生态环境学报 ›› 2024, Vol. 33 ›› Issue (3): 439-449.DOI: 10.16258/j.cnki.1674-5906.2024.03.012
收稿日期:
2023-12-17
出版日期:
2024-03-18
发布日期:
2024-05-08
通讯作者:
*陈光才,E-mail: guangcaichen@sohu.com; gcchen@caf.ac.cn作者简介:
肖江(1987年生),男,副研究员,博士,主要从事土壤改良材料的研发,重金属污染土壤修复。E-mail: jiangxiao0915@caf.ac.cn
基金资助:
XIAO Jiang(), LI Xiaogang, ZHAO Bo, CHEN Yan, CHEN Guangcai*(
)
Received:
2023-12-17
Online:
2024-03-18
Published:
2024-05-08
摘要:
土壤重金属污染对生态环境和人类健康造成严重威胁,生物炭作为优秀土壤改良剂,与植物联合发挥作用,是修复受重金属污染的土壤的潜力途径。以动物源生物质骨粉为原料,采用高温裂解联合湿法球磨技术,制备了两种不同粒径(<75 μm和<1.0 μm)的富磷生物炭(BC和MBC)。通过大棚盆栽试验,考察不同施用剂量(0、0.5%、1.0%和2.0%,w%)的BC和MBC对重金属污染土壤中Cu和Pb的赋存形态及其在苏柳172(Salix jiangsuensis ‘172’)的积累和转运影响。主要结果如下:1)通过对两种粒径的富磷生物炭进行SEM-EDS-mapping、TEM、XRD和FT-IR等分析表征,证明了富磷生物炭为含有大量的羟基磷灰石的富炭固相材料,且球磨后的MBC的比表面积和孔体积较BC可分别提升5.93倍和4.65倍;2)施用BC和MBC均能有效降低土壤Cu和Pb的生物可利用态含量,且同等剂量MBC的效果更优。在添加2% BC和MBC条件下,Cu和Pb的生物可利用态含量较对照显著降低了6.41%、17.31%和8.84%、30.31%(P<0.05);3)添加BC和MBC均显著增加了苏柳172生物量(P<0.05),显著降低了苏柳172根部中Cu和Pb的含量(P<0.05),但对苏柳172积累Cu和Pb无显著影响(P>0.05);4)BC(0-2.0%)对苏柳172的Cu和Pb生物富集和转运能力无显著影响(P>0.05),而MBC(1.0%-2%)显著提升苏柳172对Cu和Pb的生物富集和转运能力(P<0.05),2.0%MBC可使Cu和Pb的TF值分别提升101.06%和25.16%。该文对了解微纳富磷生物炭联合树木修复Cu、Pb复合污染土壤具有重要意义,可为重金属污染土壤的生态修复提供科学依据。
中图分类号:
肖江, 李晓刚, 赵博, 陈岩, 陈光才. 微纳富磷生物炭对土壤-苏柳系统中Cu和Pb稳定性的影响[J]. 生态环境学报, 2024, 33(3): 439-449.
XIAO Jiang, LI Xiaogang, ZHAO Bo, CHEN Yan, CHEN Guangcai. Effect of Micro/nano Scale Phosphorus-enriched Biochar on Cu and Pb Stabilization in Soil-Salix jiangsuensis ‘172’ System[J]. Ecology and Environment, 2024, 33(3): 439-449.
样品 | BC | MBC |
---|---|---|
比表面积/(m2∙g−1) | 52.78 | 313.09 |
微孔比表面积/(m2∙g−1) | 24.32 | 193.89 |
内部比表面积/(m2∙g−1) | 28.46 | 119.2 |
平均粒径/nm | 8.22 | 6.46 |
孔体积/(cm3∙g−1) | 0.0975 | 0.4538 |
pH | 9.51 | 7.98 |
w(N)/% | 3.42 | 3.46 |
w(C)/% | 39.49 | 39.11 |
w(H)/% | 1.45 | 1.79 |
w(S)/% | 0.07 | - |
w(Ca)/% | 19.65 | 20.37 |
w(O)/% | 24.26 | 24 |
w(P)/% | 10.36 | 10.66 |
表1 BC和MBC的基础理化参数和主要化学元素组成
Table 1 The basic properties and the main elements of the BC and MBC
样品 | BC | MBC |
---|---|---|
比表面积/(m2∙g−1) | 52.78 | 313.09 |
微孔比表面积/(m2∙g−1) | 24.32 | 193.89 |
内部比表面积/(m2∙g−1) | 28.46 | 119.2 |
平均粒径/nm | 8.22 | 6.46 |
孔体积/(cm3∙g−1) | 0.0975 | 0.4538 |
pH | 9.51 | 7.98 |
w(N)/% | 3.42 | 3.46 |
w(C)/% | 39.49 | 39.11 |
w(H)/% | 1.45 | 1.79 |
w(S)/% | 0.07 | - |
w(Ca)/% | 19.65 | 20.37 |
w(O)/% | 24.26 | 24 |
w(P)/% | 10.36 | 10.66 |
图3 富磷生物炭对土壤重金属化学形态和生物可利用态的质量分数的影响. 不同小写字母表示同一指标不同处理水平间有显著性差异,P < 0.05,下同
Figure 3 Effect of phosphorus-enriched biochars on the chemical fraction and bioavailability contents of heavy metals in soil
图5 富磷生物炭对苏柳172干质量的影响 图中最上面一行的不同的小写字母表示不同处理间整株植物的干质量有显著性差异,P<0.05,下同
Figure 5 Effect of phosphorus-enriched biochars on the total dry mass of Salix jiangsuensis ‘172’
图6 富磷生物炭对苏柳172中重金属积累质量的影响 图中最上面一行的不同的小写字母表示不同处理间整株植物的重金属积累质量有显著性差异,P<0.05
Figure 6 Effect of phosphorus-enriched biochars on the accumulation of heavy metals in Salix jiangsuensis ‘172’
图7 富磷生物炭对苏柳172重金属富集能力和转运能力的影响
Figure 7 Effect of phosphorus-enriched biochars on the enrichment factor and transfer coefficient of heavy metals of the Salix jiangsuensis ‘172’
图8 富磷生物炭对污染土壤-苏柳172系统中土壤改良的潜在机制
Figure 8 Potential mechanisms of soil amelioration by phosphorus-enriched biochars in contaminated soil-Salix jiangsuensis ‘172’ system
[1] |
ABDIN Y, USMAN A, OK Y. S, et al., 2020. Competitive sorption and availability of coexisting heavy metals in mining contaminated soil: Contrasting effects of mesquite and fishbone biochars[J]. Environmental Research, 181: 108846.
DOI URL |
[2] |
ANTONIADIS V, LEVIZOU E, SHAHEEN S M, et al., 2017. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation: A review[J]. Earth-Science Reviews, 171: 621-645.
DOI URL |
[3] |
AZEEM M, SHAHEEN S M, ALI A, et al., 2022. Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant-and bone-derived biochars: A review[J]. Journal of Hazardous Materials, 427: 128131.
DOI URL |
[4] |
CAO Y N, ZHANG Y, MA C X, et al., 2018. Growth, physiological responses, and copper accumulation in seven willow species exposed to Cu—a hydroponic experiment[J]. Environmental Science and Pollution Research, 25: 19875-19886.
DOI |
[5] |
FERNANDO M S, DE SILVA R M, DE SILVA K N, 2015. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions[J]. Applied Surface Science, 351: 95-103.
DOI URL |
[6] |
GUL S, WHALEN J K, THOMAS B W, et al., 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions[J]. Agriculture, Ecosystems and Environment, 206: 46-59.
DOI URL |
[7] |
GREGORY S J, ANDERSON C W N, ARBESTAIN M C, et al., 2014. Response of plant and soil microbes to biochar amendment of an arsenic-contaminated soil[J]. Agriculture, Ecosystems and Environment, 191: 133-141.
DOI URL |
[8] |
JUNG K W, LEE S Y, CHOI J W, et al., 2019. A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: adsorption behavior and mechanisms for the removal of copper (II) from aqueous media[J]. Chemical Engineering Journal, 369: 529-541.
DOI URL |
[9] |
KOUSALYA G N, GANDHI M R, SUNDARAM C S, et al., 2010. Synthesis of nano-hydroxyapatite chitin/chitosan hybrid biocomposites for the removal of Fe(III)[J]. Carbohydrate Polymers, 82(3): 594-599.
DOI URL |
[10] |
LACALLE R G, BERNAL M P, ÁLVAREZ-ROBLES M J, et al., 2023. Phytostabilization of soils contaminated with As, Cd, Cu, Pb and Zn: Physicochemical, toxicological and biological evaluations[J]. Soil and Environmental Health, 1(2): 100014.
DOI URL |
[11] |
LEBRUN M, MIARD F, NANDILLON R, et al., 2018. Assisted phytostabilization of a multicontaminated mine technosol using biochar amendment: Early stage evaluation of biochar feedstock and particle size effects on As and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana)[J]. Chemosphere, 194: 316-326.
DOI URL |
[12] |
LEBRUN M, MIARD F, NANDILLON R, et al., 2019. Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth[J]. Chemosphere, 222: 810-822.
DOI URL |
[13] | LEBRUN M, MACRI C, MIARD F, et al., 2017. Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix[J]. Journal of Geochemical Exploration, 182(Part B): 149-156. |
[14] |
LEBRUN M., MIARD F., NANDILLON R., et al., 2018. Eco-restoration of a mine technosol according to biochar particle size and dose application: Study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis[J]. Journal of Soils and Sediments, 18: 2188-2202.
DOI URL |
[15] |
LI X G, CAO Y N, XIAO J, et al., 2022. Bamboo biochar greater enhanced Cd/Zn accumulation in Salix psammophila under non-flooded soil compared with flooded[J]. Biochar, 4(1): 1-17.
DOI |
[16] |
LI X G, XIAO J, SALAM M M A, et al., 2021. Impacts of bamboo biochar on the phytoremediation potential of Salix psammophila grown in multi-metals contaminated soil[J]. International Journal of Phytoremediation, 23(4): 387-399.
DOI URL |
[17] |
MEI H Y, HUANG W F, WANG Y, et al., 2022. One stone two birds: Bone char as a cost-effective material for stabilizing multiple heavy metals in soil and promoting crop growth[J]. Science of The Total Environment, 840: 156163.
DOI URL |
[18] |
PARK J H, YUN J J, KANG S W, et al., 2021. Removal of potentially toxic metal by biochar derived from rendered solid residue with high content of protein and bone tissue[J]. Ecotoxicology and Environmental Safety, 208: 111690.
DOI URL |
[19] |
PETERSON S C, JACKSON M A, KIM S, et al., 2012. Increasing biochar surface area: Optimization of ball milling parameters[J]. Powder Technology, 228: 115-120.
DOI URL |
[20] |
PICCIRILLO C, MOREIRA I S, NOVAIS R M, et al., 2017. Biphasic apatite-carbon materials derived from pyrolyzed fish bones for effective adsorption of persistent pollutants and heavy metals[J]. Journal of Environmental Chemical Engineering, 5(5): 4884-4894.
DOI URL |
[21] |
RAMEZANZADEH H, REYHANITABAR A, OUSTAN S, et al., 2021. Enhanced sorption of cadmium by using biochar nanoparticles from ball milling in a sandy soil[J]. Eurasian Soil Science, 54(2): 201-211.
DOI |
[22] |
RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al., 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1(1) 57-61.
PMID |
[23] |
RODRIGUEZ-FRANCO C, PAGE-DUMROESE D S, 2021. Woody biochar potential for abandoned mine land restoration in the U.S.: A review[J]. Biochar, 3(1): 7-22.
DOI |
[24] |
TŐZSÉR D, HARANGI S, BARANYAI E, et al., 2018. Phytoextraction with Salix viminalis in a moderately to strongly contaminated area[J]. Environmental Science and Pollution Research, 25(4): 3275-3290.
DOI URL |
[25] |
VAMVUKA D, DERMITZAKIS S, PENTARI D, et al., 2018. Valorization of meat and bone meal through pyrolysis for soil amendment or lead adsorption from wastewaters[J]. Food Bioprod Process, 109: 148-157.
DOI URL |
[26] |
WANG Y Y, LIU Y X, LU H H, et al., 2018. Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions[J]. Journal of Solid State Chemistry, 261: 53-61.
DOI URL |
[27] |
WANG R Y, SHAFI M, MA J W, et al., 2018. Effect of amendments on contaminated soil of multiple heavy metals and accumulation of heavy metals in plants[J]. Environmental Science and Pollution Research, 25(28): 28695-28704.
DOI |
[28] |
XIAO J, HU R, CHEN G C, 2020. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II)[J]. Journal of Hazardous Materials, 387: 121980.
DOI URL |
[29] |
XIAO J, LI X G, CAO Y N, et al., 2023. Does micro/nano biochar always good to phytoremediation? A case study from multiple metals contaminated acidic soil using Salix jiangsuensis ‘172’. Carbon Research, 2(1): 21.
DOI |
[30] |
XIAO X, CHEN B L, CHEN Z M, et al., 2018. Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review[J]. Environmental Science and Technology, 52(9): 5027-5047.
DOI PMID |
[31] |
ZHANG H, SHAO J, ZHANG S H, et al., 2020. Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As(V) in paddy soil[J]. Journal of Hazardous Materials, 390: 121349.
DOI URL |
[32] |
ZHAO F J, MA Y, ZHU Y G, et al., 2015. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science and Technology, 49(2): 750-759.
DOI URL |
[33] |
ZHU Y N, JIANG Y H, ZHU Z Q, et al., 2018. Preparation of a porous hydroxyapatite-carbon composite with the bio-template of sugarcane top stems and its use for the Pb (II) removal[J]. Journal of Cleaner Production, 187: 650-661.
DOI URL |
[34] |
陈桂红, 2023. 硫和硅掺杂生物炭对镉污染土壤的修复研究[J]. 生态环境学报, 32(10): 1854-1860.
DOI |
CHEN G H, 2023. Remediation of cadmium contaminated soil by sulfur/silicon doped biochar[J]. Ecology and Environmental Sciences, 32(10): 1854-1860. | |
[35] | 高瑞丽, 唐茂, 付庆灵, 等, 2017. 生物炭、蒙脱石及其混合添加对复合污染土壤中重金属形态的影响[J]. 环境科学, 38(1): 361-367. |
GAO R L, TANG M, FU Q L, et al., 2017. Fractions transformation of heavy metals in compound contaminated soil treated with biochar, montmorillonite and mixed addition[J]. Environmental Science, 38(1): 361-367. | |
[36] | 环境保护部, 国土资源部, 2014. 全国土壤污染状况调查公报[J]. 中国环保产业 (5): 10-11. |
Ministry of Environmental Protection, Ministry of Land and Resources, 2014. Bulletin of national soil pollution survey[J]. China Environmental Protection Industry (5): 10-11. | |
[37] | 黄连喜, 魏岚, 刘晓文, 等, 2020. 生物炭对土壤-植物体系中铅镉迁移累积的影响[J]. 农业环境科学学报, 39(10): 2205-2216. |
HUANG L X, WEI L, LIU X W, et al., 2020. Effects of biochar on the migration and accumulation of lead and cadmium in soil-plant systems[J]. Journal of Agro-Environment Science, 39(10): 2205-2216. | |
[38] |
李江遐, 吴林春, 张军, 等, 2015. 生物炭修复土壤重金属污染的研究进展[J]. 生态环境学报, 24(12): 2075-2081.
DOI |
LI J X, WU L C, ZHANG J, et al., 2015. Research progresses in remediation of heavy metal contaminated soils by biochar[J]. Ecology and Environment Sciences, 24(12): 2075-2081. | |
[39] | 李琪瑞, 许晨阳, 耿增超, 等, 2020. 纳米生物炭的制备方法比较及其特性研究[J]. 中国环境科学, 40(7): 3124-3134. |
LI Q R, XU C Y, GENG Z C, et al., 2020. Preparation methods and properties of nanobio-chars[J]. China Environmental Science, 40(7): 3124-3134. | |
[40] | 骆永明, 滕应. 2018. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 33(2): 145-152. |
LUO Y M, TENG Y, 2018. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J]. Bulletin of the Chinese Academy of Sciences, 33(2): 145-152. | |
[41] | 国家市场监督管理总局, 2018. 土壤环境质量农用地土壤污染风险管控标准:GB 15618— 2018[S]. |
Ministry of Ecology and Environment of China, and State Administration for Market Regulation of China, 2018. Soil environmental quality risk control standard for soil contamination of agricultural land:GB 15618— 2018[S]. | |
[42] | 商侃侃, 张国威, 蒋云, 2019. 54种木本植物对土壤Cu、Pb、Zn的提取能力[J]. 生态学杂志, 38(12):3723-3730. |
SHANG K K, ZHANG G W, JIANG Y, 2019. The phytoextraction ability of 54 woody species on Cu, Pb, Zn in soil[J]. Chinese Journal of Ecology, 38(12): 3723-3730. | |
[43] | 王友保, 2018. 土土壤污染生态修复实验技术[M]. 北京: 科学出版社. |
WANG Y B, 2018. Experimental technology for ecological remediation of soil pollution[M]. Beijing: Science Press. | |
[44] | 肖鹏飞, 吴德东, 2021. 全球植物修复研究文献计量分析[J]. 生态学报, 41(21): 8685-8695. |
XIAO P F, WU D D, 2021. Econometric analysis of global phytoremediation literature[J]. Acta Ecologica Sinica, 41(21): 8685-8695. | |
[45] | 许燕萍, 谢祖彬, 朱建国, 等, 2013. 制炭温度对玉米和小麦生物质炭理化性质的影响[J]. 土壤, 45(1): 73-78. |
XU Y P, XIE Z B, ZHU J G, et al., 2013. Effects of pyrolysis temperature on physical and chemical properties of corn biochar and wheat biochar[J]. Soils, 45(1): 73-78. | |
[46] | 杨艳征, 张银鸽, 李畅, 等, 2022. 微碱性土壤施用烟杆生物炭与磷酸盐可降低小麦籽粒镉积累[J]. 环境科学, 43(12): 5769-5777. |
YANG Y Z, ZHANG Y G, LI C, et al., 2022. Tobacco stem biochar and phosphate application decrease wheat grain cadmium accumulation in alkalescent soils[J]. Environmental Science, 43(12): 5769-5777.
DOI URL |
|
[47] |
赵维彬, 唐丽, 王松, 等, 2023. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 32(4): 678-686.
DOI |
ZHAO W B, TANG L, WANG S, et al., 2023. Improvement effect of two biochars on coastal saline-alkaline soil[J]. Ecology and Environmental Sciences, 32(4): 678-686. |
[1] | 刘楚天, 郭栋栋, 侯磊, 梁启斌, 王艳霞, 施艳婷, 戚艳娥. 营养调控影响滇杨幼苗镉积累的效应模型分析[J]. 生态环境学报, 2024, 33(3): 460-468. |
[2] | 江润海, 温绍福, 朱城强, 张梅, 杨润玲, 王春雪, 侯秀丽. 铅污染矿区中耐铅解磷菌对玉米的促生及根际铅的固化效应[J]. 生态环境学报, 2024, 33(2): 291-300. |
[3] | 李高帆, 徐文卓, 卫昊明, 晏再生, 尤佳, 江和龙, 黄娟. 三维多孔生物炭吸附剂的制备及其对菲的吸附行为[J]. 生态环境学报, 2024, 33(2): 261-271. |
[4] | 丛鑫, 曹平, 王晓博. 生物炭负载纳米铁活化过硫酸盐去除土壤中的五氯联苯[J]. 生态环境学报, 2024, 33(2): 282-290. |
[5] | 李嘉惠, 童辉, 陈曼佳, 刘承帅, 姜琪, 易秀. 微氧生物亚铁氧化及其重金属固定效应研究进展[J]. 生态环境学报, 2024, 33(2): 310-320. |
[6] | 杨正桥, 邹奇, 韦行, 周凯, 陈志良. 金属尾矿微生物对尾矿环境的适应与调控机制研究进展[J]. 生态环境学报, 2024, 33(1): 156-166. |
[7] | 王郑钧, 王邵军, 肖博, 解玲玲, 郭志鹏, 张昆凤, 张路路, 樊宇翔, 郭晓飞, 罗双, 夏佳慧, 李瑞, 杨胜秋, 兰梦杰. 西双版纳热带森林土壤有机碳积累-分配动态对蚂蚁筑巢活动的响应[J]. 生态环境学报, 2024, 33(1): 35-44. |
[8] | 刘炳妤, 王一佩, 姚作芳, 杨钙仁, 徐晓楠, 邓羽松, 黄钰涵. 沼液还田下不同种植模式的重金属风险评价及安全消纳量分析[J]. 生态环境学报, 2023, 32(8): 1507-1515. |
[9] | 王宁, 刘效东, 甘先华, 苏宇乔, 吴国章, 黄芳芳, 张卫强. 亚热带典型林分降水过程中的水质效应[J]. 生态环境学报, 2023, 32(8): 1365-1375. |
[10] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[11] | 黄英梅, 钟松雄, 朱忆雯, 王向琴, 李芳柏. 单质硫抑制水稻植株甲基汞累积的效应与机制[J]. 生态环境学报, 2023, 32(6): 1115-1122. |
[12] | 肖博, 王邵军, 解玲玲, 王郑钧, 郭志鹏, 张昆凤, 张路路, 樊宇翔, 郭晓飞, 罗双, 夏佳慧, 李瑞, 兰梦杰, 杨胜秋. 蚂蚁筑巢定居活动对热带森林土壤氮库及组分分配的影响[J]. 生态环境学报, 2023, 32(6): 1026-1036. |
[13] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[14] | 赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686. |
[15] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||