31 | 1.16 | 30.3 | 1.60 | 1.99 | 5.90 | 40.14 | 0.97 | |
平均值 | 4.81 | 1.12 | 32.6 | 1.21 | 1.20 | 5.34 | 37.2 | 0.85 | |
标准差 | 2.25 | 0.31 | 14.6 | 1.15 | 1.97 | 2.20 | 15.7 | 0.59 | |
风险等级 | S | S | S | S | S | S | M | S | |
林地 (n=55) | 最大值 | 9.56 | 2.82 | 52.9 | 4.03 | 7.12 | 19.0 | 135 | 2.99 |
最小值 | 1.02 | 0.38 | 2.29 | 0.18 | 0.26 | 2.73 | 10.5 | 0.20 | |
中位数 | 3.08 | 1.07 | 27.0 | 1.02 | 1.25 | 5.68 | 34.1 | 1.08 | |
平均值 | 2.62 | 0.95 | 29.2 | 0.90 | 1.02 | 4.32 | 28.4 | 0.88 | |
标准差 | 2.06 | 0.48 | 12.8 | 0.73 | 1.07 | 3.49 | 19.7 | 0.66 | |
风险等级 | S | S | S | S | S | S | S | S | |
建设用地 (n=72) | 最大值 | 27.4 | 7.67 | 60.7 | 3.91 | 4.13 | 35.0 | 1.70×103 | 2.79 |
最小值 | 1.61 | 0.55 | 5.96 | 0.34 | 0.48 | 2.52 | 10.7 | 0.27 | |
中位数 | 4.67 | 1.38 | 25.4 | 1.40 | 1.69 | 6.39 | 37.8 | 1.42 | |
平均值 | 4.03 | 1.14 | 24.7 | 1.26 | 1.60 | 4.93 | 29.6 | 1.35 | |
标准差 | 3.43 | 0.98 | 14.4 | 0.65 | 0.68 | 5.09 | 27.8 | 0.50 | |
风险等级 | S | S | S | S | S | S | S | S |
项目 | RI | 占比/% | |||||
---|---|---|---|---|---|---|---|
最小值 | 最大值 | 均值 | 轻微风险 | 中等风险 | 强风险 | ||
耕地 | 42.3 | 152 | 87.4 | 10.1 | 84.3 | 5.62 | |
林地 | 20.3 | 207 | 74.3 | 27.3 | 70.9 | 1.82 | |
建设用地 | 28.0 | 204 | 80.1 | 30.6 | 62.5 | 6.94 |
表6 不同土地利用土壤重金属综合潜在生态风险指数(RI)
Table 6 Comprehensive potential ecological risk Index (RI) of heavy metals in soil of different land uses
项目 | RI | 占比/% | |||||
---|---|---|---|---|---|---|---|
最小值 | 最大值 | 均值 | 轻微风险 | 中等风险 | 强风险 | ||
耕地 | 42.3 | 152 | 87.4 | 10.1 | 84.3 | 5.62 | |
林地 | 20.3 | 207 | 74.3 | 27.3 | 70.9 | 1.82 | |
建设用地 | 28.0 | 204 | 80.1 | 30.6 | 62.5 | 6.94 |
[1] |
AHMAD W, ALHARTHY R D, ZUBAIR M, et al., 2021. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk[J]. Scientific Reports, 11(1): 17006.
DOI PMID |
[2] |
AN Q, WU Y, WANG J, et al., 2010. Assessment of dissolved heavy metal in the Yangtze River estuary and its adjacent sea, China[J]. Environmental Monitoring and Assessment, 164(1-4): 173-187.
DOI PMID |
[3] | BARSOVA N, YAKIMENKO O, TOLPESJTA I, et al., 2019. Current state and dynamics of heavy metal soil pollution in Russian Federation: A review[J]. Environmental Pollution, 249: 200-207. |
[4] | BROWN S G, EBERLY S, PAATERO P, et al., 2015. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results[J]. Science of the Total Environment, 518-519: 626-635. |
[5] |
FU Z S, XI S H, 2020. The effects of heavy metals on human metabolism[J]. Toxicology Mechanisms and Methods, 30(3): 167-176.
DOI PMID |
[6] |
GAO X, CHEN C A, 2012. Heavy metal pollution status in surface sediments of the coastal Bohai Bay[J]. Water Research, 46(6): 1901-1911.
DOI PMID |
[7] | GRANT C A, SHEPPARD S C, 2008. Fertilizer impacts on cadmium availability in agricultural soils and crops[J]. Human and Ecological Risk Assessment, 14(2): 210-228. |
[8] |
HU W Y, WANG H F, DONG L R, et al., 2018. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach[J]. Environmental Pollution, 237: 650-661.
DOI PMID |
[9] | ISLAM M S, AHMED M K, AL-MAMUN M H, et al., 2019. Sources and Ecological Risks of Heavy Metals in Soils Under Different Land Uses in Bangladesh[J]. Pedosphere, 29(5): 665-675. |
[10] | KIRAN, BHARTI R, SHARMA R, 2022. Effect of heavy metals: An overview[J]. Materials Today: Proceedings, 51(Part 1): 880-885. |
[11] |
LIU M, CHEN J B, SUN X S, et al., 2019. Accumulation and transformation of heavy metals in surface sediments from the Yangtze River estuary to the East China Sea shelf[J]. Environmental Pollution, 245: 111-121.
DOI PMID |
[12] | LÜ J S, LIU Y, ZHANG Z L, et al., 2015. Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach[J]. Journal of Soils and Sediments, 15(1): 163-178. |
[13] | NI J Y, YUAN C, ZHENG J, et al., 2022. Distributions, contamination level and ecological risk of heavy metals in surface sediments from intertidal zone of the Sanmen Bay, East China[J]. Journal of Sea Research, 190: 102302. |
[14] |
RAJA R, NAYAK A K, RAO K S, et al., 2014. Effect of fly ash deposition on photosynthesis, growth and yield of rice[J]. Bulletin of Environmental Contamination and Toxicology, 93(1): 106-112.
DOI PMID |
[15] | SU C W, SONG Y, UMAR M, 2021. Financial aspects of marine economic growth: From the perspective of coastal provinces and regions in China[J]. Ocean & Coastal Management, 204: 105550. |
[16] | WANG C L, ZOU X Q, FENG Z Y, et al., 2018. Distribution and transport of heavy metals in estuarine - inner shelf regions of the East China Sea[J]. Science of the Total Environment, 644: 298-305. |
[17] | WANG R, ZHANG C, HUANG X T, et al., 2020. Distribution and source of heavy metals in the sediments of the coastal East China sea: Geochemical controls and typhoon impact[J]. Environmental Pollution, 260: 113936. |
[18] |
XIAO R, GUO D, ALI A, et al., 2019. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China[J]. Environmental Pollution, 248: 349-357.
DOI PMID |
[19] | YANG S Y, HE M J, ZHI Y Y, et al., 2019. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities[J]. Environment International, 133(Part B): 105239. |
[20] | ZHAI B, ZHANG X L, WANG L B, et al., 2021. Concentration distribution and assessment of heavy metals in surface sediments in the Zhoushan Islands coastal sea, East China Sea[J]. Marine Pollution Bulletin, 164: 112096. |
[21] | ZHANG A G, WANG L L, ZHAO S L, et al., 2017. Heavy metals in seawater and sediments from the northern Liaodong Bay of China: Levels, distribution and potential risks[J]. Regional Studies in Marine Science, 11: 32-42. |
[22] | ZHANG M, SUN X, XU J L, 2020. Heavy metal pollution in the East China Sea: A review[J]. Marine Pollution Bulletin, 159: 111473. |
[23] |
ZHAO B, WANG X, JIN H, et al., 2018. Spatiotemporal variation and potential risks of seven heavy metals in seawater, sediment, and seafood in Xiangshan Bay, China (2011-2016)[J]. Chemosphere, 212: 1163-1171.
DOI PMID |
[24] | ZHUANG W, ZHOU F X, 2021. Distribution, source and pollution assessment of heavy metals in the surface sediments of the Yangtze River Estuary and its adjacent East China Sea[J]. Marine Pollution Bulletin, 164: 112002. |
[25] | 陈明, 王琳玲, 曹柳, 等, 2023. 基于PMF模型的某铅锌冶炼城市降尘重金属污染评价及来源解析[J]. 环境科学, 44(6): 3450-3462. |
CHEN M, WANG L L, CAO L, et al., 2023. Pollution assessment and source analysis of heavy metals in atmospheric deposition in a lead-zinc smelting city Based on PMF model[J]. Environmental Science, 44(6): 3450-3462. | |
[26] | 崔莹, 2015. 元素分析仪测定土壤, 沉积物样品碳氮含量的影响因素及数据校正[J]. 分析测试技术与仪器, 21(3): 176-179. |
CUI Y, 2015. Effect factor and data calculation of carbon and nitrogen content of soil and sediment determined by element analyzer[J]. Analysis and Testing Technology and Instruments, 21(3): 176-179. | |
[27] | 陈志凡, 化艳旭, 徐薇, 等, 2020. 基于正定矩阵因子分析模型的城郊农田重金属污染源解析[J]. 环境科学学报, 40(1): 276-283. |
CHEN Z F, HUA Y X, XU W, et al., 2020. Analysis of heavy metal pollution sources in suburban farmland based on positive definite matrix factor model[J]. Acta Scientiae Circumstantiae, 40(1): 276-283. | |
[28] | 代恒美, 杨力, 郭子毓, 等, 2022. 喀斯特山区某磷化工厂周边农田土壤重金属污染及健康风险评价[J]. 环境与健康杂志, 39(2): 71-77. |
DAI H M, YANG L, GUO Z Y, et al., 2022. Heavy metal pollution and health risk assessment of farmland soil around a phosphating plant in karst mountainous area[J]. Journal of Environment and Health, 39(2): 71-77. | |
[29] |
狄乾斌, 徐礼祥, 2020. 中国海洋经济创新发展的时空差异[J]. 资源与产业, 22(3): 65-73.
DOI |
DI Q B, XU L X, 2020. Temporal-spatial variance of innovative development of China’s marine economy[J]. Resources & Industries, 22(3): 65-73. | |
[30] | 董岩翔, 郑文, 周建华, 2007. 浙江省土壤地球化学背景值[M]. 北京: 地质出版社. |
DONG Y X, ZHENG W, ZHOU J H, 2007. Soil geochemical background in Zhejiang[M]. Beijing: Geology Press. | |
[31] | 冯辉强, 2010. 象山港生态环境修复治理探讨[J]. 海洋开发与管理, 27(9): 54-57. |
FENG H Q, 2010. Discussion on ecological environment restoration and management of Xiangshan Port[J]. Ocean Development and Management, 27(9): 54-57. | |
[32] | 冯乙晴, 刘灵飞, 肖辉林, 等, 2017. 深圳市典型工业区土壤重金属污染特征及健康风险评价[J]. 生态环境学报, 26(6): 1051-1058. |
FENG Y Q, LIU L F, XIAO H L, et al., 2017. Pollution characteristics and health risk assessment of heavy metals in soil of typical industrial district of Shenzhen[J]. Ecology and Environment Sciences, 26(6): 1051-1058. | |
[33] | 侯青叶, 杨忠芳, 余涛, 2020. 中国土壤地球化学参数[M]. 北京: 地质出版社. |
HOU Q Y, YANG Z F, YU T, 2020. Soil geochemical parameters in China[M]. Beijing: Geology Press. | |
[34] | 黄勇, 段续川, 袁国礼, 等, 2022. 北京市延庆区土壤重金属元素地球化学特征及其来源分析[J]. 现代地质, 36(2): 634-644. |
HUANG Y, DUAN X C, YUAN G L, et al., 2022. Geochemistry and source identification of heavy metals in the top and subsoil of yanqing district in Beijing[J]. Geoscience, 36(2): 634-644. | |
[35] | 中华人民共和国环境保护部, 2016. 土壤和沉积物12种金属元素的测定王水提取-电感耦合等离子体质谱法: HJ 803—2016[S]. 北京: 中国环境科学出版社: 1-10. |
Ministry of Environmental Protection of the People's Republic of China, 2016. Soil and sediment-Determination of aqua regia extracts of 12 metal elements-Inductively coupled plasma mass spectrometry: HJ 803—2016[S]. Beijing: China Environmental Science Press: 1-10. | |
[36] | 李超群, 田宗平, 曹健, 等, 2016. 锰矿石在非冶金工业领域的应用[J]. 中国锰业, 34(6): 91-95. |
LI C Q, TIAN Z P, CAO J, et al., 2016. An application of manganese ore in non-metallurgy[J]. China’s Manganese Industry, 34(6): 91-95. | |
[37] | 李梦婷, 沈城, 吴健, 等, 2021. 快速城市化区域不同用地类型土壤重金属含量分布特征及生态风险[J]. 环境科学, 42(10): 4889-4896. |
LI M T, SHEN C, WU J, et al., 2021. Content and ecological risks of heavy metals in soil with different land uses in a rapidly urbanizing area[J]. Environmental Science, 42(10): 4889-4896. | |
[38] | 李其林, 王显军, 2004. 汽车尾气对土壤和蔬菜中铅含量的影响[J]. 生态环境, 13(1): 17-18. |
LI Q L, WANG X J, 2004. Influence of vehicle exhaust on the contents of Pb in soil and vegetables[J]. Ecology and Environment, 13(1): 17-18. | |
[39] | 梁家辉, 田亦琦, 费杨, 等, 2023. 华北典型工矿城镇土壤重金属来源解析及潜在生态风险评价[J]. 环境科学, 44(10): 5657-5665. |
LIANG J H, TIAN Y Q, FEI Y, et al., 2023. Source Apportionment and potential ecological risk assessment of soil heavy metals in typical industrial and mining towns in North China[J]. Environmental Science, 44(10): 5657-5665. | |
[40] | 吕红亮, 周霞, 张文新, 等, 2021. 基于土地利用变化的长江经济带生态风险研究[J]. 北京师范大学学报(自然科学版), 57(4): 517-523. |
LÜ H L, ZHOU X, ZHANG W X, et al., 2021. Ecological risks associated with changes in land use in the Yangtze River Economic Belt[J]. Journal of Beijing Normal University (Natural Science), 57(4): 517-523. | |
[41] |
吕建树, 2021. 烟台海岸带土壤重金属定量源解析及空间预测[J]. 地理学报, 76(3): 713-725.
DOI |
LÜ J S, 2021. Source apportionment and spatial prediction of heavy metals in soils of Yantai coastal zone[J]. Acta Geographica Sinica, 76(3): 713-725.
DOI |
|
[42] | 吕伟伟, 姚昕, 张保华, 等, 2019. 基于地统计学分析的太湖颗粒态和溶解态氮、磷营养盐时空分布特征及来源分析[J]. 环境科学, 40(2): 590-602. |
LÜ W W, YAO X, ZHANG B H, et al., 2019. Temporal-spatial distribution of nitrogen and phosphorus nutrients in Lake Taihu based on geostatistical analysis[J]. Environmental Science, 40(2): 590-602. | |
[43] | 司海青, 姚艳敏, 王德营, 等, 2015. 含水率对土壤有机质含量高光谱估算的影响[J]. 农业工程学报, 31(9): 114-120. |
SI H Q, YAO Y M, WANG D Y, et al., 2015. Hyperspectral prediction of soil organic matter contents under different soil moisture contents[J]. Transactions of the CSAE, 31(9): 114-120. | |
[44] | 田元, 曹珂, 印萍, 等, 2023. 三门湾沿岸土壤潜在有毒元素分布、来源及环境风险评价[J]. 海洋地质前沿, 39(6): 32-45. |
TIAN Y, CAO K, YIN P, et al., 2023. Distribution, sources and environmental risk assessment on potential toxic elements in soils along coast of Sanmen Bay[J]. Marine Geology Frontiers, 39(6): 32-45. | |
[45] | 陶真鹏, 徐宗恒, 丁俊楠, 等, 2022. 基于不同方法的林下土壤有机质含量测定[J]. 科学技术与工程, 22(10): 3892-3901. |
TAO Z P, XU Z H, DING J N, et al., 2022. Determination of soil organic matter content under forest based on different methods[J]. Science Technology and Engineering, 22(10): 3892-3901. | |
[46] | 王磊, 汪文东, 刘懂, 等, 2020. 象山港流域入湾河流水体中重金属风险评价及其来源解析[J]. 环境科学, 41(7): 3194-3203. |
WANG L, WANG W D, LIU D, et al., 2020. Risk Assessment and source analysis of heavy metals in the river of a typical bay watershed[J]. Environmental Science, 41(7): 3194-3203. | |
[47] | 肖凯琦, 徐宏根, 甘杰, 等, 2024. 湘西南部地区土壤重金属污染溯源分析及环境质量评价[J]. 环境科学, 45(3): 1760-1768. |
XIAO K Q, XU H G, GAN J, et al., 2024. Traceability analysis and environmental quality assessment of soil heavy metal pollution in southwest Hunan Province[J]. Environmental Science, 45(3): 1760-1768. | |
[48] | 徐磊, 管继云, 巴永, 等, 2024. 云南中高山丘陵区土壤重金属元素空间分布格局及驱动机制[J]. 中国地质, 51(1): 304-326. |
XU L, GUAN J Y, BA Y, et al., 2024. Spatial distribution pattern and driving mechanism of heavy metal elements in soils in middle-alpine hilly region, Yunnan Province[J]. Geology in China, 51(1): 304-326. | |
[49] | 徐争启, 倪师军, 庹先国, 等, 2008. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 31(2): 112-115. |
XU Z Q, NI S J, TUO X G, et al., 2008. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 31(2): 112-115. | |
[50] | 杨振宇, 廖超林, 邹炎, 等, 2023. 湘东北典型河源区土壤重金属分布特征、来源解析及潜在生态风险评价[J]. 环境科学, 44(9): 5288-5298. |
YANG Z Y, LIAO C L, ZOU Y, et al., 2023. Distribution characteristics, source analysis and potential ecological risk assessment of soil heavy metals in typical river source areas of Northeastern Hunan Province[J]. Environmental Science, 44(9): 5288-5298. | |
[51] | 尹昌霞, 马仁锋, 毛菁旭, 2021. 滨海地区三生空间冲突的时空评测及优化[J]. 上海国土资源, 42(2): 78-84. |
YIN C X, MA R F, MAO J X, 2021. Spatial-temporal evaluation and optimization of spatial conflictin ecologicalproduction-living spaces of coastal region[J]. Shanghai Land & Resources, 42(2): 78-84. | |
[52] | 中华人民共和国国土资源部, 2014. 多目标区域地球化学调查规范(1꞉250000): DZ/T 0258—2014[S]. 北京: 中国标准出版社: 3-7. |
Ministry of Land and Resources of the People's Republic of China, 2014. Specifications of multi-purpose regional geochemical survey (1꞉250000): DZ/T 0258—2014[S]. Beijing: Standards Press of China: 3-7. | |
[53] | 中华人民共和国国土资源部, 2016. 土地质量地球化学评价规范: DZ/T 0295—2016[S]. 北京: 地质出版社: 5-15 |
Ministry of Land and Resources of the People's Republic of China, 2016. Determination of land Quality Geochemical Evaluation: DZ/T 0295—2016[S]. Beijing: Geological Publishing House: 5-15 | |
[54] | 朱立安, 曾清苹, 柳勇, 等, 2020. 佛山城市典型森林群落土壤重金属分布、流通及枯落物富集特征[J]. 生态学报, 40(13): 4659-4669. |
ZHU L A, CENG Q P, LIU Y, et al., 2020. Heavy metals distribution and circulation in soils and their enrichment characteristics by litter in urban typical forest communities in Foshan, China[J]. Acta Ecological Sinica, 40(13): 4659-4669. | |
[55] | 朱强, 马丽, 马强, 等, 2012. 不同浸提剂以及保存方法对土壤矿质氮测定的影响[J]. 中国生态农业学报, 20(2): 138-143. |
ZHU Q, MA L, MA Q, et al., 2012. Content of soil mineral nitrogen as influenced by sample extraction and preservation[J]. Chinese Journal of Eco-Agriculture, 20(2): 138-143. |
[1] | 刘东宜, 屈永华, 冯耀伟, 屈冉. 基于网格搜索优化CatBoost模型的GF-5卫星影像铬离子含量反演研究[J]. 生态环境学报, 2024, 33(9): 1460-1470. |
[2] | 王文静, 翟水晶, 王赛. 闽江下游湿地土壤硅的沿程分布特征及影响因素[J]. 生态环境学报, 2024, 33(8): 1182-1191. |
[3] | 欧阳美凤, 尹宇莹, 张金谌, 刘清霖, 谢意南, 方平. 洞庭湖典型水域重金属含量的空间分布与来源解析[J]. 生态环境学报, 2024, 33(8): 1269-1278. |
[4] | 吴文伟, 沈城, 沙晨燕, 林匡飞, 吴健, 谢雨晴, 周璇. 城市工业地块土壤重金属污染风险评价与源解析[J]. 生态环境学报, 2024, 33(5): 791-801. |
[5] | 张淼, 王桂霞, 王昌伟, 贺艳云, 许艳芳, 李琪, 许杨, 张俊骁, 张桂芹. 济南市区黑碳污染变化特征及来源解析[J]. 生态环境学报, 2024, 33(4): 560-572. |
[6] | 何艺, 秦欣欣, 张翔, 孙楠, 杨雅淋, 连军锋. 微塑料断面分布的不均一性——以赣江水域赣州段为例[J]. 生态环境学报, 2024, 33(4): 626-632. |
[7] | 张瑞东, 吴富勤, 李坤冀, 金彦杉, 刘程霞, 申仕康. 云南九大高原湖泊湖滨带入侵植物物种组成与分布特征[J]. 生态环境学报, 2024, 33(3): 351-361. |
[8] | 蒋伯琪, 浮天, 程昳璇, 苏枞枞, 沈建东, 于谨铖, 于兴娜. 沈阳市臭氧污染特征及其影响因素[J]. 生态环境学报, 2024, 33(1): 72-79. |
[9] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[10] | 许肖云, 饶芝菡, 蒋红斌, 张巍, 陈超, 杨永安, 胡艳丽, 魏海川. 遂宁工业园区夏季VOCs污染特征及其对O3、SOA生成潜势研究[J]. 生态环境学报, 2023, 32(5): 956-968. |
[11] | 王铁铮, 瞿心悦, 刘春香, 李有志. 东江湖水质时空变化规律及其与流域土地利用的关系[J]. 生态环境学报, 2023, 32(4): 722-732. |
[12] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[13] | 李姝亭, 胡冠九, 罗小三. 大气环境中全(多)氟烷基化合物(PFASs)的来源、分布及健康风险研究进展[J]. 生态环境学报, 2023, 32(12): 2103-2114. |
[14] | 黄国锋, 贺斌, 谢志宜, 刘军, 王安侯, 廖彤, 王博瑾, 郝贝贝. 广东省农业源污染对水环境的影响及其空间分异格局[J]. 生态环境学报, 2023, 32(12): 2207-2215. |
[15] | 何文宣, 李垒, 孙思宇, 李昌, 李久义, 田秀君. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 2023, 32(11): 1901-1912. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||