生态环境学报 ›› 2024, Vol. 33 ›› Issue (2): 310-320.DOI: 10.16258/j.cnki.1674-5906.2024.02.015

• 综述 • 上一篇    下一篇

微氧生物亚铁氧化及其重金属固定效应研究进展

李嘉惠1(), 童辉2,3,*(), 陈曼佳2, 刘承帅3, 姜琪2, 易秀1,*()   

  1. 1.长安大学水利与环境学院/旱区地下水文与生态效应教育部重点实验室,陕西 西安 710054
    2.广东省科学院生态环境与土壤研究所,广东 广州 510650
    3.中国科学院地球化学研究所,贵州 贵阳 550081
  • 收稿日期:2023-09-20 出版日期:2024-02-18 发布日期:2024-04-03
  • 通讯作者: 易秀。E-mail: yixiu@chd.edu.cn
    *童辉。E-mail: huitong@soil.gd.cn
  • 作者简介:李嘉惠(1999年生),女,硕士研究生,主要从事湿地土壤铁氧化物的环境效应。E-mail: 2021129064@chd.edu.cn
  • 基金资助:
    国家自然科学基金项目(42177238);国家自然科学基金项目(41977291);广东省农业科技创新及推广项目(2023KJ112)

Formation of Fe(Ⅲ) Minerals by Microaerophilic Fe(Ⅱ)-oxidizing Bacteria and Its Effect on Immobilization of Heavy Metals: A Review

LI Jiahui1(), TONG Hui2,3,*(), CHEN Manjia2, LIU Chengshuai3, JIANG Qi2, YI Xiu1,*()   

  1. 1. School of Water and Environment, Chang'an University/Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an 710054, P. R. China
    2. Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
    3. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
  • Received:2023-09-20 Online:2024-02-18 Published:2024-04-03

摘要:

铁的生物地球化学循环对于多种环境过程至关重要,如碳封存、温室气体排放以及营养元素和有毒金属的迁移和转化。近年来,随着分离培养方式及分子生物学方法的发展,作为铁循环的重要组成部分的微氧生物铁氧化的研究取得了显著的进展。微氧型亚铁氧化菌广泛分布于近中性环境中,其分离栖息地从地下水、湿地、溪流延展至深海环境。微氧生物亚铁氧化成矿过程主要发生在细胞表面,生成比表面积较大的无定型铁氧化物。大部分微氧型亚铁氧化菌通过形成鞘状或螺旋柄状结构的胞外多聚物吸附生成的铁氧化物,防止自身被铁氧化物包埋,导致无法正常代谢而死亡。亚铁氧化成矿过程可吸附和共沉淀重金属元素,降低重金属的移动性和生物可利用性,从而缓解重金属的污染,为治理环境污染提供新的思路。文章主要总结了近年来国内外对嗜中性微氧型亚铁氧化菌的研究进展,包括其代谢特征、种类及分布、以及亚铁氧化菌的成矿机制和成矿过程对重金属迁移转化的影响。最后对如何快速有效地分离微氧型亚铁氧化菌、明确成矿过程中的特殊结构的形成机制等问题进行了讨论和展望。

关键词: 微氧型亚铁氧化菌, 铁还原菌, 亚铁氧化, 铁氧化物, 重金属, 微氧环境

Abstract:

Biogeochemical cycling of iron is crucial to many environmental processes, such as carbon storage, greenhouse gas emissions, and the transformation of nutrients and toxic metals. As an important part of the iron cycle, the Fe(II) oxidation process driven by the microaerophilic Fe(II)-oxidizing bacteria (mFeOB) has made remarkable progress with the development of isolation and molecular biology methods in recent years. The mFeOB have frequently been found in redox transition zones at circumneutral pH, including groundwater seeps, wetland rhizosphere soils, creeks, and deep-sea hydrothermal vents. Fe(III) minerals are mainly produced on the cell surface, by forming amorphous iron oxides with a large specific surface area. Most mFeOB can form filamentous stalk or sheath structures to prevent the encrustation of FeOB, avoiding the cell death. In addition, Fe(II) oxidation process can adsorb and co-precipitate heavy metals which reduce their mobility and bioavailability, thereby alleviating the pollution of heavy metals and offering a new strategy for environmental protection. Here, we review recent findings regarding microbial Fe(II) oxidation under microaerobic and circumneutral pH conditions, including metabolism, species, and distribution of mFeOB, mechanism of microbial Fe(II) oxidation, and the effect of the Fe(II) oxidation process on the migration and transformation of heavy metals. Furthermore, we look forward to new methods for efficiently isolating mFeOB and identifying special structures during the Fe(II) oxidation process.

Key words: microaerophilic Fe(II)-oxidizing bacteria, Fe(III)-reducing bacteria, Fe(II) oxidation, Fe(III) mineral, heavy metal, microaerobic conditions

中图分类号: