生态环境学报 ›› 2022, Vol. 31 ›› Issue (4): 663-669.DOI: 10.16258/j.cnki.1674-5906.2022.04.003
杜雪(), 王海燕*(
), 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪
收稿日期:
2021-09-02
出版日期:
2022-04-18
发布日期:
2022-06-22
通讯作者:
*王海燕,女,教授,博士,主要从事土壤学、植物营养学研究。E-mail: haiyanwang72@aliyun.com作者简介:
杜雪(1996年生),女,硕士研究生,研究方向为土壤学。E-mail: duxue_my@126.com
基金资助:
DU Xue(), WANG Haiyan*(
), ZOU Jiahe, MENG Hai, ZHAO Han, CUI Xue, DONG Qiqi
Received:
2021-09-02
Online:
2022-04-18
Published:
2022-06-22
摘要:
森林土壤碳库在陆地生态系统中发挥着重要作用,对于维持全球碳平衡、调节全球碳循环和降低大气CO2浓度等具有重要意义。森林土壤有机碳(SOC)是森林土壤碳库中最重要的组成部分,是调节森林土壤肥力和生产力、养分有效性的关键因素,为林木和土壤微生物生长提供能量和营养物质。以吉林汪清林业局云冷杉阔叶混交林为研究对象,选择采伐强度分别为6.29%和11.22%,面积为1 hm2的两块样地,探究不同采伐强度和土壤深度下土壤有机碳含量和储量的分布特征,并分析土壤有机碳与土壤理化性质之间的相关性和灰色关联度,以期揭示长白山北坡森林土壤有机碳分布规律。结果表明:土壤有机碳在0—20 cm土层均出现积聚现象;随土层深度增加,土壤有机碳含量和储量逐渐降低,且其空间变异程度均为中等。在0—20 cm和20—40 cm土层中,土壤有机碳含量和碳储量均表现为样地Ⅱ(采伐强度为11.22%)>样地Ⅰ(采伐强度为6.29%)。两块样地土壤C/N均高于全球土壤C/N均值,且随土壤深度增加呈现上升趋势。土壤有机碳与全氮、全磷、有效磷呈显著或极显著正相关关系,与土壤密度呈极显著负相关(P<0.01)。不同土壤理化性质与土壤有机碳含量的关联程度均较高。该研究表明云冷杉阔叶混交林土壤有机碳具有表聚性,且受土壤全氮、全磷、有效磷含量和土壤密度等影响较大,不同样地及不同土壤深度之间有机碳含量和储量差异极显著。
中图分类号:
杜雪, 王海燕, 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 2022, 31(4): 663-669.
DU Xue, WANG Haiyan, ZOU Jiahe, MENG Hai, ZHAO Han, CUI Xue, DONG Qiqi. Distribution Characteristics and Influencing Factors of Soil Organic Carbon in Spruce-fir broad-leaved Mixed Forest on North Slope of Changbai Mountains[J]. Ecology and Environment, 2022, 31(4): 663-669.
样地 Plot | 海拔Elevation/ m | 坡度 Slope/ (°) | 坡向Slope aspect | 采伐强度 Thinning intensity/ % | 蓄积量 Volume/ (m3∙hm-2) | 林分密度 Stand density/ (plant∙hm-2) | 郁闭度 Canopy density | 平均树高 Average tree height/ m | 平均胸径 Mean DBH/ cm |
---|---|---|---|---|---|---|---|---|---|
Ⅰ | 732 | 5 | 东北 | 6.29 | 201.0 | 1167 | 0.75 | 11.4 | 12.3 |
Ⅱ | 769 | 5 | 东北 | 11.22 | 218.1 | 1301 | 0.65 | 13.6 | 13.7 |
表1 样地基本概况
Table 1 Characteristics of experimental plots
样地 Plot | 海拔Elevation/ m | 坡度 Slope/ (°) | 坡向Slope aspect | 采伐强度 Thinning intensity/ % | 蓄积量 Volume/ (m3∙hm-2) | 林分密度 Stand density/ (plant∙hm-2) | 郁闭度 Canopy density | 平均树高 Average tree height/ m | 平均胸径 Mean DBH/ cm |
---|---|---|---|---|---|---|---|---|---|
Ⅰ | 732 | 5 | 东北 | 6.29 | 201.0 | 1167 | 0.75 | 11.4 | 12.3 |
Ⅱ | 769 | 5 | 东北 | 11.22 | 218.1 | 1301 | 0.65 | 13.6 | 13.7 |
样地 Plot | 土层深度 Soil depth/ cm | 最小值 Min/ (g∙kg-1) | 最大值 Max/ (g∙kg-1) | 均值 Mean/ (g∙kg-1) | 标准差 Standard deviation/ (g∙kg-1) | 偏度 Skewness | 峰度 Kurtosis | 变异系数 CV/% |
---|---|---|---|---|---|---|---|---|
Ⅰ | 0‒20 | 37.28 | 134.99 | 70.53 | 21.00 | 0.82 | 0.16 | 29.78 |
20‒40 | 19.78 | 92.29 | 35.26 | 13.84 | 1.95 | 4.43 | 39.26 | |
Ⅱ | 0‒20 | 44.92 | 136.30 | 83.98 | 23.65 | 0.50 | -0.69 | 28.16 |
20‒40 | 18.76 | 75.96 | 45.06 | 13.27 | 0.60 | -0.43 | 29.46 |
表2 不同土层土壤有机碳含量统计特征
Table 2 Statistical characteristics of soil organic carbon content in different soil layers
样地 Plot | 土层深度 Soil depth/ cm | 最小值 Min/ (g∙kg-1) | 最大值 Max/ (g∙kg-1) | 均值 Mean/ (g∙kg-1) | 标准差 Standard deviation/ (g∙kg-1) | 偏度 Skewness | 峰度 Kurtosis | 变异系数 CV/% |
---|---|---|---|---|---|---|---|---|
Ⅰ | 0‒20 | 37.28 | 134.99 | 70.53 | 21.00 | 0.82 | 0.16 | 29.78 |
20‒40 | 19.78 | 92.29 | 35.26 | 13.84 | 1.95 | 4.43 | 39.26 | |
Ⅱ | 0‒20 | 44.92 | 136.30 | 83.98 | 23.65 | 0.50 | -0.69 | 28.16 |
20‒40 | 18.76 | 75.96 | 45.06 | 13.27 | 0.60 | -0.43 | 29.46 |
样地 Plot | 土层深度 Soil depth/cm | 最小值 Min/(t∙hm-2) | 最大值 Max/(t∙hm-2) | 均值 Mean/(t∙hm-2) | 标准差 Standard deviation/(t∙hm-2) | 偏度 Skewness | 峰度 Kurtosis | 变异系数 CV/% |
---|---|---|---|---|---|---|---|---|
Ⅰ | 0‒20 | 48.28 | 226.78 | 117.46 | 33.12 | 0.34 | 0.42 | 28.20 |
20‒40 | 37.47 | 236.53 | 75.76 | 29.25 | 2.58 | 10.04 | 38.61 | |
0‒40 | 103.99 | 345.73 | 193.21 | 47.92 | 0.75 | 0.91 | 24.80 | |
Ⅱ | 0‒20 | 71.84 | 291.85 | 136.97 | 46.28 | 0.90 | 0.86 | 33.79 |
20‒40 | 37.99 | 198.49 | 92.29 | 25.38 | 1.23 | 2.77 | 27.50 | |
0‒40 | 139.87 | 490.33 | 229.26 | 62.06 | 1.32 | 2.79 | 27.07 |
表3 不同土层土壤有机碳储量统计特征
Table 3 Statistical characteristics of soil organic carbon stock in different soil layers
样地 Plot | 土层深度 Soil depth/cm | 最小值 Min/(t∙hm-2) | 最大值 Max/(t∙hm-2) | 均值 Mean/(t∙hm-2) | 标准差 Standard deviation/(t∙hm-2) | 偏度 Skewness | 峰度 Kurtosis | 变异系数 CV/% |
---|---|---|---|---|---|---|---|---|
Ⅰ | 0‒20 | 48.28 | 226.78 | 117.46 | 33.12 | 0.34 | 0.42 | 28.20 |
20‒40 | 37.47 | 236.53 | 75.76 | 29.25 | 2.58 | 10.04 | 38.61 | |
0‒40 | 103.99 | 345.73 | 193.21 | 47.92 | 0.75 | 0.91 | 24.80 | |
Ⅱ | 0‒20 | 71.84 | 291.85 | 136.97 | 46.28 | 0.90 | 0.86 | 33.79 |
20‒40 | 37.99 | 198.49 | 92.29 | 25.38 | 1.23 | 2.77 | 27.50 | |
0‒40 | 139.87 | 490.33 | 229.26 | 62.06 | 1.32 | 2.79 | 27.07 |
样地 Plot | 土层深度 Soil depth/cm | 全氮 Total nitrogen | 碳氮比 C/N | |||||
---|---|---|---|---|---|---|---|---|
均值 Mean/(g∙kg-1) | 标准差 Standard deviation/(g∙kg-1) | 变异系数 CV/% | 均值 Mean | 标准差 Standard deviation | 变异系数 CV/% | |||
Ⅰ | 0‒20 | 4.39 | 2.07 | 47.13 | 17.44 | 4.58 | 26.25 | |
20‒40 | 1.70 | 0.92 | 54.01 | 24.74 | 12.76 | 51.59 | ||
Ⅱ | 0‒20 | 4.51 | 1.41 | 31.27 | 19.23 | 4.28 | 22.24 | |
20‒40 | 2.33 | 0.99 | 42.60 | 22.58 | 18.86 | 83.50 |
表4 不同土层土壤全氮及碳氮比统计特征
Table 4 Statistical characteristics of soil total nitrogen and C/N in different soil layers
样地 Plot | 土层深度 Soil depth/cm | 全氮 Total nitrogen | 碳氮比 C/N | |||||
---|---|---|---|---|---|---|---|---|
均值 Mean/(g∙kg-1) | 标准差 Standard deviation/(g∙kg-1) | 变异系数 CV/% | 均值 Mean | 标准差 Standard deviation | 变异系数 CV/% | |||
Ⅰ | 0‒20 | 4.39 | 2.07 | 47.13 | 17.44 | 4.58 | 26.25 | |
20‒40 | 1.70 | 0.92 | 54.01 | 24.74 | 12.76 | 51.59 | ||
Ⅱ | 0‒20 | 4.51 | 1.41 | 31.27 | 19.23 | 4.28 | 22.24 | |
20‒40 | 2.33 | 0.99 | 42.60 | 22.58 | 18.86 | 83.50 |
配对组 Paired group | 指标 Indicator | 均值±标准差 Mean±Standard deviation | 配对差值 均值±标准差 Paired difference mean±standard deviation | t | P | |
---|---|---|---|---|---|---|
配对1 Group 1 | 配对2 Group 2 | |||||
样地Ⅰ与样地Ⅱ Plot I and Plot II | SOC含量 SOC content | 52.89±25.04 | 64.52±27.32 | -11.62±25.31 | -6.494 | 0.000** |
SOC储量 SOC stock | 96.61±37.53 | 114.63±43.45 | -18.03±48.17 | -5.292 | 0.000** | |
碳氮比 C/N | 21.09±10.24 | 20.90±13.74 | 0.19±16.67 | 0.160 | 0.873 | |
0—20 cm与20—40 cm 0-20 cm and 20-40 cm | SOC含量 SOC content | 77.25±23.30 | 40.16±14.39 | 37.10±17.85 | 29.396 | 0.000** |
SOC储量 SOC stock | 127.22±41.32 | 84.02±28.54 | 43.19±40.73 | 14.998 | 0.000** | |
碳氮比 C/N | 18.34±4.51 | 23.66±16.10 | -5.32±17.02 | -4.423 | 0.000** |
表5 土壤有机碳(SOC)含量、储量及碳氮比成对样本t检验
Table 5 Soil organic carbon (SOC) content, stock and C/N ratio paired samples t test
配对组 Paired group | 指标 Indicator | 均值±标准差 Mean±Standard deviation | 配对差值 均值±标准差 Paired difference mean±standard deviation | t | P | |
---|---|---|---|---|---|---|
配对1 Group 1 | 配对2 Group 2 | |||||
样地Ⅰ与样地Ⅱ Plot I and Plot II | SOC含量 SOC content | 52.89±25.04 | 64.52±27.32 | -11.62±25.31 | -6.494 | 0.000** |
SOC储量 SOC stock | 96.61±37.53 | 114.63±43.45 | -18.03±48.17 | -5.292 | 0.000** | |
碳氮比 C/N | 21.09±10.24 | 20.90±13.74 | 0.19±16.67 | 0.160 | 0.873 | |
0—20 cm与20—40 cm 0-20 cm and 20-40 cm | SOC含量 SOC content | 77.25±23.30 | 40.16±14.39 | 37.10±17.85 | 29.396 | 0.000** |
SOC储量 SOC stock | 127.22±41.32 | 84.02±28.54 | 43.19±40.73 | 14.998 | 0.000** | |
碳氮比 C/N | 18.34±4.51 | 23.66±16.10 | -5.32±17.02 | -4.423 | 0.000** |
样地 Plot | 土层深度 Soil depth/ cm | 土壤理化性质 Soil physico-chemical property | |||||
---|---|---|---|---|---|---|---|
pH值 | TN | TP | AP | AK | 土壤密度 Soil bulk density | ||
Ⅰ | 0-20 | 0.151 | 0.702** | 0.600** | 0.256* | 0.108 | -0.504** |
20-40 | -0.042 | 0.757** | 0.559** | 0.310** | 0.171 | -0.291** | |
Ⅱ | 0-20 | 0.174 | 0.880** | 0.522** | 0.388** | 0.065 | -0.249* |
20-40 | 0.085 | 0.728** | 0.630** | 0.452** | 0.013 | -0.500** |
表6 不同土层土壤有机碳与土壤理化性质相关分析
Table 6 Correlation analysis between soil organic carbon and soil physico-chemical properties in different soil layers
样地 Plot | 土层深度 Soil depth/ cm | 土壤理化性质 Soil physico-chemical property | |||||
---|---|---|---|---|---|---|---|
pH值 | TN | TP | AP | AK | 土壤密度 Soil bulk density | ||
Ⅰ | 0-20 | 0.151 | 0.702** | 0.600** | 0.256* | 0.108 | -0.504** |
20-40 | -0.042 | 0.757** | 0.559** | 0.310** | 0.171 | -0.291** | |
Ⅱ | 0-20 | 0.174 | 0.880** | 0.522** | 0.388** | 0.065 | -0.249* |
20-40 | 0.085 | 0.728** | 0.630** | 0.452** | 0.013 | -0.500** |
样地 Plot | 土层深度 Soil depth/cm | pH值 | TN | TP | AP | AK | 土壤密度 Soil bulk density | |
---|---|---|---|---|---|---|---|---|
Ⅰ | 0-20 | 关联度 Correlation degree | 0.7400 | 0.7238 | 0.7401 | 0.7600 | 0.6192 | 0.6950 |
排序 Rank | 3 | 4 | 2 | 1 | 6 | 5 | ||
20-40 | 关联度 Correlation degree | 0.8142 | 0.7973 | 0.8239 | 0.8113 | 0.7644 | 0.7352 | |
排序 Rank | 2 | 4 | 1 | 3 | 5 | 6 | ||
Ⅱ | 0-20 | 关联度 Correlation degree | 0.7741 | 0.8046 | 0.6423 | 0.7698 | 0.7676 | 0.7690 |
排序 Rank | 2 | 1 | 6 | 3 | 5 | 4 | ||
20-40 | 关联度 Correlation degree | 0.7618 | 0.7771 | 0.6710 | 0.7209 | 0.7191 | 0.7487 | |
排序 Rank | 2 | 1 | 6 | 4 | 5 | 3 |
表7 不同土层土壤理化性质与土壤有机碳的关联度
Table 7 Correlation between soil physico-chemical properties and soil organic carbon in different soil layers
样地 Plot | 土层深度 Soil depth/cm | pH值 | TN | TP | AP | AK | 土壤密度 Soil bulk density | |
---|---|---|---|---|---|---|---|---|
Ⅰ | 0-20 | 关联度 Correlation degree | 0.7400 | 0.7238 | 0.7401 | 0.7600 | 0.6192 | 0.6950 |
排序 Rank | 3 | 4 | 2 | 1 | 6 | 5 | ||
20-40 | 关联度 Correlation degree | 0.8142 | 0.7973 | 0.8239 | 0.8113 | 0.7644 | 0.7352 | |
排序 Rank | 2 | 4 | 1 | 3 | 5 | 6 | ||
Ⅱ | 0-20 | 关联度 Correlation degree | 0.7741 | 0.8046 | 0.6423 | 0.7698 | 0.7676 | 0.7690 |
排序 Rank | 2 | 1 | 6 | 3 | 5 | 4 | ||
20-40 | 关联度 Correlation degree | 0.7618 | 0.7771 | 0.6710 | 0.7209 | 0.7191 | 0.7487 | |
排序 Rank | 2 | 1 | 6 | 4 | 5 | 3 |
[1] |
BAI Y X, ZHOU Y C, 2020. The main factors controlling spatial variability of soil organic carbon in a small karst watershed, Guizhou Province, China[J]. Geoderma, DOI: 10.1016/j.geoderma.2019.113938.
DOI |
[2] |
DONG J Q, ZHOU K N, JIANG P K, et al., 2021. Revealing horizontal and vertical variation of soil organic carbon, soil total nitrogen and C꞉N ratio in subtropical forests of southeastern China[J]. Journal of Environmental Management, DOI: 10.1016/j.jenvman.2021.112483.
DOI |
[3] |
ESWARAN H, VEN DEN B, REICH P, 1993. Organic carbon in soils of the World[J]. Soil Science Society of America Journal, 57(1): 192-194.
DOI URL |
[4] |
GHEBLEH G M, RUHOLLAH T, ASGHAR J A, et al., 2021. Using environmental variables and Fourier Transform Infrared Spectroscopy to predict soil organic carbon[J]. Catena, DOI: 10.1016/J.CATENA. 2021.105280.
DOI |
[5] |
HOU G L, DELANG C O, LU X X, et al., 2020. A meta-analysis of changes in soil organic carbon stocks after afforestation with deciduous broadleaved, sempervirent broadleaved, and conifer tree species[J]. Annals of Forest Science, 77(4): 92.
DOI URL |
[6] |
LU X K, MAO Q G, WANG Z H, et al., 2021. Long-term nitrogen addition decreases soil carbon mineralization in an N-rich primary tropical forest[J]. Forests, 12(6): 734.
DOI URL |
[7] |
QIN YY, FENG Q, HOLDEN NM, et al., 2016. Variation in soil organic carbon by slope aspect in the middle of the Qilian Mountains in the upper Heihe River Basin, China[J]. Catena, 147: 308-314.
DOI URL |
[8] |
YU H Y, ZHA T G, ZHANG X X, et al., 2020. Spatial distribution of soil organic carbon may be predominantly regulated by topography in a small revegetated watershed[J]. Catena, DOI: 10.1016/j.cnki.2020.104459.
DOI |
[9] |
ZHANG X, LI X, JI X D, et al., 2021. Elevation and total nitrogen are the critical factors that control the spatial distribution of soil organic carbon content in the shrubland on the Bashang Plateau, China[J]. Catena, DOI: 10.1016/j.cnki.2021.105415.
DOI |
[10] |
ZHOU W X, HAN G L, LIU M, et al., 2020. Determining the distribution and interaction of soil organic carbon, nitrogen, pH and texture in soil profiles: A case study in the Lancangjiang River Basin, Southwest China[J]. Forests, DOI: 10.3390/f11050532.
DOI |
[11] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 14-111. |
BAO S D, 2000. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press: 14-111. | |
[12] |
陈良帅, 黄新亚, 薛丹, 等, 2021. 川西高原泥炭沼泽土壤有机碳分布特征及其影响因素[EB/OL]. 应用与环境生物学报, DOI: 10.19675/j.cnki.2021.01035.
DOI |
CHEN L S, HUANG X Y, XUE D, et al., 2021. Distribution characteristics and influencing factors of soil organic carbon in peat swamp of Western Sichuan Plateau[EB/OL]. Chinese Journal of Applied & Environmental Biology, DOI: 10.19675/j.cnki.2021.01035.
DOI |
|
[13] | 陈子豪, 焦泽彬, 刘谣, 等, 2021. 凋落物季节性输入对川西亚高山森林土壤活性有机碳的影响[J]. 应用与环境生物学报, 27(3): 594-600. |
CHEN Z H, JIAO Z B, LIU Y, et al., 2021. Effects of seasonal litter input on soil active organic carbon in Subalpine Forests in Western Sichuan[J]. Chinese Journal of Applied & Environmental Biology, 27(3): 594-600. | |
[14] | 杜雪, 王海燕, 耿琦, 等, 2021. 云冷杉针阔混交林枯落物持水性能[J]. 水土保持学报, 35(2): 361-368. |
DU X, WANG H Y, GENG Q, et al., 2021. Water holding capacity of litter in spruce-fir coniferous and broad-leaved mixed forest[J]. Journal of Soil and Water Conservation, 35(2): 361-368. | |
[15] | 方华军, 耿静, 程淑兰, 等, 2019. 氮磷富集对森林土壤碳截存的影响研究进展[J]. 土壤学报, 56(1): 1-11. |
FANG H J, GENG J, CHENG S L, et al., 2019. Research progress on the effect of nitrogen and phosphorus enrichment on forest soil carbon sequestration[J]. Acta Pedologica Sinica, 56(1): 1-11. | |
[16] | 何姗, 刘娟, 姜培坤, 等, 2019. 经营管理对森林土壤有机碳库影响的研究进展[J]. 浙江农林大学学报, 36(4): 818-827. |
HE S, LIU J, JIANG P K, et al., 2019. Research progress on the impact of management on forest soil organic carbon pool[J]. Journal of Zhejiang Agriculture and Forestry University, 36(4): 818-827. | |
[17] | 黄麟, 2021. 森林管理的生态效应研究进展[J]. 生态学报, 41(10): 4226-4239. |
HUANG L, 2021. Research progress on ecological effects of forest management[J]. Acta Ecologica Sinica, 41(10): 4226-4239. | |
[18] | 刘波, 陈林, 庞丹波, 等, 2021. 六盘山华北落叶松土壤有机碳沿海拔梯度的分布规律及其影响因素[J]. 生态学报, 41(17): 6773-6785. |
LIU B, CHEN L, PANG D B, et al., 2021. Distribution law and influencing factors of soil organic carbon along altitude gradient of North China larch in Liupanshan[J]. Acta Ecologica Sinica, 41(17): 6773-6785. | |
[19] | 彭晓, 方晰, 喻林华, 等, 2016. 中亚热带4种森林土壤碳、氮、磷化学计量特征[J]. 中南林业科技大学学报, 36(11): 65-72. |
PENG X, FANG X, YU L H, et al., 2016. Stoichiometric characteristics of carbon, nitrogen and phosphorus in four forest soils in the middle subtropical zone[J]. Journal of Central South University of Forestry & Technology, 36(11): 65-72. | |
[20] | 秦倩倩, 王海燕, 李翔, 等, 2019. 东北天然针阔混交林凋落物磷素空间异质性及其影响因素[J]. 生态学报, 39(12): 4519-4529. |
QIN Q Q, WANG H Y, LI X, et al., 2019. Spatial heterogeneity of phosphorus in litter of natural coniferous and broad-leaved mixed forest in Northeast China and its influencing factors[J]. Acta Ecologica Sinica, 39(12): 4519-4529. | |
[21] | 宋彦彦, 张言, 管清成, 等, 2019. 长白山云冷杉针阔混交林土壤有机碳与土壤理化性质的相关性[J]. 东北林业大学学报, 47(10): 70-74. |
SONG Y Y, ZHANG Y, GUAN Q C, et al., 2019. Soil organic carbon content and its relations with soil physicochemical properties of spruce-fir mixed stands in Changbai Mountains[J]. Journal of Northeast Forestry University, 47(10): 70-74. | |
[22] | 孙志虎, 王秀琴, 陈祥伟, 2016. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 38(12): 1-13. |
SUN Z H, WANG X Q, CHEN X W, 2016. Effects of different tending thinning intensities on carbon storage in larch plantation ecosystem[J]. Journal of Beijing Forestry University, 38(12): 1-13. | |
[23] | 唐敏, 2019. 中国土壤有机碳时空分布及影响因素研究进展[J]. 河南工程学院学报 (自然科学版), 31(4): 42-49, 82. |
TANG M, 2019. Research progress on temporal and spatial distribution and influencing factors of soil organic carbon in China[J]. Journal of Henan Institute of Engineering (Natural Science Edition), 31(4): 42-49, 82. | |
[24] | 陶晓, 俞元春, 张云彬, 等, 2020. 城市森林土壤碳氮磷含量及其生态化学计量特征[J]. 生态环境学报, 29(1): 88-96. |
TAO X, YU Y C, ZHANG Y B, et al., 2020. Carbon, nitrogen and phosphorus contents and their ecological stoichiometry in urban forest soil[J]. Ecology and Environmental Sciences, 29(1): 88-96. | |
[25] | 田耀武, 贺春玲, 田华禹, 等, 2017. 森林土壤有机碳的空间累积机制与计量[M]. 北京: 中国林业出版社: 4-5. |
TIAN Y W, HE C L, TIAN H Y, et al., 2017. Spatial accumulation mechanism and measurement of forest soil organic carbon[M]. Beijing: China Forestry Press: 4-5. | |
[26] | 王冰, 周扬, 张秋良, 2020. 兴安落叶松林土壤有机碳特征及与其他土壤理化性质关系研究[J]. 生态与农村环境学报, 37(9): 1200-1208. |
WANG B, ZHOU Y, ZHANG Q L, 2020. Characteristics of soil organic carbon and its relationship with other soil physical and chemical properties in Xing’an larch forest[J]. Journal of Ecology and Rural Environment, 37(9): 1200-1208. | |
[27] | 王会利, 王绍能, 宋贤冲, 等, 2018. 广西猫儿山水青冈林土壤剖面有机碳垂直分布特征及影响因素[J]. 中南林业科技大学学报, 38(11): 89-94, 122. |
WANG H L, WANG S N, SONG X C, et al., 2018. Vertical distribution characteristics and influencing factors of organic carbon in soil profile of Cyclobalanopsis glauca forest in Maoershan, Guangxi[J]. Journal of Central South University of Forestry & Technology, 38(11): 89-94, 122. | |
[28] | 王亚东, 魏江生, 周梅, 等, 2020. 大兴安岭南段杨桦次生林土壤化学计量特征[J]. 土壤通报, 51(5): 1056-1064. |
WANG Y D, WEI J S, ZHOU M, et al., 2020. Soil stoichiometric characteristics of poplar-birch secondary forest in the southern section of Daxing’anling[J]. Chinese Journal of Soil Science, 51(5): 1056-1064. | |
[29] | 吴丽芳, 王妍, 刘云根, 等, 2021. 岩溶石漠化区人工植被类型对土壤团聚体生态化学计量特征的影响[J]. 东北林业大学学报, 49(6): 63-69. |
WU L F, WANG Y, LIU Y G, et al., 2021. Effects of artificial vegetation types on eco-stoichiometric characteristics of soil aggregates in Karst Rocky Desertification Area[J]. Journal of Northeast Forestry University, 49(6): 63-69. | |
[30] | 张厚喜, 林丛, 程浩, 等, 2019. 武夷山不同海拔梯度毛竹林土壤有机碳特征及影响因素[J]. 土壤, 51(4): 821-828. |
ZHANG H X, LIN C, CHENG H, et al., 2019. Characteristics and influencing factors of soil organic carbon in Phyllostachys pubescens forests with different altitude gradients in Wuyi Mountain[J]. Soil, 51(4): 821-828. | |
[31] | 张玲, 张东来, 毛子军, 2017. 中国温带阔叶红松林不同演替系列土壤有机碳矿化特征[J]. 生态学报, 37(19): 6370-6378. |
ZHANG L, ZHANG D L, MAO Z J, 2017. Mineralization characteristics of soil organic carbon in different succession series of temperate broad-leaved Korean pine forest in China[J]. Acta Ecologica Sinica, 37(19): 6370-6378. | |
[32] | 张莎莎, 李爱琴, 王会荣, 等, 2020. 不同海拔杉木人工林土壤碳氮磷生态化学计量特征[J]. 生态环境学报, 29(1): 97-104. |
ZHANG S S, LI A Q, WANG H R, et al., 2020. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in Cunninghamia lanceolata plantation across an elevation gradient[J]. Ecology and Environmental Sciences, 29(1): 97-104. | |
[33] | 张智勇, 王瑜, 艾宁, 等, 2020. 陕北黄土区不同植被类型土壤有机碳分布特征及其影响因素[J]. 北京林业大学学报, 42(11): 56-63. |
ZHANG Z Y, WANG Y, AI N, et al., 2020. Distribution characteristics and influencing factors of soil organic carbon of different vegetation types in loess area of Northern Shaanxi[J]. Journal of Beijing Forestry University, 42(11): 56-63. | |
[34] | 祖元刚, 李冉, 王文杰, 等, 2011. 我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J]. 生态学报, 31(18): 5207-5216. |
ZU Y G, LI R, WANG W J, et al., 2011. Correlation between soil organic carbon, inorganic carbon content and soil physical and chemical properties in Northeast China[J]. Acta Ecologica Sinica, 31(18): 5207-5216. |
[1] | 王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897. |
[2] | 李建辉, 党争, 陈琳. 黄河几字弯都市圈PM2.5时空特征及影响因素分析[J]. 生态环境学报, 2023, 32(4): 697-705. |
[3] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[4] | 何艳虎, 龚镇杰, 吴海彬, 蔡宴朋, 杨志峰, 陈晓宏. 粤港澳大湾区城市生态效率时空演变及影响因素[J]. 生态环境学报, 2023, 32(3): 469-480. |
[5] | 郝金虎, 韦玮, 李胜男, 马牧源, 李肖夏, 杨洪国, 姜琦宇, 柴沛东. 基于GEE平台的京津冀长时序水体时空格局及其影响因素[J]. 生态环境学报, 2023, 32(3): 556-566. |
[6] | 王成武, 罗俊杰, 唐鸿湖. 基于InVEST模型的太行山沿线地区生态系统碳储量时空分异驱动力分析[J]. 生态环境学报, 2023, 32(2): 215-225. |
[7] | 陈治中, 昝梅, 杨雪峰, 董煜. 新疆森林植被碳储量预测研究[J]. 生态环境学报, 2023, 32(2): 226-234. |
[8] | 张莉, 李铖, 谭皓泽, 韦家怡, 程炯, 彭桂香. 广州典型城市林地对大气颗粒物的削减效应及影响因素[J]. 生态环境学报, 2023, 32(2): 341-350. |
[9] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[10] | 袁林江, 李梦博, 冷钢, 钟冰冰, 夏大朋, 王景华. 厌氧环境下硫酸盐还原与氨氧化的协同作用[J]. 生态环境学报, 2023, 32(1): 207-214. |
[11] | 刘希林, 卓瑞娜. 崩岗崩积体坡面初始产流时间影响因素及其临界阈值[J]. 生态环境学报, 2023, 32(1): 36-46. |
[12] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[13] | 陈科屹, 王建军, 何友均, 张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估[J]. 生态环境学报, 2022, 31(9): 1725-1734. |
[14] | 吴胜义, 王飞, 徐干君, 马浩, 党禹杰, 吴菲. 川西北高山峡谷区森林碳储量及空间分布研究--以四川洛须自然保护区为例[J]. 生态环境学报, 2022, 31(9): 1735-1744. |
[15] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||