生态环境学报 ›› 2024, Vol. 33 ›› Issue (2): 291-300.DOI: 10.16258/j.cnki.1674-5906.2024.02.013
江润海1(), 温绍福1, 朱城强1, 张梅1, 杨润玲1, 王春雪2, 侯秀丽1,*(
)
收稿日期:
2023-10-18
出版日期:
2024-02-18
发布日期:
2024-04-03
通讯作者:
*侯秀丽。E-mail: hxlyn@aliyun.com作者简介:
江润海(1997年生),男,硕士研究生,研究方向为土壤重金属污染修复。E-mail: m15519322764@163.com
基金资助:
JIANG Runhai1(), WEN Shaofu1, ZHU Chengqiang1, ZHANG Mei1, YANG Runling1, WANG Chunxue2, HOU Xiuli1,*(
)
Received:
2023-10-18
Online:
2024-02-18
Published:
2024-04-03
摘要:
矿产资源的开采、冶炼活动造成了一定的生态环境问题,土壤中可溶性重金属随着地表径流和地下渗透造成矿区和周边农田重金属污染。而矿区中土壤微生物对重金属具有一定耐性,研究微生物对植物根际微生态环境的改善作用具有重要意义。在矿区废弃地土壤中筛选耐铅(Pb)解磷菌的基础上,将含有菌株分泌物的上清液、菌液、发酵液(上清液+菌株)分别施用到玉米(Zea mays L.)根际土壤中,对比三者对玉米的促生效果及根际土壤铅的形态变化,探究解磷菌对玉米的促生机制及其对土壤铅的固化作用。所筛菌株被鉴定为巴氏克雷伯菌(Klebsiella pasteurii),其通过分泌乙酸、乳酸、酒石酸和草酸对Ca3(PO4)2的溶磷率为26.5%,并能分泌生长素(IAA)。在玉米根际土壤中施用菌株的上清液、菌液和发酵液后,较对照组玉米株高、茎直径、地上与地下生物量均显著增加,其中施用发酵液组增幅最高,较对照组分别增加了128%,216%、266%、147%。同时,3个处理组中玉米地上生物量中铅含量分别降低68.6%、58.1%、70.1%,地下部铅含量分别降低119%、36.7%、39.5%。施用菌株上清液、菌液和发酵液后均使玉米根际土壤中可溶态的铅向稳定态铅转化,这可能是巴氏克雷伯菌在解离土壤磷素的过程中,其解离的磷可能与铅形成稳定态的磷铅化合物,进而降低植物对铅的吸收。由此可以得出,在铅污染土壤中巴氏克雷伯菌能够显著固化重金属铅并抑制玉米对铅的吸收,对玉米具有促生作用,因此,巴氏克雷伯菌在土壤重金属修复和保障农作物食品安全方面具有重要价值。
中图分类号:
江润海, 温绍福, 朱城强, 张梅, 杨润玲, 王春雪, 侯秀丽. 铅污染矿区中耐铅解磷菌对玉米的促生及根际铅的固化效应[J]. 生态环境学报, 2024, 33(2): 291-300.
JIANG Runhai, WEN Shaofu, ZHU Chengqiang, ZHANG Mei, YANG Runling, WANG Chunxue, HOU Xiuli. Research on the Promotion of Maize Growth and Immobilization of Pb in the Rhizosphere by Pb-tolerant Phosphate Solubilizing Bacteria in Pb-contaminated Mining Areas[J]. Ecology and Environment, 2024, 33(2): 291-300.
生理生化实验指标 | 结果 |
---|---|
接触酶 | + |
氧化酶 | − |
丙二酸 | + |
柠檬酸盐 | + |
葡萄 | + |
D-山梨醇 | + |
甲基红 | + |
V-P | − |
吲哚 | + |
铁载体 | + |
革兰氏染色 | − |
表1 菌株的生理生化特征
Table 1 Physiological and biochemical identification of strains
生理生化实验指标 | 结果 |
---|---|
接触酶 | + |
氧化酶 | − |
丙二酸 | + |
柠檬酸盐 | + |
葡萄 | + |
D-山梨醇 | + |
甲基红 | + |
V-P | − |
吲哚 | + |
铁载体 | + |
革兰氏染色 | − |
生长因子 | 质量浓度/(mg·L−1) |
---|---|
吲哚-3-乙酸 | 49.5±0.81 |
乙酸 | 1 364±147 |
乳酸 | 25.6±0.66 |
酒石酸 | 40.1±4.03 |
草酸 | 50.2±3.47 |
表2 菌株分泌物质量浓度
Table 2 The concentration of secretions from the strain
生长因子 | 质量浓度/(mg·L−1) |
---|---|
吲哚-3-乙酸 | 49.5±0.81 |
乙酸 | 1 364±147 |
乳酸 | 25.6±0.66 |
酒石酸 | 40.1±4.03 |
草酸 | 50.2±3.47 |
土壤铅 形态 | 处理 | ||||
---|---|---|---|---|---|
CK | T1 | T2 | T3 | T4 | |
水溶态 | 3.32±0.01c | 3.34±0.00b | 3.39±0.02a | 3.34±0.00b | 3.34±0.00b |
可交换态 | 168±0.05b | 175±3.61b | 152±1.05d | 155±0.98cd | 157±0.95c |
碳酸盐结合态 | 431±1.88b | 459±1.64a | 455±10.91a | 407±7.00c | 410±7.76c |
铁锰氧化物结合态 | 1 046±46.48c | 1 138±13.41ab | 1 183±33.44a | 1 129±26.10ab | 1 089±17.32bc |
强有机结合态 | 240±2.57d | 308±2.12c | 382±29.90a | 335±12.91bc | 341±2.91b |
腐殖酸结合态 | 7.44±0.09b | 7.35±0.13b | 8.17±0.01a | 8.14±0.01a | 8.19±0.23a |
残渣态 | 70.2±3.09d | 69.0±3.23d | 94.1±2.51b | 86.2±2.06c | 99.3±1.00a |
表3 菌株对土壤铅形态变化影响
Table 3 The impact of strain on soil lead forms mg·kg?1
土壤铅 形态 | 处理 | ||||
---|---|---|---|---|---|
CK | T1 | T2 | T3 | T4 | |
水溶态 | 3.32±0.01c | 3.34±0.00b | 3.39±0.02a | 3.34±0.00b | 3.34±0.00b |
可交换态 | 168±0.05b | 175±3.61b | 152±1.05d | 155±0.98cd | 157±0.95c |
碳酸盐结合态 | 431±1.88b | 459±1.64a | 455±10.91a | 407±7.00c | 410±7.76c |
铁锰氧化物结合态 | 1 046±46.48c | 1 138±13.41ab | 1 183±33.44a | 1 129±26.10ab | 1 089±17.32bc |
强有机结合态 | 240±2.57d | 308±2.12c | 382±29.90a | 335±12.91bc | 341±2.91b |
腐殖酸结合态 | 7.44±0.09b | 7.35±0.13b | 8.17±0.01a | 8.14±0.01a | 8.19±0.23a |
残渣态 | 70.2±3.09d | 69.0±3.23d | 94.1±2.51b | 86.2±2.06c | 99.3±1.00a |
[1] |
ABDU N, ABDULLAHI A A, ABDULKADIR A, 2017. Heavy metals and soil microbes[J]. Environmental Chemistry Letters, 15(1): 65-84.
DOI |
[2] |
ALLAM N N, AHMED E, 2018. Mycorrhizal symbiosis phosphorus fertilization effects on Zea mays growth and heavy metals uptake[J]. International Journal of Phytoremediation, 20(9): 869-875.
DOI URL |
[3] |
ARMANDEH M, MAHMOUDI N, FALLAH NOSRATABAD A R, 2022. Screening and evaluation of phosphate-solubilizing bacteria isolated from aquaculture ponds in a step-by-step strategy as potential biofertilizer[J]. Journal Applied Microbiology, 133(3): 1581-1596.
DOI URL |
[4] |
ARROYO-HERRERA I, ROMÁN-PONCE B, RESÉNDIZ-MARTÍNEZ L A, et al., 2021. Heavy-metal resistance mechanisms developed by bacteria from lerma-chapala basin[J]. Archives of Microbiology, 203(4): 1807-1823.
DOI |
[5] | ARWENYO B, VARCO J J, ANDREW D, et al., 2022. Lead immobilization in simulated polluted soil by Douglas fir biochar-supported phosphate[J]. Chemosphere, 292(4): 133355. 1-133355.10. |
[6] |
ATUCHIN V V, ASYAKINA L K, SERAZETDINOVA Y R, et al., 2023. Microorganisms for bioremediation of soils contaminated with heavy metals[J]. Microorganisms, 11(4): 864.
DOI URL |
[7] |
BACON J R, DAVIDSON C M, 2008. Is there a future for sequential chemical extraction?[J]. Analyst, 133(1): 25-46.
PMID |
[8] |
BAO L N, CUI Y, WU H W, et al., 2023. Breeding, biosorption characteristics, and mechanism of a lead-resistant strain[J]. Toxics, 11(5): 412.
DOI URL |
[9] |
CAO R W, ZHANG Y L, JU Y H, et al., 2023. Exopolysaccharide-producing bacteria enhanced Pb immobilization and influenced the microbiome composition in rhizosphere soil of pakchoi (Brassica chinensis L.)[J]. Frontiers in Microbiology, 14: 1117312.
DOI URL |
[10] |
CAO X, MA L Q, SINGH S P, et al., 2008. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions[J]. Environmental Pollution, 152(1): 184-192.
PMID |
[11] |
CHEN H B, FENG Y, YANG X, et al., 2022. Assessing simultaneous immobilization of lead and improvement of phosphorus availability through application of phosphorus-rich biochar in a contaminated soil: A pot experiment[J]. Chemosphere, 296: 133891.
DOI URL |
[12] |
CHEN H M, ZHANG J W, TANG L Y, et al., 2019. Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria[J]. Environment International, 127: 395-401.
DOI PMID |
[13] |
CUI Y, ZHAO Y J, CAI R, et al., 2023. Isolation and identification of a phosphate-solubilizing pantoea dispersa with a saline-alkali tolerance and analysis of its growth-promoting effects on silage maize under saline-alkali field conditions[J]. Current Microbiology, 80(9): 291.
DOI |
[14] |
DERYA E, 2020. Potential plant growth-promoting bacteria with heavy metal resistance[J]. Current Microbiology, 77: 3861-3868.
DOI PMID |
[15] |
EL-MEIHY M R, ABOU-ALY E H, YOUSSEF M A, et al., 2019. Efficiency of heavy metals-tolerant plant growth promoting bacteria for alleviating heavy metals toxicity on sorghum[J]. Environmental and Experimental Botany, 162: 295-301.
DOI URL |
[16] |
ELGHARABLY A, 2020. Effects of rock phosphate added with farm yard manure or sugar juice residues on wheat growth and uptake of certain nutrients and heavy metals[J]. Journal of Soils and Sediments, 20(11): 3931-3940.
DOI |
[17] | OBURGER E, JONES D L, WENZEL W W, et al., 2011. Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil[J]. Plant & Soil, 341(1-2): 363-382. |
[18] |
FU H C, ZHANG B, YANG J, et al., 2018. Cadmium and lead speciation as affected by soil amendments in calcareous soil[J]. Environmental Engineering Science, 35(9): 937-942.
DOI URL |
[19] |
GOSWAMI D, THAKKER N J, DHANDHUKIA C P, 2015. Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC[J]. Journal of Microbiological Methods, 110: 7-14.
DOI PMID |
[20] |
KASCHL A, RÖMHELD V, CHEN Y, 2002. Cadmium binding by fractions of dissolved organic matter and humic substances from municipal solid waste compost[J]. Journal of Environment Quality, 31(6): 1885-1892.
DOI URL |
[21] |
JIAO G H, HUANG Y, DAI H, et al., 2023. Responses of rhizosphere microbial community structure and metabolic function to heavy metal coinhibition[J]. Environmental Geochemistry and Health, 45(8): 6177-6198.
DOI PMID |
[22] |
LI L L, CHEN R B, ZUO Z Y, et al., 2020. Evaluation and improvement of phosphate solubilization by an isolated bacterium Pantoea agglomerans ZB[J]. World Journal of Microbiology and Biotechnology, 36(2): 27.
DOI |
[23] |
LIN Y X, ZHANG H, LI P R, et al., 2022. The bacterial consortia promote plant growth and secondary metabolite accumulation in Astragalus mongholicus under drought stress[J]. BMC Plant Biology, 22(1): 475-475.
DOI |
[24] |
LIU H Q, LU X B, LI Z H, et al., 2021. The role of root-associated microbes in growth stimulation of plants under saline conditions[J]. Land Degradation & Development, 32(13): 3471-3486.
DOI URL |
[25] |
MARTINS C I O, DE T L D C A, FERREIRA C J J B, et al., 2021. Technical feasibility of using suboptimal irrigation in maize cropping[J]. Crop and Pasture Science, 72(5): 348-360.
DOI URL |
[26] |
MEHDI B, ALI H A, ALI A P, et al., 2022. Enriching periphyton with phosphate-solubilizing microorganisms improves the growth and concentration of phosphorus and micronutrients of rice plant in calcareous paddy soil[J]. Rhizosphere, 24: 100590.
DOI URL |
[27] |
PATTEN C L, GLICK B R, 2002. Role of pseudomonas putida indoleacetic acid in development of the host plant root system[J]. Applied and Environmental Microbiology, 68(8): 3795-3801.
DOI PMID |
[28] |
PIOTR K, URSULA B F, MARCIN G, et al., 2022. Mixed growth of Salix species can promote phosphate-solubilizing bacteria in the roots and rhizosphere[J]. Frontiers in Microbiology, 13: 1006722.
DOI URL |
[29] | QIAN C X, YU X N, ZHENG T W, et al., 2022. Review on bacteria fixing CO2 and bio-mineralization to enhance the performance of construction materials[J]. Journal of CO2 Utilization, 55: 101849. |
[30] |
QIN S M, ZHANG H Y, HE Y H, et al., 2023. Improving radish phosphorus utilization efficiency and inhibiting Cd and Pb uptake by using heavy metal-immobilizing and phosphate-solubilizing bacteria[J]. The Science of The Total Environment, 868: 161685.
DOI URL |
[31] |
RASHID A, SCHUTTE J B, ULERY A, et al., 2023. Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health[J]. Agronomy, 13(6): 1521.
DOI URL |
[32] |
SARANYA K, SUNDARAMANICKAM A, MANUPOORI S, et al., 2022. Screening of multi-faceted phosphate-solubilising bacterium from seagrass meadow and their plant growth promotion under saline stress condition[J]. Microbiol Research, 261: 127080.
DOI URL |
[33] |
SERRANO S, PEGGY A. O’DAY, VLASSOPOULOS D, et al., 2009. A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils[J]. Geochimica et Cosmochimica Acta, 73(3): 543-558.
DOI URL |
[34] |
STIJN S, JOS V, ROSELINE R, 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling[J]. Fems Microbiol Reviews, 31(4): 425-448.
DOI URL |
[35] |
SULEIMANOVA A, BULMAKOVA D, SOKOLNIKOVA L, et al., 2023. Phosphate solubilization and plant growth promotion by Pantoea brenneri soil isolates[J]. Microorganisms, 11(5): 1136.
DOI URL |
[36] |
TIAN Z J, LI G W, TANG W Z, et al., 2022. Role of Sedum alfredii and soil microbes in the remediation of ultra-high content heavy metals contaminated soil[J]. Agriculture, Ecosystems and Environment, 339: 108090.
DOI URL |
[37] |
VERBEECK M, HIEMSTRA T, THIRY Y, et al., 2017. Soil organic matter reduces the sorption of arsenate and phosphate: A soil profile study and geochemical modelling[J]. European Journal of Soil Science, 68(5): 678-688.
DOI URL |
[38] |
XIANG M T, LI Y, YANG J Y, et al., 2021. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops[J]. Environmental Pollution, 278(2): 116911.
DOI URL |
[39] |
YANG P X, MA L, CHEN M H, 2012. Phosphate solubilizing ability and phylogenetic diversity of bacteria from P-rich soils around Danchi lake drainage area of China[J]. Pedosphere, 22(5): 707-716.
DOI URL |
[40] |
ZHANG M, GAO C X, XU L, et al., 2022. Melatonin and indole-3-acetic acid synergistically regulate plant growth and stress resistance[J]. Cells, 11(20): 3250-3250.
DOI URL |
[41] |
YU X N, JIANG N J, YANG Y, et al., 2023. Heavy metals remediation through bio-solidification: Potential application in environmental geotechnics[J]. Ecotoxicology and Environmental Safety, 263: 115305.
DOI URL |
[42] |
ZHENG J D, XIE X G, LI C Y, et al., 2023. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi[J]. International Journal of Phytoremediation, 25(12): 1596-1613.
DOI URL |
[43] | 东秀珠, 蔡妙英, 2001. 常见细菌系统鉴定手册[M]. 北京: 科学出版. |
DONG X Z, CAI M Y, 2021. Bacterial System Identification Manual[M]. Beijing: Science Press. | |
[44] | 蒋喜艳, 张述习, 尹西翔, 等, 2021. 土壤-作物系统重金属污染及防治研究进展[J]. 生态毒理学报, 16(6): 150-160. |
JIANG X Y, ZHANG S X, YIN X X, et al., 2021. Research progress on heavy metals pollution and its control in soil-crop system[J]. Asian Journal of Ecotoxicology, 16(6): 150-160. | |
[45] | 费杨, 阎秀兰, 李永华, 2018. 铁锰双金属材料在不同pH条件下对土壤As和重金属的稳定化作用[J]. 环境科学, 39(3): 1430-1433. |
FEI Y, YAN X L, LI Y H, 2018. Stabilization effects of Fe-Mn binary oxide on arsenic and heavy metal Co-contaminated soils under different pH conditions[J]. Environmental Science, 39(3): 1430-1433. | |
[46] | 李丹, 李俊华, 何婷, 等, 2015. 不同改良剂对石灰性镉污染土壤的镉形态和小白菜镉吸收的影响[J]. 农业环境科学学报, 34(9): 1679-1685. |
LI D, LI J H, HE T, et al., 2015. Effects of different amendments on soil Cd forms and Cd uptake by Chinese cabbage in Cd-contaminated calcareous soils[J]. Journal of Agro-Environment Science, 34(9): 1679-1685. | |
[47] | 李娜, 夏瑜, 何绪文, 等, 2021. 基于Tessier法的土壤中不同形态镉的转化及其影响因素研究进展[J]. 土壤通报, 52(6): 1505-1512. |
LI N, XIA Y, HE C W, et al., 2021. Research progress of Cd form transformation and the effective environmental factors in soil based on Tessier analysis[J]. Chinese Journal of Soil Science, 52(6): 1505-1512. | |
[48] | 林小兵, 陈燕, 周利军, 等, 2022. 石灰用量和培养时间对红壤镉形态转化的影响[J]. 科学技术与工程, 22(5): 2130-2139. |
LIN X B, CHEN Y, ZHOU L J, et al., 2022. Effects of lime dosage and cultivation time on forms transformation of cadmium in red soil[J]. Science Technology and Engineering, 22(5): 2130-2139. | |
[49] |
蔺宝珺, 杨文权, 赵帅, 等, 2022. 高寒草甸植物根际溶磷菌的筛选鉴定及其溶磷与促生效果[J]. 草地学报, 30(11): 3132-3139.
DOI |
LIN B J, YANG W Q, ZHAO S, et al., 2022. Screening and identification of phosphate-solubilizing bacteria in plant rhizosphere of alpine meadow and their effects on phosphate-solubilizing and plant growth promotion[J]. Acta Agrestia Sinica, 30(11): 3132-3139. | |
[50] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2000. Soil agrochemical analysis method[M]. Beijing: China Agricultural Science and Technology Press. | |
[51] | 彭明章, 2021. 鱼台地区表层土壤重金属元素形态特征及控制因素[J]. 冶金管理 (17): 118-119. |
PENG M Z, 2021. Morphological characteristics and controlling factors of heavy metal elements in the surface soil of Yutai District[J]. Metallurgical Management (17): 118-119. | |
[52] | 石天池, 杨建锋, 杨保国, 等, 2022. 宁夏北部农耕地土壤中硒的质量含量及形态、价态分析[J]. 宁夏大学学报(自然科学版), 43(1): 62-67. |
SHI T C, YANG J F, YANG B G, et al., 2022. Analysis on selenium content, form and valence in farmland soil of northern Ningxia[J]. Journal of Ningxia University (Natural Science Edition), 43(1): 62-67. | |
[53] | 王君, 范延辉, 尚帅, 等, 2022. 一株根际解磷菌的筛选鉴定及溶磷促生作用[J]. 中国土壤与肥料 (6): 195-203. |
WANG J, FAN Y H, SHANG S, et al., 2022. Isolation and identification of a rhizosphere phosphate-solubilizing strain and its plant growth promotion[J]. Soil and Fertilizer Sciences in China (6): 195-203. | |
[54] | 王宏燕, 韩凯鑫, 冯丽荣, 等, 2023. 耐盐解磷菌筛选鉴定及生理特性研究[J]. 东北农业大学学报, 54(5): 28-37. |
WANG H Y, HAN K X, FENG L R, et al., 2023. Screening and identification of salt-resistant phosphorus bacteria and its physiological characteristics[J]. Journal of Northeast Agricultural University, 54(5): 28-37. | |
[55] | 张金秀, 湛方栋, 王灿, 等, 2020. AMF对铅锌矿区农田土壤部分理化性质、玉米生长和镉铅含量的影响[J]. 农业资源与环境学报, 37(5): 727-735. |
ZHANG J X, ZHAN F D, WANG C, et al., 2020. Effects of arbuscular mycorrhizal fungi on soil physical and chemical properties, maize growth, cadmium, and lead content of farmland from a lead-zinc mine area[J]. Journal of Agricultural Resources and Environment, 37(5): 727-735. |
[1] | 李嘉惠, 童辉, 陈曼佳, 刘承帅, 姜琪, 易秀. 微氧生物亚铁氧化及其重金属固定效应研究进展[J]. 生态环境学报, 2024, 33(2): 310-320. |
[2] | 杨正桥, 邹奇, 韦行, 周凯, 陈志良. 金属尾矿微生物对尾矿环境的适应与调控机制研究进展[J]. 生态环境学报, 2024, 33(1): 156-166. |
[3] | 刘炳妤, 王一佩, 姚作芳, 杨钙仁, 徐晓楠, 邓羽松, 黄钰涵. 沼液还田下不同种植模式的重金属风险评价及安全消纳量分析[J]. 生态环境学报, 2023, 32(8): 1507-1515. |
[4] | 王宁, 刘效东, 甘先华, 苏宇乔, 吴国章, 黄芳芳, 张卫强. 亚热带典型林分降水过程中的水质效应[J]. 生态环境学报, 2023, 32(8): 1365-1375. |
[5] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[6] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[7] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[8] | 陈敏毅, 宋清梅, 叶权运, 游学睿, 吴颖欣. 华南典型金属制品遗留生产场地重金属空间分布特征[J]. 生态环境学报, 2023, 32(12): 2228-2235. |
[9] | 陈桂红. 硫和硅掺杂生物炭对镉污染土壤的修复研究[J]. 生态环境学报, 2023, 32(10): 1854-1860. |
[10] | 杨瑞, 孙蔚旻, 李永斌, 郭丽芳, 焦念元. 尾矿先锋植物根际溶磷菌的分离鉴定与其促生研究[J]. 生态环境学报, 2023, 32(1): 166-174. |
[11] | 肖洁芸, 周伟, 石佩琪. 土壤重金属含量高光谱反演[J]. 生态环境学报, 2023, 32(1): 175-182. |
[12] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[13] | 黄宏, 郑欣芸, 李迎东, 赵旭, 俞锦辰, 汪振华. 大陈岛海域不同年龄褐菖鲉对重金属富集作用研究[J]. 生态环境学报, 2022, 31(9): 1885-1891. |
[14] | 李莹, 张洲, 杨高明, 祖艳群, 李博, 陈建军. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8): 1657-1666. |
[15] | 陶玲, 黄磊, 周怡蕾, 李中兴, 任珺. 污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022, 31(8): 1637-1646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||