生态环境学报 ›› 2022, Vol. 31 ›› Issue (11): 2143-2151.DOI: 10.16258/j.cnki.1674-5906.2022.11.005
韩鑫(), 袁春阳, 李济宏, 洪宗文, 刘宣, 杜婷, 李晗, 游成铭, 谭波, 朱鹏, 徐振锋*(
)
收稿日期:
2022-04-01
出版日期:
2022-11-18
发布日期:
2022-12-22
通讯作者:
*徐振锋(1981年生),男,教授,博士研究生导师,主要从事森林生态系统物质循环及气候变化方面研究。E-mail: xuzf@sicau.edu.cn作者简介:
韩鑫(1995年生),男,博士研究生,主要从事土壤研究。E-mail: 2575431006@qq.com
基金资助:
HAN Xin(), YUAN Chunyang, LI Jihong, HONG Zongwen, LIU Xuan, DU Ting, LI Han, YOU Chenming, TAN Bo, ZHU Peng, XU Zhenfeng*(
)
Received:
2022-04-01
Online:
2022-11-18
Published:
2022-12-22
摘要:
林木通过凋落物输入及根系活动等过程影响土壤无机氮含量,从而对调控土壤肥力有重要作用,但目前不同树种间对其有何影响仍不清楚。为探究四川盆地乡土树种对土壤无机氮含量的影响机制,采用同质园试验,以红椿(Toona ciliata)、香椿(Toona sinensis)、天竺桂(Cinnamomum japonicum)、大叶樟(Cinnamomun phatyphyllum)、香樟(Cinnamomum camphora)、油樟(Cinnamomum longipaniculatum)和桤木(Alnus cremastogyne)7个阔叶树种为研究对象,以撂荒地为对照,采集了3个土层(0-10、10-20、20-30 cm)的土壤样品,测定铵态氮、硝态氮及其他常见的土壤理化指标,分析树种和土层对土壤无机氮含量的影响。结果表明,(1)相比撂荒地,大叶樟、天竺桂、红椿和桤木土壤无机氮含量分别显著增加了27.6%、27.4%、26.4%和19.3%,香樟、油樟和香椿无机氮含量则分别增加了2.4%和显著降低了8.1%和8.9%。(2)7个树种土壤无机氮含量总体随土层深度增加而下降,铵态氮/硝态氮则表现为相反的趋势,其中桤木、大叶樟、天竺桂、香椿和红椿表现尤为明显。(3)土壤物理参数(机械组成、容重)和化学参数(pH、碳氮比、碳磷比和微生物生物量氮)与土壤无机氮含量显著相关。冗余分析(RDA)进一步表明土壤黏粒、全氮和微生物生物量氮是引起土壤无机氮含量变化的关键影响因子。综上所述,树种通过改变土壤理化性质而影响土壤无机氮含量;树种效应大于土层效应;相比而言,大叶樟、天竺桂和红椿更有利于土壤氮养分的维持。
中图分类号:
韩鑫, 袁春阳, 李济宏, 洪宗文, 刘宣, 杜婷, 李晗, 游成铭, 谭波, 朱鹏, 徐振锋. 树种和土层对土壤无机氮的影响[J]. 生态环境学报, 2022, 31(11): 2143-2151.
HAN Xin, YUAN Chunyang, LI Jihong, HONG Zongwen, LIU Xuan, DU Ting, LI Han, YOU Chenming, TAN Bo, ZHU Peng, XU Zhenfeng. Effects of Tree Species and Soil Layers on Soil Extractable Nitrogen Content[J]. Ecology and Environment, 2022, 31(11): 2143-2151.
图1 不同树种和土层铵态氮含量 不同大写字母表示同一土层树种间差异显著(P<0.05),不同小写字母表示相同树种土壤层次间差异显著(P<0.05)。平均值±标准误差,n=3;下同
Figure 1 NH4+-N content between different tree species and soil layers Different capital letters indicate significant differences between tree species and lowercase letters indicate significant differences between soil layers (P<0.05). Mean±Standard error, n=3; The same below
参数 Variable | 自由度 d.f. | NH4+-N | NO3--N | NH4+-N/NO3--N | TIN | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | 相对解释度 Percentage of variance explained/% | F | P | 相对解释度 Percentage of variance explained/% | F | P | 相对解释度 Percentage of variance explained/% | F | P | 相对解释度 Percentage of variance explained/% | |||||
树种 Tree species (TS) | 7 | 24.233 | 0.000 | 70.759 | 39.923 | 0.000 | 61.878 | 5.413 | 0.000 | 58.756 | 34.521 | 0.000 | 39.397 | |||
土层 Soil layer (SL) | 2 | 3.736 | 0.031 | 3.119 | 38.443 | 0.000 | 17.024 | 0.485 | 0.691 | 19.146 | 39.370 | 0.000 | 1.005 | |||
树种×土层TS×SL | 14 | 1.043 | 0.430 | 6.092 | 3.377 | 0.001 | 10.450 | 0.671 | 0.790 | 10.426 | 3.063 | 0.002 | 9.781 |
表1 不同树种和土层对土壤无机氮及其组分的双因素方差分析
Table 1 Effects of repeated variance analysis of inorganic nitrogen and its components in different tree species and soil layers
参数 Variable | 自由度 d.f. | NH4+-N | NO3--N | NH4+-N/NO3--N | TIN | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | 相对解释度 Percentage of variance explained/% | F | P | 相对解释度 Percentage of variance explained/% | F | P | 相对解释度 Percentage of variance explained/% | F | P | 相对解释度 Percentage of variance explained/% | |||||
树种 Tree species (TS) | 7 | 24.233 | 0.000 | 70.759 | 39.923 | 0.000 | 61.878 | 5.413 | 0.000 | 58.756 | 34.521 | 0.000 | 39.397 | |||
土层 Soil layer (SL) | 2 | 3.736 | 0.031 | 3.119 | 38.443 | 0.000 | 17.024 | 0.485 | 0.691 | 19.146 | 39.370 | 0.000 | 1.005 | |||
树种×土层TS×SL | 14 | 1.043 | 0.430 | 6.092 | 3.377 | 0.001 | 10.450 | 0.671 | 0.790 | 10.426 | 3.063 | 0.002 | 9.781 |
图5 铵态氮、硝态氮及其比值和无机氮和土壤理化参数的相关性 MC:土壤含水率;BD:土壤容重;PO:土壤孔隙度;CP:土壤黏粒;SI:土壤粉粒;SG:土壤砂粒;C:土壤有机碳;N:土壤全氮;P:土壤全磷;C/N:碳氮比;N/P:氮磷比;C/P:碳磷比;MBC:微生物生物量碳;MBN:微生物生物量氮;***,P<0.001水平显著;**,P<0.01水平显著;*,P<0.05水平显著;下同
Figure 5 Correlations between inoganic soil nitrogen and soil physio-chemical indexes of soil MC: Soil moisture content; BD: Soil bulk density; PO: Soil porosity; CP: Soil clay particle; SI: Soil silt; SG: Soil sand grain; C: Soil organic carbon; N: Soil total nitrogen; P: Total phosphorus in soil; MBC: Microbial biomass C; MBN: Microbial biomass N; ***: Significant at P<0.001 level, **: Significant at P<0.01 level, *: Significant at P<0.05 level; The same below
图6 铵态氮、硝态氮及其比值和无机氮含量与土壤理化指标的冗余分析
Figure 6 Two-dimensional sequence diagram of redundancy analysis (RDA) between environmental factors and inoganic soil nitrogen contents
[1] |
BAUHUS J, PARE D, 1998. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest[J]. Soil Biology and Biochemistry, 30(8): 1077-1089.
DOI URL |
[2] |
BRITTO D, KRONZUCKER H J, 2013. Ecological significance and complexity of N-source preference in plants[J]. Annals of Botany, 112(6): 957-963.
DOI PMID |
[3] |
CHEN H J, HUANG X F, SHI W M, et al., 2021. Coordination of nitrogen uptake and assimilation favours the growth and competitiveness of moso bamboo over native tree species in high-NH4+ environments[J]. Journal of Plant Physiology, 266: 153508.
DOI URL |
[4] |
CUI J H, YU C Q, QIAO N, et al., 2017. Plant preference for NH4+ versus NO3- at different growth stages in an alpine agroecosystem[J]. Field Crops Research, 201: 192-199.
DOI URL |
[5] | CUI X Y, SONG J F, 2007. Soil NH4+/NO3- nitrogen characteristics in primary forests and the adaptability of some coniferous species[J]. Cultural Diversity and Ethnic Minority Psychology, 2(1): 1-10. |
[6] |
FENG J G, ZHU B, 2019. A global meta-analysis of soil respiration and its components in response to phosphorus addition[J]. Soil biology and biochemistry, 135(8): 38-47.
DOI URL |
[7] |
JACKSON L E, MARTIN B, CAVAGNARO T R, 2008. Roots, nitrogen transformations, and ecosystem services[J]. Annual review of plant biology, 59(1): 341-363.
DOI URL |
[8] |
KANERVA S, KITUNEN V, KIIKKIL O, et al., 2006. Response of soil C and N transformations to tannin fractions originating from Scots pine and Norway spruce needles[J]. Soil Biology and Biochemistry, 38(6): 1364-1374.
DOI URL |
[9] |
LI Z L, ZENG Z Q, TIAN D S, et al., 2020. Global variations and controlling factors of soil nitrogen turnover rate[J]. Earth-Science Reviews, 207: 103250.
DOI URL |
[10] |
MARIA J F, YUSTE J C, KITZLE B, et al., 2018. Changes in litter chemistry associated with global change-driven forest succession resulted in time-decoupled responses of soil carbon and nitrogen cycles[J]. Soil Biology and Biochemistry, 120: 200-211.
DOI URL |
[11] | MENYAILO O V, HUNGATE B A, ZECH W, 2002. The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment[J]. Plant & Soil, 242(2): 183-196. |
[12] |
OVINGTON J D, 1954. Studies of the development of woodland conditions under different trees. IV. The ignition loss, water, carbon and nitrogen content of the mineral soil[J]. Journal of Ecology, 44: 171-179.
DOI URL |
[13] | PANG X Y, BAO W K, 2011. Effect of Substituting Plantation Species for Native Shrubs on the Water-Holding Characteristics of the Forest Floor on the Eastern Tibetan[J]. Plateau. Journal of Resources and Ecology, 2(3): 217-244. |
[14] |
PENG Y, SCHMIDT I K, ZHENG H F, et al., 2020. Tree species effects on topsoil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability at the global scale[J]. Forest Ecology and Management, 478: 118510.
DOI URL |
[15] |
STEFANOWICZ A M, ROZEK K, STANEK, et al., 2021. Moderate effects of tree species identity on soil microbial communities and soil chemical properties in a common garden experiment-ScienceDirect[J]. Forest Ecology and Management, 482: 118799.
DOI URL |
[16] |
TEMPLERA P, FINDLAY S, LOVETT G, 2003. Soil microbial biomass and nitrogen transformations among five tree species of the Catskill Mountains, New York, USA[J]. Soil Biology and Biochemistry, 35(4): 607-613.
DOI URL |
[17] |
VESTERDAL L, CLARKE N, SIGURDSSON B D, et al., 2013. Do tree species influence soil carbon stocks in temperate and boreal forests?[J]. Forest Ecology and Management, 309: 4-18.
DOI URL |
[18] | VOLLBRECHT P, KASEMIR H I, 1992. Effects of Exogenously Supplied Ammonium on Root Development of Scots Pine (Pinus sylvestris L.) Seedlings[J]. Plant Ecology, 105(4): 306-312. |
[19] |
WANG P X, MACKO S A, 2011. Constrained preferences in nitrogen uptake across plant species and environments[J]. Plant Cell and Environment, 34(3): 525-534.
DOI URL |
[20] |
XU G H, FAN X R, MILLER A J, 2012. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 63(1): 153-182.
DOI URL |
[21] | XU W F, YUAN W Q, 2017. Responses of microbial biomass carbon and nitrogen to experimental warming: A meta-analysis[J]. Soil Biology and Biochemistry, 15: 265-274. |
[22] |
ZHANG J B, ZHU T B, CAI Z C, et al., 2011. Nitrogen cycling in forest soils across climate gradients in Eastern China[J]. Plant and Soil, 342(1-2): 419-432.
DOI URL |
[23] | 戴全厚, 刘国彬, 张健, 等, 2008. 黄土丘陵区植被次生演替灌木种群的土壤养分效应[J]. 西北农林科技大学学报 (自然科学版), 36(8): 125-131. |
DAI Q H, LIN G B, ZHANG J, et al., 2008. Effect of shrub species during vegetation secondary succession on soil nutrient on the hilly-gullied loess region[J]. Journal of Northwest A & F University (Natural Science Edition), 36(8): 125-131. | |
[24] | 丁令智, 满秀玲, 肖瑞晗, 2019. 大兴安岭北部主要树种生长季根际土壤氮素含量特征[J]. 中南林业科技大学学报, 39(2): 65-71, 92. |
DING L Z, MAN X L, XIAO R H, et al., 2019. Characteristics of nitrogen content in rhizosphere soil of main tree species in northern part of Daxinganling during growing seasons[J]. Journal of Central South University of Forestry and Technology, 39(2): 65-71, 92. | |
[25] | 葛晓敏, 陈水飞, 周旭, 等, 2019. 武夷山中亚热带常绿阔叶林土壤氮矿化的季节动态[J]. 生态环境学报, 28(7): 1351-1360. |
GE X M, CHEN S F, ZHOU X, et al., 2019. Seasonal dynamics of soil nitrogen mineralization in a mid-subtropical evergreen broad-leaved forest in Wuyi Mountains, Fujian province, China[J]. Ecology and Environmental Sciences, 28(7): 1351-1360. | |
[26] | 李聪, 陆梅, 任玉连, 等, 2020. 文山典型亚热带森林土壤氮组分的海拔分布及其影响因子[J]. 北京林业大学学报, 42(12): 63-73. |
LI C, LU M, REN Y L, et al., 2020. Distribution of soil nitrogen components of Wenshan typical subtropical forests along an altitude gradient and its influencing factors in Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 42(12): 63-73. | |
[27] | 李志杰, 杨万勤, 岳楷, 等, 2017. 温度对川西亚高山3种森林土壤氮矿化的影响[J]. 生态学报, 37(12): 4045-4052. |
LI Z J, YANG W Q, YUE K, et al., 2017. Effects of temperature on soil nitrogen mineralization in three subalpine forests of western Sichuan, China[J]. Acta Ecologica Sinica, 37(12): 4045-4052. | |
[28] | 马宏燏, 王宏伟, 袁晓, 等, 2017. 乡土树种及其在城市林业中的应用[J]. 中国城市林业, 15(6): 43-46. |
MA H J, WANG H W, YUAN X, et al., 2017. Native tree species and their applications to urban forestry[J]. Journal of Chinese Urban Forestry, 15(6): 43-46. | |
[29] | 王米雪, 圣志存, 吴萌, 等, 2020. 香椿叶化学成分及药理作用研究进展[J]. 林业科技讯 (10): 44-48. |
WANG M X, SHENG Z C, WU M, et al., 2020. Advances in studies on chemical components and pharmacological effects of Toona sinensis leaves[J]. Forest Science and Technology (10): 44-48. | |
[30] |
王薪琪, 王传宽, 韩轶, 2015. 树种对土壤有机碳密度的影响: 5种温带树种同质园试验[J]. 植物生态学报, 39(11): 1033-1043.
DOI |
WANG X Q, WANG C K, HAN Y, 2015. Effects of tree species on soil organic carbon density: A common garden experiment of five temperate tree species[J]. Chinese Journal of Plant Ecology, 39(11): 1033-1043.
DOI URL |
|
[31] | 肖祖飞, 艾卿, 王颜波, 等, 2021. 油樟的研究进展[J]. 江西科学, 39(1): 53-58. |
XIAO Z F, AI Q, WANG Y B, et al., 2021. Research Progress of Cinnamomum longepaniculatum[J]. Jiangxi Science, 39(1): 53-58. | |
[32] | 杨静, 张耀艺, 谭思懿, 等, 2020. 亚热带不同树种土壤水源涵养功能[J]. 生态学报, 40(13): 4594-4604. |
YANG J, ZHANG Y Y, TAN S Y, et al., 2020. Soil water conservation functions of different plantations in subtropical forest[J]. Acta Ecologica Sinica, 40(13): 4594-4604. | |
[33] | 杨起帆, 熊勇, 余泽平, 等, 2021. 江西官山不同海拔常绿阔叶林土壤活性氮组分特征[J]. 中南林业科技大学学报, 41(9): 138-147. |
YANG Q F, XIONG Y, YU Z P, et al., 2021. Characteristics of soil active nitrogen fractions in evergreen broad-leaved forests at different altitudes in Guanshan mountain of eastern China[J]. Journal of Central South University of Forestry and Technology, 41(9): 138-147. | |
[34] |
张文雯, 韩海荣, 程小琴, 等, 2019. 间伐对华北落叶松人工林土壤活性有机碳含量及酶活性的影响[J]. 应用生态学报, 30(10): 3347-3355.
DOI |
ZHANG W W, HAN H R, CHENG X Q, et al., 2019. Effects of thinning on soil active organic carbon contents and enzyme activities in Larix principis-rupprechtii plantation[J]. Chinese Journal of Applied Ecology, 30(10): 3347-3355. | |
[35] | 张仰, 龚雪伟, 吕光辉, 等, 2019. 盐生荒漠植物群落土壤氮素含量及其组分特征[J]. 土壤, 51(5): 871-878. |
ZHANG Y, GONG X W, LÜ G H, et al., 2019. Soil nitrogen content and components under different halophyte communities in saline desert[J]. Soils, 51(5): 871-878. | |
[36] | 张彦东, 白尚斌, 2003. 氮素形态对树木养分吸收和生长的影响[J]. 应用生态学报, 14(11): 2044-2048. |
ZHANG Y D, BAI S B, 2003. Effects of nitrogen forms on nutrient uptake and growth of trees[J]. Chinese Journal of Applied Ecology, 14(11): 2044-2048. | |
[37] |
邹婷婷, 张子良, 李娜, 等, 2017. 川西亚高山针叶林主要树种对土壤中不同形态氮素的吸收差异[J]. 植物生态学报, 41(10): 1051-1059.
DOI |
ZHOU T T, ZHANG Z L, LI N, et al., 2017. Differential uptakes of different forms of soil nitrogen among major tree species in subalpine coniferous forests of western Sichuan, China[J]. Chinese Journal of Plant Ecology, 41(10): 1051-1059.
DOI URL |
|
[38] | 朱红霞, 陈效民, 杜臻杰, 2010. 基于地统计学的土壤氮素与pH的空间变异性研究[J]. 土壤通报, 41(5): 1086-1090. |
ZHU H X, CHEN X M, DU Z J, 2010. Spatial variability of soil nitrogen and pH assessed by the method of geostatistics[J]. Chinese Journal of Soil Science, 41(5): 1086-1090. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 李善家, 王兴敏, 刘海锋, 孙梦格, 雷雨昕. 河西走廊荒漠植物多样性及其对环境因子的响应[J]. 生态环境学报, 2023, 32(3): 429-438. |
[3] | 李少宁, 李婷婷, 陶雪莹, 赵娜, 徐晓天, 鲁绍伟. 4种落叶树种释放有益挥发性有机物的比较研究[J]. 生态环境学报, 2023, 32(1): 123-128. |
[4] | 李勋, 崔宁洁, 张艳, 覃宇, 张健. 马尾松与乡土阔叶树种凋落叶纤维素、总酚以及缩合单宁降解的混合效应[J]. 生态环境学报, 2022, 31(9): 1813-1822. |
[5] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
[6] | 刘晓红, 刘柳青青, 栗敏, 刘强, 曹东东, 郑浩, 罗先香. 不同粒径的聚乙烯微塑料对玉米和黄瓜种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(6): 1263-1271. |
[7] | 陈瑶, 李云红, 邵英男, 刘玉龙, 刘延坤. 阔叶红松林物种多样性与土壤理化特征研究[J]. 生态环境学报, 2022, 31(4): 679-687. |
[8] | 玄锦, 李祖婵, 邹诚, 秦子博, 吴雅华, 黄柳菁. 江心洲景观类型和格局对植物多样性的多尺度影响——以闽江流域福州段为例[J]. 生态环境学报, 2022, 31(12): 2320-2330. |
[9] | 李少宁, 陶雪莹, 李绣宏, 赵娜, 徐晓天, 鲁绍伟. 植物释放有益挥发性有机物研究进展[J]. 生态环境学报, 2022, 31(1): 187-195. |
[10] | 闫东锋, 张妍妍, 吕康婷, 周梦丽, 王婷, 赵宁. 太行山南麓不同海拔梯度天然林优势树种生态位特征[J]. 生态环境学报, 2021, 30(8): 1571-1580. |
[11] | 赵晓亮, 郭猛, 吕美婷, 赵雪莹, 姜瑰国, 黄媛媛, 王凡, 姬亚芹. 阜新市绿化树种对大气颗粒物及重金属滞留能力研究[J]. 生态环境学报, 2021, 30(8): 1662-1671. |
[12] | 王剑, 包海, 李达毅, 刘智远, 杨娜. 干旱半干旱区夏季绿化树种挥发性有机物标准排放量的测定[J]. 生态环境学报, 2021, 30(6): 1168-1176. |
[13] | 黄成, 吴月颖, 吉恒宽, 陈丽铭, 李倍莹, 符传良, 李建宏, 吴蔚东, 吴治澎. 海南典型水稻土厌氧铁还原特征对DOM分子特性的响应[J]. 生态环境学报, 2021, 30(5): 957-967. |
[14] | 姜倪皓, 张诗函. 楚雄市西郊云南松林下草本优势种种间联结及环境解释[J]. 生态环境学报, 2021, 30(11): 2109-2120. |
[15] | 林丽, 代磊, 林泽北, 吴际通, 颜伟, 王志杰. 黔中城市森林群落植物多样性及其与土壤理化性质的关系[J]. 生态环境学报, 2021, 30(11): 2130-2141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||