生态环境学报 ›› 2022, Vol. 31 ›› Issue (1): 9-16.DOI: 10.16258/j.cnki.1674-5906.2022.01.002
收稿日期:
2021-04-30
出版日期:
2022-01-18
发布日期:
2022-03-10
通讯作者:
*陈永金(1968年生),男,副教授,博士,主要研究方向为自然地理与生态环境。E-mail: chenyongjin@lcu.edu.cn作者简介:
王浩(1984年生),男(满族),讲师,博士,主要研究方向为区域环境与生态。E-mail: wanghao@lcu.edu.cn
基金资助:
WANG Hao(), CHEN Yongjin*(
), LIU Jiazhen, WAN Bo, ZHANG Li
Received:
2021-04-30
Online:
2022-01-18
Published:
2022-03-10
摘要:
研究河口湿地不同类型柽柳灌丛土壤有机碳的空间分布规律,探讨植被演替对土壤有机碳的影响,有助于了解河口湿地生态保护及土壤改良的科学规律。以黄河三角洲新生湿地为研究对象,选择柽柳-碱蓬(Tamarix-Suaeda)、柽柳(Tamarix chinensis)和柽柳-禾草(Tamarix-Gramineae)3种灌丛群落类型,分析各群落土壤有机碳的空间分布特征,研究柽柳灌丛群落演替对有机碳空间分布的影响,探讨土壤有机碳与盐分、水分的关系。研究结果表明,(1)3种柽柳灌丛土壤有机碳的浓度随演替进程而增加,以柽柳-禾草群落最高,柽柳-碱蓬群落最低;且有机碳浓度随土层深度增加而降低,均呈现出与灌丛中心距离的增加而降低的规律,并以0—10 cm土层表现最为明显。(2)3种柽柳灌丛冠幅下土壤有机碳均有明显的聚集性,柽柳-禾草与柽柳灌丛最大富集系数出现在0—10 cm土层,分别为1.93和1.48;而柽柳-碱蓬灌丛最大富集系数在30—40 cm土层,为1.23。(3)柽柳-禾草灌丛与柽柳灌丛土壤有机碳表现出一定的冠幅边缘聚集性,最大富集系数为0—10 cm土层的1.24和1.22;柽柳-碱蓬群落冠缘有机碳富集性不明显,最大富集系数为1.04。(4)3种柽柳灌丛土壤电导率均呈现出与灌丛中心距离的增加而升高的趋势,而土壤水分表现出与灌丛中心距离的增加而降低的趋势,且随演替进程土壤电导率有降低的趋势,而含水率呈升高的趋势,但3种柽柳灌丛pH差异并不显著;3种柽柳灌丛土壤有机碳与电导率有显著的负相关性,与土壤含水率有显著的正相关性,而与pH没有显著的相关关系。
中图分类号:
王浩, 陈永金, 刘加珍, 万波, 张丽. 黄河三角洲新生湿地3种柽柳灌丛对土壤有机碳空间分布的影响研究[J]. 生态环境学报, 2022, 31(1): 9-16.
WANG Hao, CHEN Yongjin, LIU Jiazhen, WAN Bo, ZHANG Li. Effects of Three Types Tamarix Shrubs Communities on Spatial Distribution of Soil Organic Carbon in the New Wetland of the Yellow River Delta[J]. Ecology and Environment, 2022, 31(1): 9-16.
图2 3种柽柳灌丛距中心不同距离土壤有机碳的变化 n=12,不同大写字母表示距离灌丛中心不同距离之间的差异达到显著水平(P<0.05),不同小写字母表示不同土层之间的差异达到显著水平(P<0.05)
Figure 2 Changes in soil organic carbon at different depths around the individual of Tamarix n=12, Different capital letters indicate significant differences among the distance from the center of the shrub (P<0.05). Different small letters indicate significant differences among the soil depth (P<0.05)
图3 不同生境土壤有机碳的富集系数 n=12,不同大写字母表示不同类型柽柳灌丛的差异达到显著水平(P<0.05),不同小写字母表示不同土层之间的差异达到显著水平(P<0.05)
Figure 3 Concentration factor of soil organic carbon in different habitat n=12, Different capital letters indicate significant differences among three types Tamarix shrubs communities (P<0.05). Different small letters indicate significant differences among the soil depth (P<0.05)
图4 土壤理化性质 n=12,不同大写字母表示不同类型柽柳灌丛的差异达到显著水平(P<0.05),不同小写字母表示距离灌丛中心不同距离之间的差异达到显著水平(P<0.05)
Figure 4 Physical and chemical properties of soil n=12, Different capital letters indicate significant differences among three types Tamarix shrubs communities (P<0.05). Different small letters indicate significant differences among the distance from the center of the shrub (P<0.05)
指标 Index | 土壤有机碳 Soil organic carbon | 电导率 Electric conductivity | pH | 含水率 Soil moisture |
---|---|---|---|---|
土壤有机碳 Soil organic carbon | 1 | |||
电导率 Electric conductivity | -0.150** | 1 | ||
pH | -0.005 | -0.200** | 1 | |
含水率 Soil moisture | 0.145** | -0.206** | 0.022 | 1 |
表1 土壤有机碳与理化性质之间的关系
Table 1 Correlations between SOC and soil properties
指标 Index | 土壤有机碳 Soil organic carbon | 电导率 Electric conductivity | pH | 含水率 Soil moisture |
---|---|---|---|---|
土壤有机碳 Soil organic carbon | 1 | |||
电导率 Electric conductivity | -0.150** | 1 | ||
pH | -0.005 | -0.200** | 1 | |
含水率 Soil moisture | 0.145** | -0.206** | 0.022 | 1 |
[1] | DONG X W, ZHANG X K, BAO X L, et al., 2009. Spatial distribution of soil nutrients after the establishment of sand-fixing shrubs on sand dune[J]. Plant Soil & Environment, 55(7): 288-294. |
[2] |
FENG J G, LIANG J F, LI Q W, et al., 2021. Effect of Hydrological Connectivity on Soil Carbon Storage in the Yellow River Delta Wetlands of China[J]. Chinese Geographical Science, 31(2): 197-208.
DOI URL |
[3] |
GUO Y, WANG X J, LI X L, et al., 2021. Impacts of land use and salinization on soil inorganic and organic carbon in the middle-lower Yellow River Delta[J]. Pedosphere, 31(6): 839-848.
DOI URL |
[4] |
LI J, ZHAO C, ZHU H, et al., 2007. Effect of plant species on shrub fertile island at an oasis-desert ecotone in the South Junggar Basin, China[J]. Journal of Arid Environments, 71(4): 350-361.
DOI URL |
[5] |
LI S Y, CHEN W M, LI Z B, et al., 2021. Fertile islands lead to more conspicuous spatial heterogeneity of bacteria than soil physicochemical properties in a desert ecosystem[J]. Catena, DOI: 10.1016/j.catena.2021.105526.
DOI |
[6] |
LI X G, SHI X M, WANG D J, et al., 2012. Effect of alkalized magnesic salinity on soil respiration changes with substrate availability and incubation time[J]. Biology and fertility of soil, 48(5): 597-602.
DOI URL |
[7] |
LI Y, WU H, WANG J D, et al., 2019. Plant biomass and soil organic carbon are main factors influencing dry-season ecosystem carbon rates in the coastal zone of the Yellow River Delta[J]. PLoS One, DOI: 10.1371/journal.pone.0210768.
DOI |
[8] |
RONG Q Q, LIU J T, CAI Y P, et al., 2016. Fertile island effects of Tamarix chinensis Lour. on soil N and P stoichiometry in the coastal wetland of Laizhou Bay, China[J]. Journal of Soils and Sediments, 16(3): 864-877.
DOI URL |
[9] |
SUN J K, CHI Y, FU Z Y, et al., 2020. Spatiotemporal Variation of Plant Diversity Under a Unique Estuarine Wetland Gradient System in the Yellow River Delta, China[J]. Chinese Geographical Science, 30(2): 217-232.
DOI URL |
[10] |
TAO X, LIU X H, TAO S, et al., 2011. The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China[J]. Ecological Modelling, 222(2): 241-252.
DOI URL |
[11] |
WANG H F, CAI Y, YANG Q, et al., 2019. Factors that alter the relative importance of abiotic and biotic drivers on the fertile island in a desert-oasis ecotone[J]. Science of The Total Environment, DOI: 10.1016/j.scitotenv.2019.134096.
DOI |
[12] | XIE L P, WANG B D, XIN M, et al., 2019. Characteristics of Vegetation Carbon, Nitrogen, and C/N Ratio in a Tamarix chinensis Coastal Wetland of China[J]. CLEAN-Soil Air Water, 47(9): 40-52. |
[13] |
YIN C H, FENG G, ZHANG F S, et al., 2010. Enrichment of soil fertility and salinity by tamarisk in saline soils on the northern edge of the Taklamakan Desert[J]. Agricultural Water Management, 97(12): 1978-1986.
DOI URL |
[14] |
YANG H J, XIA J B, CUI Q, et al., 2021. Effects of different Tamarix chinensis-grass patterns on the soil quality of coastal saline soil in the Yellow River Delta, China[J]. Science of The Total Environment, DOI: 10.1016/j.scitotenv.2021.145501.
DOI |
[15] |
ZHANG G S, WANG R Q, SONG B M, 2007. Plant community succession in modern Yellow River Delta, China[J]. Journal of Zhejiang University Science B, 8(8): 540-548.
DOI URL |
[16] |
ZHAO Q, BAI J H, LIU Q, et al., 2016. Spatial and Seasonal Variations of Soil Carbon and Nitrogen Content and Stock in a Tidal Salt Marsh with Tamarix chinensis, China[J]. Wetlands, 36: 145-152.
DOI URL |
[17] |
ZHANG X L, ZHANG Z H, WANG W, et al., 2021. Vegetation successions of coastal wetlands in southern Laizhou Bay, Bohai Sea, northern China, influenced by the changes in relative surface elevation and soil salinity[J]. Journal of Environmental Management, DOI: 10.1016/j.jenvman.2021.112964.
DOI |
[18] |
ZHAO Y Y, FANG Y, 2005. Ecological Functions of Different Shrublands in the Chenier Coastal Wetlands, China[J]. Journal of Coastal Research, 80: 24-29.
DOI URL |
[19] |
ZHOU D Y, GUO W H, LI M Y, et al., 2020. No fertile island effects or salt island effects of Tamarix chinensis on understory herbaceous communities were found in the coastal area of Laizhou Bay, China[J]. Wetlands, 40: 2679-2689.
DOI URL |
[20] | 白世红, 马风云, 侯栋, 等, 2010. 黄河三角洲植被演替过程种群生态位变化研究[J]. 中国生态农业学报, 18(3): 581-587. |
BAI S H, MA F Y, HOU D, et al., 2010. Change in population niche during vegetation community succession in the Yellow River Delta[J]. Chinese Journal of Eco-Agriculture, 18(3): 581-587.
DOI URL |
|
[21] | 初小静, 韩广轩, 朱书玉, 等, 2016. 环境和生物因子对黄河三角洲滨海湿地净生态系统CO2交换的影响[J]. 应用生态学报, 27(7): 2091-2100. |
CHU X J, HAN G X, ZHU S Y, et al., 2016. Effect of environmental and biotic factors on net ecosystem CO2 exchange over a coastal wetland in the Yellow River Delta[J]. Chinese Journal of Applied Ecology, 27(7): 2091-2100. | |
[22] | 李从娟, 雷加强, 徐新文, 等, 2012. 树干径流对梭梭肥岛和盐岛效应的作用机制[J]. 生态学报, 32(15): 4819-4826. |
LI C J, LEI J Q, XU X W, et al., 2012. The effects of stemflow on the formation of ‘Fertile Island’ and ‘Salt Island’ for Haloxylon ammodendron Bge[J]. Acta Ecologica Sinica, 32(15): 4819-4826.
DOI URL |
|
[23] | 李君, 赵成义, 朱宏, 等, 2007. 柽柳 (Tamarix spp.) 和梭梭 (Haloxylon ammodendron) 的“肥岛”效应[J]. 生态学报, 27(12): 5138-5147. |
LI J, ZHAO C Y, ZHU H, et al., 2007. Species effect of Tamarix spp. and Haloxylon ammodendron on shrub ‘fertile island’[J]. Acta Ecologica Sinica, 27(12): 5138-5147. | |
[24] | 李连伟, 刘展, 白永良, 等, 2018. 基于AHP-CVI技术的黄河三角洲海岸带环境脆弱性评价[J]. 生态环境学报, 27(2): 297-303. |
LI L W, LIU Z, BAI Y L, et al., 2018. Environmental vulnerability evaluation of Yellow River Delta coast based on AHP-CVI technology[J]. Ecology and Environmental Sciences, 27(2): 297-303. | |
[25] | 李玲, 仇少君, 檀菲菲, 等, 2013. 盐分和底物对黄河三角洲区土壤有机碳分解与转化的影响[J]. 生态学报, 33(21): 6844-6852. |
LI L, QIU S J, TAN F F, et al., 2013. Effects of salinity and exogenous substrates on the decomposition and transformation of soil organic carbon in the Yellow River Delta[J]. Acta Ecologica Sinica, 33(21): 6844-6852.
DOI URL |
|
[26] | 刘耘华, 杨玉玲, 盛建东, 等, 2010. 北疆荒漠植被梭梭立地土壤养分“肥岛”特征研究[J]. 土壤学报, 47(3): 545-554. |
LIU Y H, YANG Y L, SHENG J D, et al., 2010. ‘Fertile Island’ Characteristics of Soil Nutrients in Haloxylon Ammodendron Land in North Xinjiang[J]. Acta Pedologica Sinica, 47(3): 545-554. | |
[27] | 瞿王龙, 杨小鹏, 张存涛, 等, 2015. 干旱、半干旱地区天然草原灌木及其肥岛效应研究进展[J]. 草业学报, 24(4): 201-207. |
QU W L, YANG X P, ZHANG C T, et al., 2015. Shrub-mediated ‘fertile island’ effects in arid and semi-arid grassland[J]. Acta Prataculturae Sinica, 24(4): 201-207. | |
[28] | 宋创业, 刘高焕, 刘庆生, 等, 2008. 黄河三角洲植物群落分布格局及其影响因素[J]. 生态学杂志, 27(12): 2042-2048. |
SONG C Y, LIU G H, LIU Q S, et al., 2008. Distribution patterns of plant communities in the Yellow River Delta and related affecting factors[J]. Chinese Journal of Ecology, 27(12): 2042-2048. | |
[29] | 苏永中, 赵哈林, 张铜会, 等, 2002. 不同强度放牧后自然恢复的沙质草地土壤性状特征[J]. 中国沙漠, 22(4): 333-338. |
SU Y Z, ZHAO H L, ZHANG T H, et al., 2020. Characteristics of sandy grassland soils under post-grazing natural restoration in Horqin sandy land[J]. Journal of Desert Research, 22(4): 333-338. | |
[30] | 王海洋, 陈家宽, 周进, 等, 1999. 水位梯度对湿地植物生长、繁殖和生物量分配的影响[J]. 植物生态学报, 23(3): 269-274. |
WANG H Y, CHEN J K, ZHOU J, et al., 1999. Influence of water level gradient on plant growth, reproduction and biomass allocation of wetland plant species[J]. Acta Phytoecologica Sinica, 23(3): 269-274. | |
[31] | 张唤, 黄立华, 王鸿斌, 等, 2016. 不同盐碱化草地土壤微生物差异及其与盐分和养分的关系[J]. 吉林农业大学学报, 38(6): 703-709. |
ZHANG H, HUANG L H, WANG H B, et al., 2016. Differences of soil microbes in different saline-sodic grasslands and their relations with soil salinity and nutrients[J]. Journal of Jilin Agricultural University, 38(6): 703-709. | |
[32] | 张立华, 陈小兵, 2015. 盐碱地柽柳盐岛和肥岛效应及其碳氮磷生态化学计量学特征[J]. 应用生态学报, 26(3): 653-658. |
ZHANG L H, CHEN X B, 2015. Characteristics of ‘salt island’ and ‘fertile island’ for Tamarix chinensis and soil carbon, nitrogen and phosphorus ecological stoichiometry in saline-alkali land[J]. Chinese Journal of Applied Ecology, 26(3): 653-658. | |
[33] | 张绪良, 叶思源, 印萍, 等, 2009. 黄河三角洲自然湿地植被的特征及演化[J]. 生态环境学报, 18(1): 292-298. |
ZHANG X L, YE S Y, YIN P, et al., 2009. Characters and successions of natural wetland vegetation in Yellow River Delta[J]. Ecology and Environmental Sciences, 18(1): 292-298. | |
[34] | 中华人民共和国农业部, 1987. 土壤水分测定法: NY/T 52-1987[S]. 北京: 中国标准出版社. |
Ministry of Agriculture, PRC, 1988. Method for determination of soil water content: NY/T 52-1987[S]. Beijing: China Standards Press. | |
[35] | 中华人民共和国农业部, 1988. 土壤有机质测定法: NY/T 85-1988[S]. 北京: 中国标准出版社. |
Ministry of Agriculture, PRC, 1988. Method for determination of soil organic mater: NY/T 85-1988[S]. Beijing: China Standards Press. | |
[36] | 中华人民共和国环境保护部, 2016. 土壤电导率的测定电极法: HJ 802-2016[S]. 北京: 中国标准出版社. |
Ministry of Environmental Protection, PRC, 2016. Soil quality- Determination of conductivity-Electrode method: HJ 802-2016[S]. Beijing: China Standards Press. | |
[37] | 中华人民共和国生态环境部, 2018. HJ 962-2018土壤pH的测定电位法[S]. 北京: 中国标准出版社. |
Ministry of Ecological and Environmental, PRC, 2018. Soil- Determination of pH-Potentiometry: HJ 962-2018[S]. Beijing: China Standards Press. |
[1] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[2] | 杨春亮, 刘旻霞, 王千月, 苗乐乐, 肖音迪, 王敏. 单户与联户放牧经营下草玉梅与嵩草种群空间格局及其关联性[J]. 生态环境学报, 2023, 32(4): 651-659. |
[3] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[4] | 秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468. |
[5] | 王洁, 单燕, 马兰, 宋延静, 王向誉. 秸秆/生物质炭协同还田措施对黄河三角洲盐碱土壤的改良效果研究[J]. 生态环境学报, 2023, 32(1): 90-98. |
[6] | 吴胜义, 王飞, 徐干君, 马浩, 党禹杰, 吴菲. 川西北高山峡谷区森林碳储量及空间分布研究--以四川洛须自然保护区为例[J]. 生态环境学报, 2022, 31(9): 1735-1744. |
[7] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
[8] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[9] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
[10] | 龚玲玄, 王丽丽, 赵建宁, 刘红梅, 杨殿林, 张贵龙. 不同覆盖作物模式对茶园土壤理化性质及有机碳矿化的影响[J]. 生态环境学报, 2022, 31(6): 1141-1150. |
[11] | 杜雪, 王海燕, 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 2022, 31(4): 663-669. |
[12] | 温智峰, 魏识广, 李林, 叶万辉, 练琚愉. 南亚热带常绿阔叶林植物不同分类水平上的空间分布格局及空间关联[J]. 生态环境学报, 2022, 31(3): 440-450. |
[13] | 胡靓达, 周海菊, 黄永珍, 姚贤宇, 叶绍明, 喻素芳. 不同杉木林分类型植物多样性及其土壤碳氮关系的研究[J]. 生态环境学报, 2022, 31(3): 451-459. |
[14] | 刘美, 马志良. 增温和植物去除对青藏高原东部高寒灌丛土壤不同形态氮的影响[J]. 生态环境学报, 2022, 31(3): 470-477. |
[15] | 王小娜, 徐当会, 王谢军, 方向文. 祁连山灌丛群落结构特征随海拔梯度和经度的变化[J]. 生态环境学报, 2022, 31(2): 231-238. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||