生态环境学报 ›› 2023, Vol. 32 ›› Issue (2): 274-282.DOI: 10.16258/j.cnki.1674-5906.2023.02.007
宋志斌1,2(), 周佳诚2,3, 谭路2, 唐涛2,3,*(
)
收稿日期:
2022-10-26
出版日期:
2023-02-18
发布日期:
2023-05-11
通讯作者:
*唐涛(1974年生),男,研究员,博士研究生导师,主要从事河流生态学和流域生态学研究。E-mail: tangtao@ihb.ac.cn作者简介:
宋志斌(1998年生),男,硕士研究生,主要从事流域生态学研究。E-mail: songzb@ihb.ac.cn
基金资助:
SONG Zhibin1,2(), ZHOU Jiacheng2,3, TAN Lu2, TANG Tao2,3,*(
)
Received:
2022-10-26
Online:
2023-02-18
Published:
2023-05-11
摘要:
海拔对生物群落的空间格局具有重要影响。探究生物群落随海拔变化规律不仅可以确定生物的地理分布范围,而且可为预测生物响应气候变化提供基础信息。然而,目前对于生物群落海拔格局的研究多集中于陆生大型生物,对水生微型生物的研究相对不足。基于西藏昌都市境内金沙江上游支流黑曲和雪曲着生藻类的调查数据,运用广义线性混合模型和分段结构方程模型探究着生藻类密度、生物量、物种丰富度、均匀度和样点对β多样性的贡献(Local contribution to beta diversity,LCBD)等生物群落指标的海拔格局及其驱动机制。结果表明:两条河流共鉴定出161个分类单元,分属硅藻门、蓝藻门和绿藻门。其中着生硅藻种类最多,占总分类单元数的78.9%,极小曲丝藻(Achnanthidium minutissimum,平均相对丰度:28.3%)、波状瑞氏藻(Reimeria sinuata,平均相对丰度:11.5%)、偏肿内丝藻(Encyonema ventricosum,平均相对丰度:9.3%)和细端菱形藻(Nitzschia dissipata,平均相对丰度:7.2%)为主要优势种。不同海拔的着生藻类群落组成存在显著差异。着生藻类物种丰富度随海拔梯度单调递减,着生藻类密度、生物量和LCBD随海拔梯度单调递增,而着生藻类均匀度并无明显的海拔分布格局。海拔对年均温、年降水量、日均辐射量、电导率、溶解氧、浊度和流速有显著影响。进一步解析海拔对着生藻类密度、生物量和多样性指数的影响机制,发现海拔主要通过影响年均温、年降水量和日均辐射量等区域气候因子进而影响局地环境因子间接影响着生藻类分布格局。电导率、溶解氧和浊度是着生藻类海拔分布格局的关键驱动因子。该研究结果为了解河流生物多样性对气候变化的响应规律提供了重要信息,为河流生物多样性保护提供了科学依据。
中图分类号:
宋志斌, 周佳诚, 谭路, 唐涛. 高原河流着生藻类群落沿海拔梯度的变化特征--以西藏黑曲、雪曲为例[J]. 生态环境学报, 2023, 32(2): 274-282.
SONG Zhibin, ZHOU Jiacheng, TAN Lu, TANG Tao. Altitudinal Patterns of Benthic Algal Communities in Plateau Rivers: A Case Study of Heiqu and Xuequ in Tibet[J]. Ecology and Environment, 2023, 32(2): 274-282.
环境/ 气候因子 | 缩写 | 均值 (范围) | |
---|---|---|---|
黑曲 | 雪曲 | ||
γ(电导率)/(μS·cm-1) | Cond | 189.1 (101.6-257.2) | 141.7 (28.0-197.1) |
ρ(溶解氧)/(mg·L-1) | DO | 6.95 (5.82-8.20) | 7.17 (6.36-8.02) |
ρ(总氮)/(mg·L-1) | TN | 0.60 (0.19-2.22) | 0.27 (0.11-0.61) |
ρ(氨氮)/(mg·L-1) | NH4+-N | 0.12 (0.03-0.4) | 0.08 (0.04-0.18) |
ρ(总磷)/(mg·L-1) | TP | 0.06 (0.02-0.42) | 0.03 (0.02-0.03) |
pH | pH | 8.48 (8.29-8.69) | 8.50 (7.77-8.97) |
ρ(硅酸盐)/(mg·L-1) | SiO2-Si | 3.92 (1.97-11.92) | 3.68 (2.43-9.10) |
ρ(化学需氧量)/(mg·L-1) | COD | 1.75 (0.90-4.83) | 2.04 (1.13-8.11) |
浊度/(NTU) | Turb | 61.8 (1.2-233.1) | 6.28 (1.3-27.2) |
v(流速)/(m·s-1) | V | 0.51 (0.20-0.96) | 0.46 (0.10-0.86) |
t(年均温)/℃ | AMT | 4.05 (-1.01-8.06) | 3.96 (0.96-8.69) |
年降水量/mm | AP | 595 (565-675) | 594 (574-646) |
日均辐射量/ (kJ·m-2·d-1) | DMSR | 14751 (14449-15118) | 14675 (14359-14952) |
表1 黑曲、雪曲环境/气候因子均值及其取值范围
Table 1 The Mean and range of environmental and climatic variables
环境/ 气候因子 | 缩写 | 均值 (范围) | |
---|---|---|---|
黑曲 | 雪曲 | ||
γ(电导率)/(μS·cm-1) | Cond | 189.1 (101.6-257.2) | 141.7 (28.0-197.1) |
ρ(溶解氧)/(mg·L-1) | DO | 6.95 (5.82-8.20) | 7.17 (6.36-8.02) |
ρ(总氮)/(mg·L-1) | TN | 0.60 (0.19-2.22) | 0.27 (0.11-0.61) |
ρ(氨氮)/(mg·L-1) | NH4+-N | 0.12 (0.03-0.4) | 0.08 (0.04-0.18) |
ρ(总磷)/(mg·L-1) | TP | 0.06 (0.02-0.42) | 0.03 (0.02-0.03) |
pH | pH | 8.48 (8.29-8.69) | 8.50 (7.77-8.97) |
ρ(硅酸盐)/(mg·L-1) | SiO2-Si | 3.92 (1.97-11.92) | 3.68 (2.43-9.10) |
ρ(化学需氧量)/(mg·L-1) | COD | 1.75 (0.90-4.83) | 2.04 (1.13-8.11) |
浊度/(NTU) | Turb | 61.8 (1.2-233.1) | 6.28 (1.3-27.2) |
v(流速)/(m·s-1) | V | 0.51 (0.20-0.96) | 0.46 (0.10-0.86) |
t(年均温)/℃ | AMT | 4.05 (-1.01-8.06) | 3.96 (0.96-8.69) |
年降水量/mm | AP | 595 (565-675) | 594 (574-646) |
日均辐射量/ (kJ·m-2·d-1) | DMSR | 14751 (14449-15118) | 14675 (14359-14952) |
图3 着生藻类密度、生物量、物种丰富度、均匀度和样点对β多样性的贡献与海拔的关系图
Figure 3 The relationship between density (a), biomass (b), species richness (c), evenness (d) and LCBD (e) of bethic algae and altitude
图4 海拔、环境因子、气候因子与密度和生物量构建的分段结构方程模型 红线代表正相关,蓝线代表负相关(* P<0.05,** P<0.01,*** P<0.001)
Figure 4 Piecewise structural equation model constructed by altitude, environmental variables, climatic variables, density and biomass
图5 海拔、环境因子、气候因子与物种丰富度和样点对β多样性的贡献构建的分段结构方程模型
Figure 5 Piecewise structural equation model constructed by altitude, environmental variables, climatic variables, species richness and LCBD
[1] |
ANDERSON J C, GERBING D W, 1988. Structural equation modeling in practice: A review and recommended two-step approach[J]. Psychological bulletin, 103(3): 411.
DOI URL |
[2] |
BROWN B L, SWAN C M, 2010. Dendritic network structure constrains metacommunity properties in riverine ecosystems[J]. Journal of Animal Ecology, 79(3): 571-580.
DOI PMID |
[3] |
BRYANT J A, LAMANNA C, MORLON H, et al., 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity[J]. Proceedings of the National Academy of Sciences, 105(Supplement 1): 11505-11511.
DOI URL |
[4] | BURPEE B T, ANDERSON D, SAROS J E, 2018. Assessing ecological effects of glacial meltwater on lakes fed by the Greenland Ice Sheet: The role of nutrient subsidies and turbidity[J]. Arctic, Antarctic, and Alpine Research, 50(1): S100019. |
[5] |
CHARLES P, 2002. Benthic diatoms in USA rivers: distributions along spatial and environmental gradients[J]. Journal of Biogeography, 29(2): 167-187.
DOI URL |
[6] |
DA SILVA C F M, TORGAN L C, SCHNECK F, 2019. Temperature and surface runoff affect the community of periphytic diatoms and have distinct effects on functional groups: Evidence of a mesocosms experiment[J]. Hydrobiologia, 839: 37-50.
DOI |
[7] |
GELIS M M N, COCHERO J, SATHICQ M B, et al., 2020. Effect of pollution on early diatom colonisation on artificial substrata in urban lowland streams[J]. Marine and Freshwater Research, 72(3): 365-375.
DOI URL |
[8] |
GASTON K J, 2000. Global patterns in biodiversity[J]. Nature, 405(6783): 220-227.
DOI |
[9] |
GORANSSON G, LARSON M, BENDZ D, 2013. Variation in turbidity with precipitation and flow in a regulated river system-river Göta Älv, SW Sweden[J]. Hydrology and Earth System Sciences, 17(7): 2529-2542.
DOI URL |
[10] |
HENRIQUES-SILVA R, LOGEZ M, REYNAUD N, et al., 2019. A comprehensive examination of the network position hypothesis across multiple river metacommunities[J]. Ecography, 42(2): 284-294.
DOI URL |
[11] |
JENNY J M, MIKA S, VUOKKO H, et al., 2018. Tropical stream diatom communities-The importance of headwater streams for regional diversity[J]. Ecological Indicators, 95: 183-193.
DOI URL |
[12] |
KAZEMI-DINAN A, SCHROEDER F, PETERS L, et al., 2014. The effect of trophic state and depth on periphytic nematode communities in lakes[J]. Limnologica, 44: 49-57.
DOI URL |
[13] | KHATIWADA J R, ZHAO T, CHEN Y, et al., 2019. Amphibian community structure along elevation gradients in eastern Nepal Himalaya[J]. BMC a)Ecology, 19(1): 1-11. |
[14] |
LEFCHECK J S, 2016. PIECEWISESEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics[J]. Methods in Ecology and Evolution, 7(5): 573-579.
DOI URL |
[15] |
LEGENDRE P, DE CACERES M, 2013. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning[J]. Ecology Letters, 16(8): 951-963.
DOI PMID |
[16] |
LEGENDRE P, 2014. Interpreting the replacement and richness difference components of beta diversity[J]. Global Ecology and Biogeography, 23(11): 1324-1334.
DOI URL |
[17] |
MCCAIN C M, 2009. Global analysis of bird elevational diversity[J]. Global Ecology and Biogeography, 18(3): 346-360.
DOI URL |
[18] |
PAJUNEN V, LUOTO M, SOININEN J, 2016. Climate is an important driver for stream diatom distributions[J]. Global Ecology and Biogeography, 25(2): 198-206.
DOI URL |
[19] |
PAJUNEN V, LUOTO M, SOININEN J, 2017. Unravelling direct and indirect effects of hierarchical factors driving microbial stream communities[J]. Journal of Biogeography, 44(10): 2376-2385.
DOI URL |
[20] |
PAN Y, STEVENSON R J, HILL B H, et al., 1999. Spatial patterns and ecological determinants of benthic algal assemblages in Mid-Atlantic streams, USA[J]. Journal of Phycology, 35(3): 460-468.
DOI URL |
[21] |
PATTERSON B D, STOTZ D F, SOLARI S, et al., 1998. Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru[J]. Journal of Biogeography, 25(3): 593-607.
DOI URL |
[22] |
PEI G F, LIU G X, 2011. Distribution patterns of benthic diatoms during summer in the Niyang River, Tibet, China[J]. Chinese Journal of Oceanology and Limnology, 29(6): 1192-1198.
DOI URL |
[23] |
RAHBEK C, 2005. The role of spatial scale and the perception of large- scale species-richness patterns[J]. Ecology Letters, 8(2): 224-239.
DOI URL |
[24] |
SCHUCH M, OLIVEIRA M A, LOBO E A, 2015. Spatial response of epilithic diatom communities to downstream nutrient increases[J]. Water Environment Research, 87(6): 547-558.
DOI PMID |
[25] |
SHARIFINIA M, MAHMOUDIFARD A, GHOLAMI K, et al., 2016. Benthic diatom and macroinvertebrate assemblages, a key for evaluation of river health and pollution in the Shahrood River, Iran[J]. Limnology, 17: 95-109.
DOI URL |
[26] |
SOININEN J, PAAVOLA R, MUOTKA T, 2004. Benthic diatom communities in boreal streams: Community structure in relation to environmental and spatial gradients[J]. Ecography, 27(3): 330-342.
DOI URL |
[27] |
SOININEN J, 2005. Assessing the current related heterogeneity and diversity patterns of benthic diatom communities in a turbid and a clear water river[J]. Aquatic Ecology, 38: 495-501.
DOI URL |
[28] |
SOININEN J, LENNON J J, HILLEBRAND H, 2007. A multivariate analysis of beta diversity across organisms and environments[J]. Ecology, 88(11): 2830-2838.
PMID |
[29] |
STEVENSON J, 2014. Ecological assessments with algae: a review and synthesis[J]. Journal of Phycology, 50(3): 437-461.
DOI PMID |
[30] |
TALLOWIN O, ALLISON A, ALGAR A C, et al., 2017. Papua New Guinea terrestrial-vertebrate richness: Elevation matters most for all except reptiles[J]. Journal of Biogeography, 44(8): 1734-1744.
DOI URL |
[31] |
TAN X, HOU E Q, ZHANG Q F, et al., 2021. Benthic metabolism responses to environmental attributes at multiple scales and its linkage to algal community structure in streams[J]. Hydrobiologia, 848: 5067-5085.
DOI |
[32] |
TANG T, WU N C, LI F Q, et al., 2013. Disentangling the roles of spatial and environmental variables in shaping benthic algal assemblages in rivers of central and northern China[J]. Aquatic Ecology, 47(4): 453-466.
DOI URL |
[33] |
TAXBOCK L, KARGER D N, KESSLER M, et al., 2020. Diatom species richness in Swiss springs increases with habitat complexity and elevation[J]. Water, 12(2): 449.
DOI URL |
[34] |
TEITTINEN A, WANG J, STROMGARD S, et al., 2017. Local and geographical factors jointly drive elevational patterns in three microbial groups across subarctic ponds[J]. Global Ecology and Biogeography, 26(8): 973-982.
DOI URL |
[35] |
VILMI A, KARJALAINEN S M, HEINO J, 2017. Ecological uniqueness of stream and lake diatom communities shows different macroecological patterns[J]. Diversity and Distributions, 23(9): 1042-1053.
DOI URL |
[36] |
WANG J, MEIER S, SOININEN J, et al., 2017. Regional and global elevational patterns of microbial species richness and evenness[J]. Ecography, 40(3): 393-402.
DOI URL |
[37] |
YANG G Y, TANG T, DUDGEON D, 2009. Spatial and seasonal variations in benthic algal assemblages in streams in monsoonal Hong Kong[J]. Hydrobiologia, 632: 189-200.
DOI URL |
[38] |
YEH C F, SOININEN J, TEITTINEN A, et al., 2019. Elevational patterns and hierarchical determinants of biodiversity across microbial taxonomic scales[J]. Molecular Ecology, 28(1): 86-99.
DOI URL |
[39] |
ZHANG J, SHU X, ZHANG Y Y, et al., 2020. The responses of epilithic algal community structure and function to light and nutrients and their linkages in subtropical rivers[J]. Hydrobiologia, 847: 841-855.
DOI |
[40] | 谷建强, 朱凡, 祁亨年, 2015. 温度对南苕溪水质电导率和pH的影响[J]. 环境工程, 33(S1): 906-910. |
GU J Q, ZHU F, QI H N, 2015. Effect of temperature on the conductivity and pH of the water in south tiaoxi[J]. Environmental Engineering, 33(S1): 906-910. | |
[41] | 国家环境保护总局, 2002. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社. |
State Environmental Protection Administration, 2002. Water and wastewater monitoring and analysis method[M]. The fourth edition. Beijing: China Environmental Science Press. | |
[42] | 国家环境保护总局, 国家质量监督检验检疫总局, 2002. 地表水环境质量标准: GB 3838-2002[S]. 北京: 中国环境科学出版社. |
State Environmental Protection Administration, General Administration of Quality Supervision, Inspection and Quarantine, 2002. Environmental quality standards for surface water: GB 3838-2002[S]. Beijing: China Environmental Science Press. | |
[43] | 胡鸿钧, 魏印心, 2006. 中国淡水藻类:系统、分类及生态[M]. 北京: 科学出版社. |
HU H J, WEI Y X, 2006. Freshwater algae in China: System, taxonomy and ecology[M]. Beijing: Science Press. | |
[44] | 胡建成, 宋志斌, 周佳诚, 等, 2022. 金沙江上段浮游藻类和着生藻类群落格局及其与环境因子的关系比较研究[J]. 生态学报, 42(2): 590-599. |
HU J C, SONG Z B, ZHOU J C, et al., 2022. Comparative study on planktonic and periphytic algal community patterns and their relationships with environmental variables in the upper reaches of the Jinsha river[J]. Acta Ecologica Sinica, 42(2): 590-599. | |
[45] | 贾兴焕, 吴乃成, 唐涛, 等, 2008. 香溪河水系附石藻类的时空动态[J]. 应用生态学报, 19(4): 881-886. |
JIA X H, WU N C, TANG T, et al., 2008. Spatiotemporal variation of epilithic algae in Xiangxi River system[J]. Chinese Journal of Applied Ecology, 19(4): 881-886. | |
[46] | 李家英, 齐雨藻, 2010. 中国淡水藻志第14卷硅藻门舟形藻科Ⅰ[M]. 北京: 科学出版社. |
LI J Y, QI Y Z, 2010. The naviculaceae of diatomaceous phylum Vol.14 in the annals of freshwater algae of China Ⅰ[M]. Beijing: Science Press. | |
[47] | 李家英, 齐雨藻, 2014. 中国淡水藻志第19卷硅藻门舟形藻科Ⅱ[M]. 北京: 科学出版社. |
LI J Y, QI Y Z, 2014. The naviculaceae of diatomaceous phylum Vol.19 in the annals of freshwater algae of China Ⅱ[M]. Beijing: Science Press. | |
[48] | 李家英, 齐雨藻, 2018. 中国淡水藻志第23卷硅藻门舟形藻科Ⅲ[M]. 北京: 科学出版社. |
LI J Y, QI Y Z, 2018. The naviculaceae of diatomaceous phylum Vol.23 in the annals of freshwater algae of China Ⅲ[M]. Beijing: Science Press. | |
[49] | 刘婵, 刘心怡, 周佳诚, 等, 2022. 河流着生藻类多样性对城镇化的响应-以深圳市为例[J]. 生态学报, 42(24): 10041-10050. |
LIU C, LIU X Y, ZHOU J C, et al., 2022. Response of streambenthic algal diversity to urbanization: A case study in Shenzhen[J]. Acta Ecologica Sinica, 42(24): 10041-10050. | |
[50] | 吕琳莉, 李朝霞, 崔崇雨, 2018. 高原河流溶解氧变化规律研究[J]. 环境科学与技术, 41(7): 133-140. |
LÜ L L, LI Z X, CUI C Y, 2018. Study on the variation of dissolved oxygen in the Plateau River[J]. Environmental Science & Technology, 41(7): 133-140. | |
[51] | 齐雨藻, 1995. 中国淡水藻志第4卷硅藻门中心纲[M]. 北京: 科学出版社. |
QI Y Z, 1995. The Centricae of diatomaceous phylum Vol.4 in the annals of freshwater algae of China[M]. Beijing: Science Press. | |
[52] | 齐雨藻, 李家英, 2004. 中国淡水藻志第10卷硅藻门羽纹纲[M]. 北京: 科学出版社. |
QI Y Z, LI J Y, 2004. The pennatae of diatomaceous phylum Vol.10 in the annals of freshwater algae of China[M]. Beijing: Science Press. | |
[53] | 施之新, 2004. 中国淡水藻志第12卷硅藻门异极藻科[M]. 北京: 科学出版社. |
SHI Z X, 2004. The gomphonemaceae of diatomaceous phylum Vol.12 in the annals of freshwater algae of China[M]. Beijing: Science Press. | |
[54] | 施之新, 2013. 中国淡水藻志第16卷硅藻门桥弯藻科[M]. 北京: 科学出版社. |
SHI Z X, 2013. The cymbellaceae of diatomaceous phylum Vol.16 in the annals of freshwater algae of China[M]. Beijing: Science Press. | |
[55] | 王全喜, 2018. 中国淡水藻志第22卷硅藻门管壳缝目[M]. 北京: 科学出版社. |
WANG Q X, 2018. The Aulonoraphidinales of diatomaceous phylum Vol.22 in the annals of freshwater algae of China[M]. Beijing: Science Press. | |
[56] | 魏晓玥, 黄晓荣, 潘荦, 等, 2019. 金沙江上游近60年径流变化对气候的响应[J]. 水力发电, 45(8): 12-17. |
WEI X Y, HUANG X R, PAN L, et al., 2019. Response of runoff change to climate in the upper reaches of Jinsha River in past 60 years[J]. Water Power, 45(8): 12-17. | |
[57] | 赵东, 郑强民, 2006. 金沙江水沙特征及其变化分析[J]. 水利水电快报, 27(14): 16-19. |
ZHAO D, ZHENG Q M, 2006. Analysis of water and sediment characteristics and their variation in Jinsha River[J]. Express Water Resources & Hydropower Information, 27(14): 16-19. |
[1] | 王雪梅, 杨雪峰, 赵枫, 安柏耸, 黄晓宇. 基于机器学习算法的干旱区绿洲地上生物量估算[J]. 生态环境学报, 2023, 32(6): 1007-1015. |
[2] | 陈科屹, 林田苗, 王建军, 何友均, 张立文. 天保工程20年对黑龙江大兴安岭国有林区森林碳库的影响[J]. 生态环境学报, 2023, 32(6): 1016-1025. |
[3] | 杨耀东, 陈玉梅, 涂鹏飞, 曾清如. 经济作物轮作模式下镉污染农田修复潜力[J]. 生态环境学报, 2023, 32(3): 627-634. |
[4] | 陈治中, 昝梅, 杨雪峰, 董煜. 新疆森林植被碳储量预测研究[J]. 生态环境学报, 2023, 32(2): 226-234. |
[5] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[6] | 黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89. |
[7] | 陈科屹, 王建军, 何友均, 张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估[J]. 生态环境学报, 2022, 31(9): 1725-1734. |
[8] | 吴胜义, 王飞, 徐干君, 马浩, 党禹杰, 吴菲. 川西北高山峡谷区森林碳储量及空间分布研究--以四川洛须自然保护区为例[J]. 生态环境学报, 2022, 31(9): 1735-1744. |
[9] | 秦艳培, 徐少君, 田耀武. 黄河流域河南段植被和土壤及其碳密度空间分异研究[J]. 生态环境学报, 2022, 31(9): 1745-1753. |
[10] | 刘桢迪, 宋艳宇, 王宪伟, 谭稳稳, 张豪, 高晋丽, 高思齐, 杜宇. 冻土区泥炭地植物生长及碳氮特征对模拟增温的响应[J]. 生态环境学报, 2022, 31(9): 1765-1772. |
[11] | 崔乔, 李宗省, 张百娟, 赵越, 南富森. 冻融作用对土壤可溶性碳氮和微生物量碳氮含量影响的荟萃分析[J]. 生态环境学报, 2022, 31(8): 1700-1712. |
[12] | 王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349. |
[13] | 喻阳华, 吴银菇, 宋燕平, 李一彤. 不同林龄顶坛花椒林地土壤微生物浓度与生物量化学计量特征[J]. 生态环境学报, 2022, 31(6): 1160-1168. |
[14] | 孙建波, 畅文军, 李文彬, 张世清, 李春强, 彭明. 香蕉不同生育期根际微生物生物量及土壤酶活的变化研究[J]. 生态环境学报, 2022, 31(6): 1169-1174. |
[15] | 张恒宇, 孙树臣, 吴元芝, 安娟, 宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征[J]. 生态环境学报, 2022, 31(5): 875-884. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||