生态环境学报 ›› 2024, Vol. 33 ›› Issue (5): 791-801.DOI: 10.16258/j.cnki.1674-5906.2024.05.012
吴文伟1,2(), 沈城1,2,*(
), 沙晨燕2, 林匡飞1,*(
), 吴健2, 谢雨晴1,2, 周璇1,2
收稿日期:
2024-01-30
出版日期:
2024-05-18
发布日期:
2024-06-27
通讯作者:
林匡飞,E-mail: kflin@ecust.edu.cn作者简介:
吴文伟(1997年生),男,硕士研究生,从事土壤生态修复和风险评价。E-mail: 19117160929@163.com
基金资助:
WU Wenwei1,2(), SHEN Cheng1,2,*(
), SHA Chenyan2, LIN Kuangfei1,*(
), WU Jian2, XIE Yuqing1,2, ZHOU Xuan1,2
Received:
2024-01-30
Online:
2024-05-18
Published:
2024-06-27
摘要:
选择上海市金山区为研究区域,基于研究区内25个再开发利用行业地块168个不同深度剖面的土壤样品,测定分析了重金属镉(Cd)、铅(Pb)、铜(Cu)、镍(Ni)、汞(Hg)、砷(As)含量,采用地累积指数、内梅罗综合污染指数和潜在生态风险指数对重金属污染特征进行分析和评价,利用地统计学、相关性分析、绝对主成分-多元线性回归(APCS-MLR)模型解析其污染来源。结果表明,研究区土壤中除As外,其余重金属均不同程度超过上海市土壤背景值,表层土壤中Cd、Pb、Cu、Ni和Hg含量分别为背景值的2.15、1.61、2.20、2.02和1.30倍,6种重金属含量随着土壤深度的增加逐渐降低,重金属在表层土壤中存在一定程度的富集,人类活动扰动主要集中在表层。空间插值结果表明Cd、Cu、Ni高值区主要集中在研究区西北侧,Pb和Hg高值区集中在研究区中部,As元素分布均匀。地累积指数表现为Ni (0.37)>Cu (0.36)>Cd (0.29)>Pb (0.11)>Hg (−0.62)>As (−0.85);内梅罗综合污染指数为1.95,表现为轻度污染;潜在生态风险指数结果显示,研究区综合潜在生态风险指数R值在50.60-271.50,均值为153.00,整体呈现中等生态风险。相关性分析和APCS-MLR模型识别出研究区域土壤重金属主要有3个来源,源1(Cd、Cu和Ni)为金属制品源,源2(Hg和Pb)为化学原料和化学制品源,源3为(As)自然源为主的混合源。该研究对上海市金山区再开发利用场地土壤重金属污染情况进行相对全面的评价,以期为城市更新过程中土壤重金属污染防控和修复提供相应的证据支撑。
中图分类号:
吴文伟, 沈城, 沙晨燕, 林匡飞, 吴健, 谢雨晴, 周璇. 城市工业地块土壤重金属污染风险评价与源解析[J]. 生态环境学报, 2024, 33(5): 791-801.
WU Wenwei, SHEN Cheng, SHA Chenyan, LIN Kuangfei, WU Jian, XIE Yuqing, ZHOU Xuan. Soil Heavy Metal Enrichment Characteristics, Risk Assessment, and Source Analysis in Redevelopment Areas during Urban Industrial Plots[J]. Ecology and Environment, 2024, 33(5): 791-801.
项目 | Cd | Pb | Cu | Ni | Hg | As |
---|---|---|---|---|---|---|
上海市土壤背景值/(mg∙kg−1) | 0.13 | 25.50 | 28.60 | 31.90 | 0.10 | 9.10 |
毒性系数 | 30 | 5 | 5 | 5 | 40 | 10 |
表1 土壤重金属评价标准参考
Table 1 Reference of the evaluation standard
项目 | Cd | Pb | Cu | Ni | Hg | As |
---|---|---|---|---|---|---|
上海市土壤背景值/(mg∙kg−1) | 0.13 | 25.50 | 28.60 | 31.90 | 0.10 | 9.10 |
毒性系数 | 30 | 5 | 5 | 5 | 40 | 10 |
级别 | Pi | 污染等级 | Pm | 污染等级 |
---|---|---|---|---|
1 | Pi ≤1.00 | 无污染 | Pm≤0.70 | 清洁 |
2 | 1.00<Pi ≤2.00 | 轻度污染 | 0.70<Pm≤1.00 | 尚清洁 |
3 | 2.00<Pi ≤3.00 | 中度污染 | 1.00<Pm≤2.00 | 轻度污染 |
4 | Pi >3.00 | 重度污染 | 2.00<Pm≤3.00 | 中度污染 |
5 | Pm>3.00 | 重度污染 |
表2 土壤重金属污染分级标准
Table 2 Soil heavy metal pollution classification standards
级别 | Pi | 污染等级 | Pm | 污染等级 |
---|---|---|---|---|
1 | Pi ≤1.00 | 无污染 | Pm≤0.70 | 清洁 |
2 | 1.00<Pi ≤2.00 | 轻度污染 | 0.70<Pm≤1.00 | 尚清洁 |
3 | 2.00<Pi ≤3.00 | 中度污染 | 1.00<Pm≤2.00 | 轻度污染 |
4 | Pi >3.00 | 重度污染 | 2.00<Pm≤3.00 | 中度污染 |
5 | Pm>3.00 | 重度污染 |
级别 | Igeo | 污染等级 |
---|---|---|
1 | Igeo≤0.00 | 无污染 |
2 | 0.00<Igeo≤1.00 | 轻度污染 |
3 | 1.00<Igeo≤2.00 | 中度污染 |
4 | 2.00<Igeo≤3.00 | 偏重污染 |
5 | 3.00<Igeo≤4.00 | 重度污染 |
6 | Igeo≥4.00 | 重度污染以上 |
表3 地累积指数分级标准
Table 3 Grading standard of local cumulative index
级别 | Igeo | 污染等级 |
---|---|---|
1 | Igeo≤0.00 | 无污染 |
2 | 0.00<Igeo≤1.00 | 轻度污染 |
3 | 1.00<Igeo≤2.00 | 中度污染 |
4 | 2.00<Igeo≤3.00 | 偏重污染 |
5 | 3.00<Igeo≤4.00 | 重度污染 |
6 | Igeo≥4.00 | 重度污染以上 |
级别 | Ei | 风险程度 | R | 风险程度 |
---|---|---|---|---|
1 | Ei ≤40.0 | 轻微风险 | R≤110 | 轻微风险 |
2 | 40.0<Ei ≤80.0 | 中等风向 | 110<R≤220 | 中等风险 |
3 | 80.0<Ei ≤160 | 重度风险 | 220<R≤440 | 重度风险 |
4 | 160<Ei ≤320 | 强烈风险 | 440<R≤660 | 强烈风险 |
5 | Ei>320 | 极强风险 | R>660 | 极强风险 |
表4 潜在生态风险分级标准
Table 4 Grading standard of potential ecological risks
级别 | Ei | 风险程度 | R | 风险程度 |
---|---|---|---|---|
1 | Ei ≤40.0 | 轻微风险 | R≤110 | 轻微风险 |
2 | 40.0<Ei ≤80.0 | 中等风向 | 110<R≤220 | 中等风险 |
3 | 80.0<Ei ≤160 | 重度风险 | 220<R≤440 | 重度风险 |
4 | 160<Ei ≤320 | 强烈风险 | 440<R≤660 | 强烈风险 |
5 | Ei>320 | 极强风险 | R>660 | 极强风险 |
重金属 | 样本量/个 | 采样深度/m | 最大值/(mg∙kg−1) | 最小值/(mg∙kg−1) | 平均值±标准差/(mg∙kg−1) | 变异系数/% | 土壤背景值/(mg∙kg−1) |
---|---|---|---|---|---|---|---|
Cd | 168 | 0‒0.50 | 2.59 | 0.04 | 0.28±0.25a | 89.2 | 0.13 |
168 | 0.50‒1.50 | 0.56 | 0.02 | 0.12±0.05b | 42.7 | ||
147 | ≥4.50 | 0.21 | 0.06 | 0.12±0.03b | 26.0 | ||
Pb | 168 | 0‒0.50 | 96.60 | 19.90 | 40.88±20.76a | 50.8 | 25.50 |
168 | 0.50‒1.50 | 43.20 | 14.10 | 27.25±10.59b | 38.9 | ||
147 | ≥4.50 | 48.60 | 10.40 | 26.62±6.13b | 23.0 | ||
Cu | 168 | 0‒0.50 | 404.20 | 21.00 | 62.81±44.17a | 70.3 | 28.60 |
168 | 0.50‒1.50 | 118.00 | 9.00 | 32.72±19.65b | 60.0 | ||
147 | ≥4.50 | 47.00 | 1.00 | 26.59±7.31b | 27.5 | ||
Ni | 168 | 0‒0.50 | 203.00 | ND | 64.37±29.25a | 53.8 | 31.90 |
168 | 0.50‒1.50 | 147.00 | ND | 39.78±15.23a | 38.3 | ||
147 | ≥4.50 | 43.97 | 9.00 | 29.51±7.55b | 28.6 | ||
Hg | 168 | 0‒0.50 | 1.40 | 0.034 | 0.13±0.15a | 113.5 | 0.10 |
168 | 0.50‒1.50 | 0.36 | 0.02 | 0.11±0.10b | 88.5 | ||
147 | ≥4.50 | 0.16 | 0.02 | 0.05±0.01b | 27.2 | ||
As | 168 | 0‒0.50 | 9.08 | 5.79 | 7.77±1.73b | 22.2 | 9.10 |
168 | 0.50‒1.50 | 7.80 | 3.54 | 5.23±0.88b | 16.8 | ||
147 | ≥4.50 | 5.56 | 3.20 | 4.15±0.35b | 8.5 |
表5 上海市金山区典型行业场地土壤重金属含量描述性统计
Table 5 Descriptive statistics of soil heavy metals content in typical industrial sites in Jinshan District, Shanghai
重金属 | 样本量/个 | 采样深度/m | 最大值/(mg∙kg−1) | 最小值/(mg∙kg−1) | 平均值±标准差/(mg∙kg−1) | 变异系数/% | 土壤背景值/(mg∙kg−1) |
---|---|---|---|---|---|---|---|
Cd | 168 | 0‒0.50 | 2.59 | 0.04 | 0.28±0.25a | 89.2 | 0.13 |
168 | 0.50‒1.50 | 0.56 | 0.02 | 0.12±0.05b | 42.7 | ||
147 | ≥4.50 | 0.21 | 0.06 | 0.12±0.03b | 26.0 | ||
Pb | 168 | 0‒0.50 | 96.60 | 19.90 | 40.88±20.76a | 50.8 | 25.50 |
168 | 0.50‒1.50 | 43.20 | 14.10 | 27.25±10.59b | 38.9 | ||
147 | ≥4.50 | 48.60 | 10.40 | 26.62±6.13b | 23.0 | ||
Cu | 168 | 0‒0.50 | 404.20 | 21.00 | 62.81±44.17a | 70.3 | 28.60 |
168 | 0.50‒1.50 | 118.00 | 9.00 | 32.72±19.65b | 60.0 | ||
147 | ≥4.50 | 47.00 | 1.00 | 26.59±7.31b | 27.5 | ||
Ni | 168 | 0‒0.50 | 203.00 | ND | 64.37±29.25a | 53.8 | 31.90 |
168 | 0.50‒1.50 | 147.00 | ND | 39.78±15.23a | 38.3 | ||
147 | ≥4.50 | 43.97 | 9.00 | 29.51±7.55b | 28.6 | ||
Hg | 168 | 0‒0.50 | 1.40 | 0.034 | 0.13±0.15a | 113.5 | 0.10 |
168 | 0.50‒1.50 | 0.36 | 0.02 | 0.11±0.10b | 88.5 | ||
147 | ≥4.50 | 0.16 | 0.02 | 0.05±0.01b | 27.2 | ||
As | 168 | 0‒0.50 | 9.08 | 5.79 | 7.77±1.73b | 22.2 | 9.10 |
168 | 0.50‒1.50 | 7.80 | 3.54 | 5.23±0.88b | 16.8 | ||
147 | ≥4.50 | 5.56 | 3.20 | 4.15±0.35b | 8.5 |
项目 | 平均值 | 占比/% | |||||
---|---|---|---|---|---|---|---|
无污染 | 轻度污染 | 中度污染 | 重度污染 | ||||
PCd | 1.89 | 26.92 | 38.46 | 26.92 | 7.69 | ||
PPb | 1.44 | 3.85 | 92.30 | 3.85 | 0 | ||
PCu | 1.49 | 34.62 | 42.31 | 19.23 | 3.85 | ||
PNi | 1.48 | 26.92 | 38.46 | 30.77 | 3.85 | ||
PHg | 1.19 | 53.85 | 34.62 | 11.54 | 0 | ||
PAs | 0.85 | 100 | 0 | 0 | 0 | ||
Pm | 1.95 | 清洁 | 尚清洁 | 轻度污染 | 中度污染 | 重度污染 | |
0 | 7.69 | 46.15 | 38.46 | 7.69 |
表6 单因子污染指数与综合污染指数计算结果不同污染级别样点占比
Table 6 The proportion of samples of different pollution levels in the calculation results of single factor pollution index and comprehensive pollution index
项目 | 平均值 | 占比/% | |||||
---|---|---|---|---|---|---|---|
无污染 | 轻度污染 | 中度污染 | 重度污染 | ||||
PCd | 1.89 | 26.92 | 38.46 | 26.92 | 7.69 | ||
PPb | 1.44 | 3.85 | 92.30 | 3.85 | 0 | ||
PCu | 1.49 | 34.62 | 42.31 | 19.23 | 3.85 | ||
PNi | 1.48 | 26.92 | 38.46 | 30.77 | 3.85 | ||
PHg | 1.19 | 53.85 | 34.62 | 11.54 | 0 | ||
PAs | 0.85 | 100 | 0 | 0 | 0 | ||
Pm | 1.95 | 清洁 | 尚清洁 | 轻度污染 | 中度污染 | 重度污染 | |
0 | 7.69 | 46.15 | 38.46 | 7.69 |
评价指标 | 潜在生态危害指数 (Ei) | R | |||||
---|---|---|---|---|---|---|---|
Cd | Pb | Cu | Ni | Hg | As | ||
最大值 | 97.22 | 11.69 | 20.00 | 20.02 | 113.48 | 10.05 | 272.50 |
最小值 | 18.52 | 4.91 | 3.64 | 0 | 13.40 | 6.37 | 50.60 |
平均值 | 63.92 | 7.50 | 10.98 | 10.09 | 52.01 | 8.49 | 152.99 |
表7 金山区表层土壤潜在生态风险评价指数
Table 7 Evaluation index of potential ecological risk of surface soil in Jinshan District
评价指标 | 潜在生态危害指数 (Ei) | R | |||||
---|---|---|---|---|---|---|---|
Cd | Pb | Cu | Ni | Hg | As | ||
最大值 | 97.22 | 11.69 | 20.00 | 20.02 | 113.48 | 10.05 | 272.50 |
最小值 | 18.52 | 4.91 | 3.64 | 0 | 13.40 | 6.37 | 50.60 |
平均值 | 63.92 | 7.50 | 10.98 | 10.09 | 52.01 | 8.49 | 152.99 |
图5 金山区表层土壤重金属含量相关性分析 **、*分别代表P=0.000、0.040级别(双侧),相关性显著;n=168,下同
Figure 5 Correlation analysis of heavy metal content in surface soil of Jinshan District
重金属元素 | 主成分矩阵 | 旋转后主成分矩阵 | |||
---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | ||
Cd | 0.637 | 0.002 | 0.611 | 0.181 | |
Pb | −0.003 | 0.895 | −0.254 | 0.858 | |
Cu | 0.866 | −0.179 | 0.881 | 0.071 | |
Ni | 0.753 | −0.291 | 0.804 | −0.068 | |
Hg | −0.078 | 0.742 | −0.282 | 0.690 | |
As | 0.737 | 0.269 | 0.632 | 0.465 |
表8 重金属主成分矩阵
Table 8 Principal component matrix of heavy metals
重金属元素 | 主成分矩阵 | 旋转后主成分矩阵 | |||
---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | ||
Cd | 0.637 | 0.002 | 0.611 | 0.181 | |
Pb | −0.003 | 0.895 | −0.254 | 0.858 | |
Cu | 0.866 | −0.179 | 0.881 | 0.071 | |
Ni | 0.753 | −0.291 | 0.804 | −0.068 | |
Hg | −0.078 | 0.742 | −0.282 | 0.690 | |
As | 0.737 | 0.269 | 0.632 | 0.465 |
[1] | HAKANSON L, 1980. An ecological risk index for aquatic pollution control.a sedimentological approach[J]. Water Research, 14(8): 975-1001. |
[2] | MULLER G, 1969. Index of Geoaccumulation in Sediments of the Rhine River[J]. GeoJournal, 2(3): 109-18. |
[3] | ROBINSON B, 2009. E-waste: An assessment of global production and environmental impacts[J]. Science of the Total Environment, 408(2): 183-191. |
[4] | WANG S F, FENG X B, QIU G L, et al., 2007. Mercury concentrations and air/soil fluxes in Wuchuan mercury mining district, Guizhou province, China[J]. Atmospheric environment, 41(28): 5984-5993. |
[5] | WEI M C, PAN A F, MA R Y, et al., 2023. Distribution characteristics, source analysis and health risk assessment of heavy metals in farmland soil in Shiquan County, Shaanxi Province[J]. Process Safety and Environmental Protection, 171: 225-237. |
[6] | YU L, ZHENG T Y, YUAN R Y, et al., 2022. APCS-MLR model: A convenient and fast method for quantitative identification of nitrate pollution sources in groundwater[J]. Journal of environmental management, 314(2): 115101. |
[7] | ZHANG T, WANG M G, BAI G L, et al., 2023. Distribution characteristics, risk assessment, and source analysis of heavy metals in surface sediments and near-lakeshore soils of a plateau lake in China[J]. Gondwana Research, 115: 191-200. |
[8] | ZHAO Y F, SHI X Z, HUANG B et al., 2007. Spatial Distribution of Heavy Metals in Agricultural Soils of an Industry-Based Peri-Urban Area in Wuxi, China[J]. Pedosphere, 17(1): 44-51. |
[9] | 蔡立梅, 马瑾, 周永章, 等, 2008. 东莞市农业土壤重金属的空间分布特征及来源解析[J]. 环境科学, 29(12): 3496-3502. |
CAI L M, MA J, ZHOU Y Z, et al., 2008. Multivariate geostatistics and gis-based approach to study the spatial distribution and sources of heavy metals in agricultural soil in the Pearl River Delta, China[J]. Environmental Science, 29(12): 3496-3502. | |
[10] | 陈江军, 刘波, 蔡烈刚, 等, 2018. 基于多种方法的土壤重金属污染风险评价对比——以江汉平原典型场区为例[J]. 水文地质工程地质, 45(6): 164-172. |
CHEN J J, LIU B, CAI L G, et al., 2018. Comparison of risk assessment based on the various methods of heavy metals in soil: A case study for the typical field areas in the Jianghan Plain[J]. Hydrogeology & Engineering Geology, 45(6): 164-172. | |
[11] | 陈航, 王颖, 王澍, 2022. 铜山矿区周边农田土壤重金属来源解析及污染评价[J]. 环境科学, 43(5): 2719-2731. |
CHEN H, WANG Y, WANG S, 2022. Source analysis and pollution assessment of heavy metals in farmland soil around Tongshan Mining Area[J]. Environmental Science, 43(5): 2719-2731. | |
[12] | 邓霞, 孙慧兰, 杨余辉, 等, 2020. 伊宁市土壤中重金属污染评价及来源解析研究[J]. 环境污染与防治, 42(2): 223-226, 237. |
DENG X, SUN H L, YANG Y H, et al., 2020. Pollution assessment and source apportionment of heavy metals in Yining City soil[J]. Environmental Pollution & Control, 42(2): 223-226, 237. | |
[13] | 范凯琳, 2024. 基于公园城市的城市更新策略研究——以成都市锦江区华兴街街区综合更新项目为例[J]. 智能建筑与智慧城市 (2): 63-65. |
FAN K L, 2024. Research on urban renewal strategy based on Park city: A case study of Huaxing Street comprehensive renewal project in Jinjiang District, Chengdu[J]. Intelligent Building & Smart City (2): 63-65. | |
[14] | 付传城, 王文勇, 潘剑君, 等, 2014. 城乡结合带土壤重金属时空变异特征与源解析——以南京市柘塘镇为例[J]. 土壤学报, 51(5): 1066-1077. |
FU C C, WANG W Y, PAN J J, et al., 2014. Spatial-Temporal variation and source apportionmnet of soil heavy metals in peri-urban area: A case study of Zhengtang town, NanJing[J]. Acta Pedologica Sinica, 51(5): 1066-1077. | |
[15] | 郭程程, 张军方, 余志, 等, 2018. 汞的土壤地球化学及其环境效应[J]. 环保科技, 24(4): 40-46. |
GUO C C, ZHANG J F, YU Z, et al., 2018. Pedogeochemistry of mercury and its environmental effects[J]. Environmental Protection and Technology, 24(4): 40-46. | |
[16] | 郭晗, 孙英君, 王绪璐, 等, 2022. 县域城市土壤重金属空间分布特征及来源解析[J]. 环境科学学报, 42(1): 287-297. |
GUO H, SUN Y J, WANG X L, et al., 2022. Spatial distribution characteristics and source analysis of soil heavy metals in county-level city[J]. Environmental Science, 42(1): 287-297. | |
[17] | 何博, 赵慧, 王铁宇, 等, 2019. 典型城市化区域土壤重金属污染的空间特征与风险评价[J]. 环境科学, 40(6): 2869-2876. |
HE B, ZHAN H, WANG T Y, et al., 2019. Spatial distribution and risk assessment of heavy metals in soils from a typical urbanized area[J]. Environmental Science, 40(6): 2869-2876. | |
[18] | 蒋炜玮, 谢丹平, 陈晓燕, 等, 2023. 电子废弃物拆解园区重金属排放特征和周边土壤重金属污染来源解析及风险评价[J]. 环境监控与预警, 15(1): 9-15. |
JIANG W W, XIE D P, CHEN X Y, et al., 2023. Heavy metal emission characteristics of waste gas from E-waste dismantling region and source analysis and risk assessment of heavy metal pollution in surrounding soil[J]. Environmental Monitoring and Forewarning, 15(1): 9-15. | |
[19] | 雷国建, 刘千钧, 陈志良, 等, 2013. 不同行业污染土壤重金属污染特征比较研究[J]. 土壤, 45(6): 1023-1027. |
LEI G J, LIU Q J, CHEN Z L, et al., 2013. Comparative study on characters of soil heavy metal pollution in different industries[J]. Soli, 45(6): 1023-1027. | |
[20] | 李焯光, 2015. 电镀废气治理[J]. 科技风 (14): 26. |
LI C G, 2015. Electroplating waste gas treatment[J]. Science and Technology Style (14): 26. | |
[21] | 李婧, 李素艳, 孙向阳, 等, 2019. 北京市朝阳区 (五环内) 绿地土壤重金属分布特征及其影响因素[J]. 水土保持研究, 26(3): 311-317. |
LI J, LI S Y, SUN X Y, et al., 2019. Characteristics of distribution of soil heavy metals in Wuhuan, Chaoyang Disturict, Beijing[J]. Research of Soil and Water Consetvation, 26(3): 311-317. | |
[22] | 李娇, 吴劲, 蒋进元, 等, 2018. 近十年土壤污染物源解析研究综述[J]. 土壤通报, 49(1): 232-242. |
LI J, WU J, JIANG J Y, et al., 2018. Review on source apportionment of soil pollutants in recent ten years[J]. Chinese Journal of Soil Science, 49(1): 232-242. | |
[23] | 李梦飞, 2023. 河南某钢铁冶炼厂土壤重金属污染评价及来源解析[J]. 化工管理 (27): 67-72. |
LI M F, 2023. Pollution assessment and source analysis of heavy metals in soil of a typical lron and steel smelter in Henan[J]. Chemical Engineering Management (27): 67-72. | |
[24] | 李梦婷, 沈城, 吴健, 等, 2021. 快速城市化区域不同用地类型土壤重金属含量分布特征及生态风险[J]. 环境科学, 42(10): 4889-4896. |
LI M T, SHEN C, WU J, et al., 2021. Content characteristics and ecological risks of heavy metals in the soil of different land uses in rapid urbanization area[J]. Environmental Science, 42(10): 4889-4896. | |
[25] | 李一蒙, 马建华, 刘德新, 等, 2015. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 36(3): 1037-1044. |
LI Y M, MA J H, LIU D X, et al., 2015. Assessment of heavy metal pollution and potential ecological risks of urban soils in kaifeng city, China[J]. Environmental Science, 36(3): 1037-1044. | |
[26] | 李振, 2023. 电镀废水中的重金属污染与处理[J]. 黑龙江环境通报, 36(3): 145-47. |
LI Z, 2023. Pollution and treatment of heavy metals in electroplating wastewater[J]. Heilongjiang Environmental Bulletin, 36(3): 145-47. | |
[27] | 刘楠, 唐莹影, 陈盟, 等, 2023. 基于APCS-MLR和PMF的铅锌矿流域土壤重金属来源解析[J]. 中国环境科学, 43(4): 1267-1276. |
LIU N, TANG Y Y, CHEN M, et al., 2023. Source apportionment of soil heavy metals in lead-zinc area based on APCS-MLR and PMF[J]. China Environmental Science, 43(4): 1267-1276. | |
[28] |
刘万亮, 胡元平, 丁余辉, 等, 2022. 长江沿岸带某工业园区土壤重金属空间分布特征及来源浅析[J]. 资源环境与工程, 36(4): 427-433.
DOI |
LIU W L, HU Y P, DING Y H, et al., 2022. Spatial distribution characteristics and sources of heavy metals in soil of an industrial park on the Yangtze river coastal zone[J]. Resources Environment & Engineering, 36(4): 427-433. | |
[29] | 柳云龙, 章立佳, 韩晓非, 等, 2012. 上海城市样带土壤重金属空间变异特征及污染评价[J]. 环境科学, 33(2): 599-605. |
LIU Y L, ZHANG L J, HAN X F, et al., 2012. Spatial variability and evaluation of soil heavy metal contamination in the urban-transect of Shanghai[J]. Environmental Science, 33(2): 599-605. | |
[30] | 吕占禄, 张金良, 张晗, 等, 2020. 生物质能电厂周边土壤中重金属元素污染特征及评价[J]. 环境化学, 39(12): 3480-3494. |
LÜ Z L, ZHANG J L, ZHANG H, et al., 2020. Pollution characteristics and evaluation of heavy metal pollution in surface soil around the biomass power plant[J]. Environmental Science. Environmental Chemistry, 39(12): 3480-3494. | |
[31] | 孟飞, 刘敏, 史同广, 2008. 上海农田土壤重金属的环境质量评价[J]. 环境科学, 29(2): 2428-2433. |
MENG F, LIU M, SHI T G, 2008. Evaluation on environmental quality of heavy metals in agricultural soils of Shanghai[J]. Environmental Science, 29(2): 2428-2433. | |
[32] | 倪小东, 2018. 电镀行业环境影响分析[J]. 绿色科技 (16): 95-96. |
NI X D, 2018. Environmental impact analysis of electroplating industry[J]. Green Technology (16): 95-96. | |
[33] | 沈城, 刘馥雯, 吴健, 等, 2020. 再开发利用工业场地土壤重金属含量分布及生态风险[J]. 环境科学, 41(11): 5125-5132. |
SHEN C, LIU F W, WU J, et al., 2020. Distribution and ecological risk of heavy metals in the soil of redevelopment industrial sites[J]. Environmental Science, 41(11): 5125-5132. | |
[34] | 沈城, 叶文娟, 钱诗颖, 等, 2022. 典型城市土壤中重金属锑 (Sb) 的含量分布特征及风险评价[J]. 环境科学, 43(9): 4791-4799. |
SHEN C, YE W J, QIAN S Y, et al., 2022. Distribution characteristics and risk assessment of antimony in typical urban soil[J]. Environmental Science, 43(9): 4791-4799. | |
[35] | 生态环境部, 2019. 建设用地土壤污染风险管控和修复监测技术导则: HJ 25.2—2019[S]. 北京: 中国环境出版集团:2-15. |
MINISTRY OF ECOLOGY AND ENVIRONMENT, 2019, Technical guidelines for monitoring during risk control and remediation of soil contamination of land for construction: HJ 25.2—2019[S]. Beijing: China Environmental Science Press:2-15. | |
[36] | 他维媛, 周书宇, 金盛华, 等, 2023. 商洛市尾矿区土壤重金属污染评价及来源分析[J]. 环境污染与防治, 45(5): 687-693, 699. |
TA W Y, ZHOU S Y, JIN S H, et al., 2023. Evaluation and source analysis of heavy metal pollution in soils of tailing areas in Shangluo City[J]. Environmental Pollution & Control, 45(5): 687-693, 699. | |
[37] | 万梦雪, 焦文涛, 胡文友, 等, 2023. 城市工业区土壤重金属累积特征与来源解析——以上海市闵行区典型工业区为例[J]. 环境化学, 42(6): 1886-1898. |
WAN M X, JIAO W T, HU W Y, et al., 2023. Accumulation and source apportionment of heavy metals in urbanindustrial soils - A case study in Minhang District of Shanghai[J]. Environmental Chemistry, 42(6): 1886-1898. | |
[38] | 王诚煜, 李玉超, 于成广, 等, 2021. 葫芦岛东北部土壤重金属分布特征及来源解析[J]. 中国环境科学, 41(11): 5227-5236. |
WANG C, LI Y C, YU C G, et al., 2021. Distribution characteristics and sources of soil heavy metals in soils in the area of northeastern Huludao City[J]. China Environmental Science, 41(11): 5227-5236. | |
[39] | 王军, 陈振楼, 王初, 等, 2007. 上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估[J]. 环境科学, 28(3): 647-653. |
WANG J, CHEN Z L, WANG C, et al., 2007. Heavy metal content and ecological risk warning assessment of vegetable soils in Chongming Island, Shanghai City[J]. Journal of Environmental Sciences, 28(3): 647-653. | |
[40] | 王美华, 2023. PCA-APCS-MLR和地统计学的典型农田土壤重金属来源解析[J]. 环境科学, 44(6): 3509-3519. |
WANG M H, 2023. Source analysis of heavy metals in typical farmland soils based on PCA-APCS-MLR and geostatistics[J]. Environmental Science, 44(6): 3509-3519. | |
[41] | 韦壮绵, 陈华清, 张煜, 等, 2020. 湘南柿竹园东河流域农田土壤重金属污染特征及风险评价[J]. 环境化学, 39(10): 2753-2764. |
WEI Z M, CHEN H Q, ZHANG Y, et al., 2020. Pollution characteristics and risk assessment of heavy metals in farmland soils at Shizhuyuan Donghe River basin of Southern Hunan[J]. Environmental Chemistry, 39(10): 2753-2764. | |
[42] | 吴健, 王敏, 张辉鹏, 等, 2018. 复垦工业场地土壤和周边河道沉积物重金属污染及潜在生态风险[J]. 环境科学, 39(12): 5620-5627. |
WU J, WANG M, ZHANG H P, et al., 2018. Heavy metal pollution and potential ecological risk of soil from reclaimed industrial sites and surrounding river sediments[J]. Environmental Science, 39(12): 5620-5627. | |
[43] | 张传华, 王钟书, 刘力, 等, 2023. 基于APCS-MLR受体模型和地统计法的矿区周边农用地土壤重金属来源解析[J]. 环境科学, 44(6): 3500-3508. |
ZHANG C H, WANG Z S, LIU L, et al., 2023. Source analysis of soil heavy metals in agricultural land around the Mining area based on APCS-MLR receptor model and geostatistical method[J]. Environmental Science, 44(6): 3500-3508. | |
[44] | 张淑珂, 孙国新, 姜杰, 2023. 白城市黑土区农田土壤重金属来源解析及积累评价[J]. 环境科学学报, 43(5): 409-420. |
ZHANG S K, SUN G X, JIANG J, 2023. Analysis of heavy metal sources and evaluation of accumulation in agricultural soils in the black soil area of Baicheng City[J]. Acta Scientiae Circumstantiae, 43(5): 409-420. | |
[45] | 张笑辰, 刘煜, 张兴绘, 等, 2022. 江西省主要城市土壤重金属污染及风险评价[J]. 环境科学与技术, 45(8): 206-217. |
ZHANG X C, LIU Y, ZHANG X H, et al., 2022. Heavy metal pollution and risk assessment of top-soil in major cities of Jiangxi province[J]. Environmental Science & Technology, 45(8): 206-217. | |
[46] |
张昱, 胡君利, 白建峰, 等, 2017. 电子废弃物拆解区周边农田土壤重金属污染评价及成因解析[J]. 生态环境学报, 26(7): 1228-1234.
DOI |
ZHANG Y, HU J L, BAI J F, et al., 2017. Contamination assessment and genesis analysis of heavy metals in farmland soils around a waste electrical and electronic equipments disassembling area[J]. Ecology and Environmental Sciences, 26(7): 1228-1234. | |
[47] | 张义, 周心劝, 曾晓敏, 等, 2022. 长江经济带工业区土壤重金属污染特征与评价[J]. 环境科学, 43(2): 2062-2070. |
ZHANG Y, ZHOU X Q, ZHENG X M, et al., 2022. Characteristics and assessment of heavy metal contamination in soils of industrial regions in the Yangtze River Economic Belt[J]. Environmental Science, 43(2): 2062-2070. | |
[48] | 赵涛, 2015. 氯盐诱导汞污染土壤热脱附过程汞挥发性质的研究[D]. 北京: 北京化工大学. |
ZHAO T, 2015. Study on volatilization of mercury in chlorine-induced thermal desorption of mercury-contaminated soil[D]. Beijing: Beijing University of Chemical Technology. | |
[49] | 周永超, 孙慧兰, 陈学刚, 等, 2019. 绿洲城市伊宁市表层土壤重金属污染特征及其生态风险评价[J]. 干旱区资源与环境, 33(2): 127-133. |
ZHOU Y C, SUN H L, CHEN X G, et al., 2019. Characteristics and ecological risk assessment of heavy metal pollution in sur-face soil of Yining in Oasis city[J]. Journal of Arid Land Resources and Environment, 33(2): 127-133. | |
[50] | 邹合萍, 戴争博, 严俊, 等, 2023. 浙北地区农用地和建设用地土壤重金属污染及潜在生态风险评价[J]. 环境生态学, 5(9): 1-10. |
ZOU H P, DAI Z B, YAN J, et al., 2023. Heavy metal pollution and risk assessment in agricultural land and construction land of northern Zhejiang[J]. Environmental Ecology, 5(9): 1-10. |
[1] | 张淼, 王桂霞, 王昌伟, 贺艳云, 许艳芳, 李琪, 许杨, 张俊骁, 张桂芹. 济南市区黑碳污染变化特征及来源解析[J]. 生态环境学报, 2024, 33(4): 560-572. |
[2] | 何艺, 秦欣欣, 张翔, 孙楠, 杨雅淋, 连军锋. 微塑料断面分布的不均一性——以赣江水域赣州段为例[J]. 生态环境学报, 2024, 33(4): 626-632. |
[3] | 张瑞东, 吴富勤, 李坤冀, 金彦杉, 刘程霞, 申仕康. 云南九大高原湖泊湖滨带入侵植物物种组成与分布特征[J]. 生态环境学报, 2024, 33(3): 351-361. |
[4] | 蒋伯琪, 浮天, 程昳璇, 苏枞枞, 沈建东, 于谨铖, 于兴娜. 沈阳市臭氧污染特征及其影响因素[J]. 生态环境学报, 2024, 33(1): 72-79. |
[5] | 吕金林, 岳明, 毛祝新, 王宇超. 秦岭中段外来植物入侵现状及风险评价研究[J]. 生态环境学报, 2023, 32(9): 1585-1594. |
[6] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[7] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[8] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[9] | 李姝亭, 胡冠九, 罗小三. 大气环境中全(多)氟烷基化合物(PFASs)的来源、分布及健康风险研究进展[J]. 生态环境学报, 2023, 32(12): 2103-2114. |
[10] | 黄国锋, 贺斌, 谢志宜, 刘军, 王安侯, 廖彤, 王博瑾, 郝贝贝. 广东省农业源污染对水环境的影响及其空间分异格局[J]. 生态环境学报, 2023, 32(12): 2207-2215. |
[11] | 何文宣, 李垒, 孙思宇, 李昌, 李久义, 田秀君. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 2023, 32(11): 1901-1912. |
[12] | 李文菁, 黄月群, 黄亮亮, 李向通, 苏琼源, 孙扬言. 北部湾海洋鱼类微塑料污染特征及其风险评估[J]. 生态环境学报, 2023, 32(11): 1913-1921. |
[13] | 韩迁, 张玉娇, 赖承钺, 杨璐瑶, 孟旭. 成都市河流中四环素、喹诺酮类抗生素污染特征及生态风险评价[J]. 生态环境学报, 2023, 32(11): 1922-1932. |
[14] | 肖洁芸, 周伟, 石佩琪. 土壤重金属含量高光谱反演[J]. 生态环境学报, 2023, 32(1): 175-182. |
[15] | 石文静, 周翰鹏, 孙涛, 黄金涛, 杨文焕, 李卫平. 矿区周边土壤重金属污染优先控制因子及健康风险评价研究[J]. 生态环境学报, 2022, 31(8): 1616-1628. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||