生态环境学报 ›› 2023, Vol. 32 ›› Issue (1): 150-157.DOI: 10.16258/j.cnki.1674-5906.2023.01.016
徐敏1,2(), 许超2,*(
), 余光辉1,*(
), 尹力初3, 张泉2, 朱捍华2, 朱奇宏2, 张杨珠3, 黄道友2
收稿日期:
2022-08-02
出版日期:
2023-01-18
发布日期:
2023-04-06
通讯作者:
余光辉(1976年生),男,教授,博士,主要从事环境管理及环境影响评价与规划。E-mail: yuguanghui107@aliyun.com作者简介:
徐敏(1998年生),女,硕士研究生,主要从事土壤与环境生态研究。E-mail: xumin4211@163.com
基金资助:
XU Min1,2(), XU Chao2,*(
), YU Guanghui1,*(
), YIN Lichu3, ZHANG Quan2, ZHU Hanhua2, ZHU Qihong2, ZHANG Yangzhu3, HUANG Daoyou2
Received:
2022-08-02
Online:
2023-01-18
Published:
2023-04-06
摘要:
稻田土壤镉(Cd)容易在水稻中积累进而通过食物链危害人体健康,地下水位和长期秸秆还田对水稻土Cd有效性及水稻Cd吸收积累特性的影响效应值得关注。以红壤性水稻土长期定位试验为对象,选取高地下水位(-20 cm)秸秆还田(HRS)、高地下水位施化肥(HCF)、低地下水位(-80 cm)秸秆还田(LRS)、低地下水位施化肥(LCF)4个处理,检测土壤有效态Cd、各形态Cd占比(BCR法)和水稻地上部Cd含量,分析地下水位和秸秆还田对土壤Cd有效性与形态转化和稻米Cd含量的影响。结果表明:相同水位长期秸秆还田增加了土壤Cd有效性,HRS和LRS处理土壤有效态Cd比HCF和LCF处理分别高49.4 %和53.2%。相同施肥处理低水位土壤Cd有效性高于高水位,LCF和LRS处理土壤有效态Cd含量比HCF和HRS分别高46.5%和50.2%。RS下高水位促进残渣态Cd向可氧化态和可还原态Cd转化,化肥下高水位促进酸提取态Cd向可还原和可氧化态Cd转化。相同水位秸秆还田处理稻米Cd含量显著高于化肥处理,高水位下RS处理稻米Cd含量比化肥处理高11.6倍,低水位下则高42.3%。相同施肥处理高水位稻米Cd含量显著低于低水位;RS下高水位稻米Cd含量比低水位低57.4%,化肥下则低95.2%。逐步回归分析结果表明,土壤有效态Cd含量显著地受溶解性有机碳含量的影响,稻米和稻草Cd含量显著地受土壤有效态Cd和有效态Fe含量的影响。地下水位和长期秸秆还田通过改变土壤Cd有效性及Cd形态比例,从而影响水稻对土壤中Cd的吸收积累;高低地下水位下稻田秸秆还田提高了土壤Cd有效性和稻米Cd含量,带来了稻米Cd超标风险。
中图分类号:
徐敏, 许超, 余光辉, 尹力初, 张泉, 朱捍华, 朱奇宏, 张杨珠, 黄道友. 地下水位和长期秸秆还田对土壤镉有效性及稻米镉含量的影响[J]. 生态环境学报, 2023, 32(1): 150-157.
XU Min, XU Chao, YU Guanghui, YIN Lichu, ZHANG Quan, ZHU Hanhua, ZHU Qihong, ZHANG Yangzhu, HUANG Daoyou. Effects of Groundwater Level and Long-term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice[J]. Ecology and Environment, 2023, 32(1): 150-157.
处理 | pH | w(有机质)/(g·kg-1) | w(DOC)/(mg·kg-1) | w(DTPA-Cu)/(mg·kg-1) | w(DTPA-Fe)/(mg·kg-1) |
---|---|---|---|---|---|
HRS | 5.20±0.08b | 32.00±0.78a | 98.10±7.17a | 3.92±0.49a | 120.5±12.7ab |
HCF | 5.30± 0.02ab | 22.47±1.41b | 38.64±4.87b | 2.75±0.49b | 155.4±15.2a |
LRS | 5.08±0.12b | 29.30±0.78a | 114.65±4.64a | 3.79±0.24ab | 123.5±14.5ab |
LCF | 5.54±0.19a | 22.27±0.66b | 65.39±9.96b | 3.27±0.36ab | 105.3±13.5b |
表1 地下水位和长期秸秆还田下土壤理化性质
Table 1 The basic physical and chemical properties in soil of groundwater level management and long-term straw returning
处理 | pH | w(有机质)/(g·kg-1) | w(DOC)/(mg·kg-1) | w(DTPA-Cu)/(mg·kg-1) | w(DTPA-Fe)/(mg·kg-1) |
---|---|---|---|---|---|
HRS | 5.20±0.08b | 32.00±0.78a | 98.10±7.17a | 3.92±0.49a | 120.5±12.7ab |
HCF | 5.30± 0.02ab | 22.47±1.41b | 38.64±4.87b | 2.75±0.49b | 155.4±15.2a |
LRS | 5.08±0.12b | 29.30±0.78a | 114.65±4.64a | 3.79±0.24ab | 123.5±14.5ab |
LCF | 5.54±0.19a | 22.27±0.66b | 65.39±9.96b | 3.27±0.36ab | 105.3±13.5b |
图1 地下水位和长期秸秆还田下土壤全Cd和有效态Cd质量分数 不同字母表示处理间差异显著(P<0.05),下同
Figure 1 Total and available Cd mass fraction in soil of groundwater level management and long-term straw returning
处理 | w(稻米Cd)/ (mg·kg-1) | w(稻草Cd)/ (mg·kg-1) | Cd富集系数 (BAF) | Cd转运系数 (TF) | ||
---|---|---|---|---|---|---|
BAF稻米 | BAF稻草 | TF米/草 | ||||
HRS | 0.63±0.07c | 3.07±0.17b | 1.00±0.05c | 4.87±0.42b | 0.21±0.03bc | |
HCF | 0.05±0.01d | 0.39±0.06c | 0.09±0.00d | 0.70±0.06c | 0.13±0.01c | |
LRS | 1.48±0.13a | 6.33±0.22a | 2.37±0.19a | 10.14±0.44a | 0.23±0.02ab | |
LCF | 1.04±0.09b | 3.70±0.13b | 1.70±0.18b | 6.02±0.36b | 0.28±0.02a |
表2 水稻不同部位的Cd质量分数、富集系数及转运系数
Table 2 Cd mass fraction, enrichment coefficient and transport coefficient in different parts of rice
处理 | w(稻米Cd)/ (mg·kg-1) | w(稻草Cd)/ (mg·kg-1) | Cd富集系数 (BAF) | Cd转运系数 (TF) | ||
---|---|---|---|---|---|---|
BAF稻米 | BAF稻草 | TF米/草 | ||||
HRS | 0.63±0.07c | 3.07±0.17b | 1.00±0.05c | 4.87±0.42b | 0.21±0.03bc | |
HCF | 0.05±0.01d | 0.39±0.06c | 0.09±0.00d | 0.70±0.06c | 0.13±0.01c | |
LRS | 1.48±0.13a | 6.33±0.22a | 2.37±0.19a | 10.14±0.44a | 0.23±0.02ab | |
LCF | 1.04±0.09b | 3.70±0.13b | 1.70±0.18b | 6.02±0.36b | 0.28±0.02a |
图3 土壤理化性质与重金属有效性、稻米和稻草Cd质量分数之间的相关关系 椭圆面积越小表示相关系数绝对值越大。C-Cd、D-Cu、D-Fe分别表示CaCl2-Cd、DTPA-Cu、DTPA-Fe,下同(***表示P≤0.001,**表示P≤0.01,*表示P≤0.05)
Figure 3 Correlation between soil physicochemical properties and soil available concentrations, Cd mass fraction in grain and straw
指标 | 回归方程 | R2 | P |
---|---|---|---|
CaCl2-Cd | Y1=0.811XDOC+36.318 | 0.826 | 0.001 |
稻草Cd | Y2=0.058XC-Cd-0.032XD-Fe+1.595 | 0..976 | 0.000 |
稻米Cd | Y3=0.016XC-Cd-0.01XD-Fe+0.664 | 0.937 | 0.000 |
表3 土壤有效态Cd及稻米Cd质量分数与土壤理化性质指标回归方程
Table 3 Stepwise regression equation for soil available Cd and Cd mass fraction of rice with soil physicochemical property index
指标 | 回归方程 | R2 | P |
---|---|---|---|
CaCl2-Cd | Y1=0.811XDOC+36.318 | 0.826 | 0.001 |
稻草Cd | Y2=0.058XC-Cd-0.032XD-Fe+1.595 | 0..976 | 0.000 |
稻米Cd | Y3=0.016XC-Cd-0.01XD-Fe+0.664 | 0.937 | 0.000 |
[1] | BAI Y C, GU C H, TAO T Y, et al., 2013. Straw incorporation increases solubility and uptake of cadmium by rice plants[J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 63(3): 193-199. |
[2] |
FILIPOVIC L, ROMIC M, ROMIC D, et al., 2018. Organic matter and salinity modify cadmium soil (phyto) availability[J]. Ecotoxicology and Environmental Safety, 147: 824-831.
DOI URL |
[3] |
LI Z M, LIANG Y, HU H W, et al., 2021. Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety[J]. Environment International, 156: 106749.
DOI URL |
[4] |
NEMATI K, BAKAR N K A, ABAS M R, et al., 2011. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia[J]. Journal of Hazardous Materials, 192(1): 402-410.
DOI PMID |
[5] |
NIE X X, DUAN X L, ZHANG M M, et al., 2019. Cadmium accumulation, availability, and rice uptake in soils receiving long-term applications of chemical fertilizers and crop straw return[J]. Environmental Science and Pollution Research, 26(30): 31243-31253.
DOI |
[6] |
SU Y, KWONG R W M, TANG W L, et al., 2021. Straw return enhances the risks of metals in soil?[J]. Ecotoxicology and Environmental Safety, 207: 111201.
DOI URL |
[7] |
SUI F Q, CHANG J D, TANG Z, et al., 2018. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize[J]. Plant Soil, 433(1-2): 377-389.
DOI |
[8] |
TANAKA K, FUJIMAKI S, FUJIWARA T, et al., 2007. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.)[J]. Soil Science and Plant Nutrition, 53(1): 72-77.
DOI URL |
[9] |
URAGUCHI S, MORI S, KURAMATA M, et al., 2009. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany, 60(9): 2677-2688.
DOI PMID |
[10] |
WANG J, WANG P M, GU Y, et al., 2019. Iron-manganese (oxyhydro) oxides rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environmental Science & Technology, 53(5): 2500-2508.
DOI URL |
[11] |
WANG P, CHEN H P, KOPITTKE P M, et al., 2019. Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 249: 1038-1048.
DOI PMID |
[12] |
WANG S, HUANG D Y, ZHU Q H, et al., 2015. Speciation and phytoavailability of cadmium in soil treated with cadmium-contaminated rice straw[J]. Environmental Science and Pollution Research, 22(4): 2679-2686.
DOI URL |
[13] |
YIN L C, ZHANG L, Yi Y N, et al., 2015. Effects of long-term groundwater management and straw application on aggregation of paddy soils in subtropical China[J]. Pedosphere, 25(3): 386-391.
DOI URL |
[14] |
YU H Y, LIU C P, ZHU J S, et al., 2016. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value[J]. Environmental Pollution, 209: 38-45.
DOI URL |
[15] |
ZHANG Q, CHEN H F, HUANG D Y, et al., 2019. Water managements limit heavy metal accumulation in rice: Dual effects of iron-plaque formation and microbial communities[J]. Science of the Total Environment, 687: 790-799.
DOI URL |
[16] |
ZHANG Q, ZHANG L, LIU T T, et al., 2018. The influence of liming on cadmium accumulation in rice grains via iron-reducing bacteria[J]. Science of the Total Environment, 645: 109-118.
DOI URL |
[17] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社. |
BAO S D, 2000. Analytical methods of soil agricultural chemistry[M]. Third edition. Beijing: China Agriculture Press | |
[18] | 陈迪, 李伯群, 杨永平, 等, 2021. 4种草本植物对镉的富集特征[J]. 环境科学, 42(2): 960-966. |
CHEN D, LI B Q, YANG Y P, et al., 2021. Cadmium accumulation characteristics of four herbs[J]. Environmental Science, 42(2): 960-966. | |
[19] | 杜爽爽, 2013. 稻草、紫云英用量及配比对酸性土壤砷、镉有效性的影响及其在水稻中的应用[D]. 武汉: 华中农业大学. |
DU S S, 2013. Effect of straw and Astragalus sinicus amendments on availability of arsenic and cadmium in acid soil and the practice in rice[D]. Wuhan: Huazhong Agricultural University. | |
[20] | 段桂兰, 王芳, 岑况, 等, 2017. 秸秆还田对水稻镉积累及其亚细胞分布的影响[J]. 环境科学, 38(9): 3927-3936. |
DUAN G L, WANG F, CEN K, et al., 2017. Effects of straw incorporation on cadmium accumulation and subcellular distribution in rice[J]. Environment Science, 38 (9): 3927-3936.
DOI URL |
|
[21] | 黄界颍, 2013. 秸秆还田对铜陵矿区土壤Cd形态及有效性的影响机理[D]. 合肥: 合肥工业大学: 111-112. |
HANG J Y, 2013. Impact mechanism of straws returning on cadmium speciation and bioavailability of soils in Tongling mining area[D]. Hefei: Hefei University of Technology: 111-112. | |
[22] | 焦文涛, 蒋新, 余贵芬, 等, 2005. 土壤有机质对镉在土壤中吸附-解吸行为的影响[J]. 环境化学, 24(5): 545-549. |
JIAO W T, JIANG X, YU G F, et al., 2005. Effects of organic matter on cadmium adsorption-desorption in three soils[J]. Environmental Chemistry, 24(5): 545-549. | |
[23] | 李新爱, 童成立, 蒋平, 等, 2006. 长期不同施肥对稻田土壤有机质和全氮的影响[J]. 土壤, 38(3): 298-303. |
LI X A, TONG C L, JIANG P, et a1., 2006. Effects of long-term fertilization on soil organic matter and total nitrogen in paddy soil[J]. Soils, 38(3): 298-303. | |
[24] | 龙泽东, 孙梅, 罗尊长, 等, 2021. 长期不同耕作方式与秸秆还田对稻田镉生物有效性的影响[J]. 农业环境科学学报, 40(9): 1888-1896. |
LONG Z D, SUN M, LUO Z C, et al., 2021. Effect of different long-term tillage methods and straw returning on cadmium bioavailability in paddy fields[J]. Journal of Agro-Environment Science, 40(9): 1888-1896. | |
[25] | 裘高扬, 2016. 改良剂对稻田土壤中镉形态及有效性的影晌[D]. 杭州: 浙江大学. |
QIU G Y, 2016. Effect of modifier on cadmium morphology and availability in paddy soil[D]. Hangzhou: Zhejiang University. | |
[26] | 盛浩, 宋迪思, 王翠红, 等, 2015. 土壤溶解性有机碳四种测定方法的对比和转换[J]. 土壤, 47(6): 1049-1053. |
SHENG H, SONG D S, WANG C H, et a1., 2015. Comparison and transform of soil dissolved organic carbon measured by four methods[J]. Soil, 47(6): 1049-1053. | |
[27] | 史磊, 郭朝晖, 梁芳, 等, 2017. 水分管理和施用石灰对水稻镉吸收与运移的影响[J]. 农业工程学报, 33(24): 111-117. |
SHI L, GUO Z H, LIANG F, et al., 2017. Effects of lime and water management on uptake and translocation of cadmium in rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 33(24): 111-117. | |
[28] | 汤文光, 肖小平, 唐海明, 等, 2015. 长期不同耕作与秸秆还田对土壤养分库容及重金属Cd的影响[J]. 应用生态学报, 26(1): 168-176. |
TANG W G, XIAO X P, TANG H M, et al., 2015. Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration[J]. Chinese Journal of Applied Ecology, 26(1): 168-176. | |
[29] | 王梦梦, 何梦媛, 苏德纯, 2018. 稻田土壤性质与稻米镉含量的定量关系[J]. 环境科学, 39(4): 1918-1925. |
WANG M M, HE M Y, SU D C, 2018. Quantitative relationship between paddy soil properties and cadmium content in rice grains[J]. Environmental Science, 39(4): 1918-1925. | |
[30] | 汪鹏, 王静, 陈宏坪, 等, 2018. 我国稻田系统镉污染风险与阻控[J]. 农业环境科学学报, 37(7): 1409-1417. |
WANG P, WANG J, CHEN H P, et al., 2018. Cadmium risk and mitigation in paddy systems in China[J]. Journal of Agro-Environment Science, 37(7): 1409-1417. | |
[31] | 吴佳, 纪雄辉, 魏维, 等, 2018. 水分状况对水稻镉砷吸收转运的影响[J]. 农业环境科学学报, 37(7): 1427-1434. |
WU J, JI X H, WEI W, et al., 2018. Effect of water levels on cadmium and arsenic absorption and transportation in rice[J]. Journal of Agro-Environment Science, 37(7): 1427-1434. | |
[32] | 吴佳琪, 黄运湘, 尹力初, 等, 2020. 长期秸秆还田和地下水位对土壤镉积累及有效性的影响[J]. 农业环境科学学报, 39(9): 1957-1963. |
WU J Q, HUANG Y X, YIN L C, et al., 2020. Effect of long-term straw returning and groundwater level on cadmium accumulation and availability in soils[J]. Journal of Agro-Environment Science, 39(9): 1957-1963. | |
[33] | 熊婕, 朱奇宏, 黄道友, 等, 2019. 南方典型稻区稻米镉累积量的预测模型研究[J]. 农业环境科学学报, 38(1): 22-28. |
XIONG J, ZHU Q H, HUANG D Y, et al., 2019. Prediction model for the accumulation of cadmium in rice in typical paddy fields of south China[J]. Journal of Agro-Environment Science, 38(1): 22-28. | |
[34] | 颜世红, 吴春发, 胡友彪, 等, 2013. 典型土壤中有效态镉CaCl2提取条件优化研究[J]. 中国农学通报, 29(9): 99-104. |
YAN S H, WU C F, HU Y B, et al., 2013. Optimization of CaCl2 extraction of available cadmium in typical soils[J]. Chinese Agricultural Science Bulletin, 29(9): 99-104. | |
[35] | 易亚男, 尹力初, 张蕾, 2014. 不同地下水位和施肥管理对水稻土有机碳组分的影响[J]. 生态学杂志, 33(5): 1284-1289. |
YI Y N, YIN L C, ZHANG L, 2014. Effects of water table and fertilization on organic carbon fractions in paddy soil[J]. Chinese Journal of Ecology, 33(5): 1284-1289. | |
[36] | 张庆沛, 李冰, 王昌全, 等, 2016. 秸秆还田配施无机改良剂对稻田土壤镉赋存形态及生物有效性的影响[J]. 农业环境科学学报, 35(12): 2345-2352. |
ZHANG Q P, LI B, WANG C Q, et al., 2016. Effects of combined application of straw and inorganic amendments on cadmium speciation and bioavailability in paddy soil[J]. Journal of Agro-Environment Science, 35(12): 2345-2352. | |
[37] | 郑顺安, 刘代丽, 章明奎, 等, 2020. 长期秸秆还田对污染农田土壤与农产品重金属的影响[J]. 水土保持学报, 34(2): 354-359. |
ZHENG S A, LIU D L, ZHANG M K, et al., 2020. Effect of long-term straw returning on heavy metals of soil and agricultural products in the polluted farmland[J]. Journal of Soil and Water Conservation, 34(2): 354-359. | |
[38] | 中华人民共和国生态环境部. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. 北京: 中国环境科学出版, 2018. |
Ministry of Ecology and Environment of the People’s Republic of China. Soil environmental quality: Risk control standard for soil contamination of agricultural land: GB 15618—2018[S]. Beijing: China Environmental Science Press, 2018. | |
[39] | 朱丹妹, 刘岩, 张丽, 等, 2017. 不同类型土壤淹水对pH、Eh、Fe及有效态Cd含量的影响[J]. 农业环境科学学报, 36(8): 1508-1517. |
ZHU D M, LIU Y, ZHANG L, et al., 2017. Effects of pH, Eh, Fe, and flooded time on available-Cd content after flooding of different kinds of soil[J]. Journal of Agro-Environment Science, 36(8): 1508-1517. |
[1] | 黄英梅, 钟松雄, 朱忆雯, 王向琴, 李芳柏. 单质硫抑制水稻植株甲基汞累积的效应与机制[J]. 生态环境学报, 2023, 32(6): 1115-1122. |
[2] | 王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897. |
[3] | 杨凯, 杨靖睿, 曹培培, 吕春华, 孙文娟, 于凌飞, 邓希. CO2浓度升高下水稻株高、茎蘖与SPAD动态响应及其模拟[J]. 生态环境学报, 2023, 32(5): 933-942. |
[4] | 赵良侠, 高坤, 黄婷婷, 高也, 琚唐丹, 蒋秋阳, 金珩, 熊蕾, 汤在琳, 高灿红. 玉米籽粒高/低镉积累自交系不同生育期的镉累积特性研究[J]. 生态环境学报, 2023, 32(4): 766-775. |
[5] | 杨耀东, 陈玉梅, 涂鹏飞, 曾清如. 经济作物轮作模式下镉污染农田修复潜力[J]. 生态环境学报, 2023, 32(3): 627-634. |
[6] | 崔远远, 张征云, 刘鹏, 张运春, 张桥英. 镉与聚乙烯微塑料胁迫对小白菜根系的形态特征和分形维数的影响[J]. 生态环境学报, 2023, 32(1): 158-165. |
[7] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[8] | 李晓晖, 艾仙斌, 李亮, 王玺洋, 辛在军, 孙小艳. 新型改性稻壳生物炭材料对镉污染土壤钝化效果的研究[J]. 生态环境学报, 2022, 31(9): 1901-1908. |
[9] | 邓天乐, 谢立勇, 张凤哲, 赵洪亮, 蒋语童. CO2浓度升高条件下稗草与水稻生长空间竞争关系研究[J]. 生态环境学报, 2022, 31(8): 1566-1572. |
[10] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[11] | 房献宝, 张智钧, 赖阳晴, 叶脉, 刁增辉. 新型污泥生物炭对土壤重金属Cr和Cd的修复研究[J]. 生态环境学报, 2022, 31(8): 1647-1656. |
[12] | 董乐恒, 王旭刚, 陈曼佳, 王子豪, 孙丽蓉, 石兆勇, 吴琪琪. 光照和避光条件下石灰性水稻土Fe氧化还原与Cu活性关系研究[J]. 生态环境学报, 2022, 31(7): 1448-1455. |
[13] | 颜明娟, 陈贤玉, 曹榕彬, 林诚, 吴一群, 黄丁一, 吴海玲, 陈子聪. 福建典型白茶产区茶园土壤锰锌形态特征及其影响因素[J]. 生态环境学报, 2022, 31(5): 885-895. |
[14] | 徐梅华, 顾明华, 王骋臻, 雷静, 韦燕燕, 沈方科. 锰对土壤砷形态转化及水稻吸收砷的影响[J]. 生态环境学报, 2022, 31(4): 802-813. |
[15] | 赵超凡, 周丹丹, 孙建财, 钱坤鹏, 李芳芳. 生物炭中可溶性组分对其吸附镉的影响[J]. 生态环境学报, 2022, 31(4): 814-823. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||