生态环境学报 ›› 2022, Vol. 31 ›› Issue (7): 1400-1408.DOI: 10.16258/j.cnki.1674-5906.2022.07.012
吉冰静1,2,3(), 刘艺4, 吴杨1,2, 高淑涛1,2, 曾祥英1,2,*(
), 于志强1,2
收稿日期:
2022-01-24
出版日期:
2022-07-18
发布日期:
2022-08-31
通讯作者:
*曾祥英(1968年生),女,副研究员,博士,主要从事新型污染物环境行为研究。E-mail: zengxy@gig.ac.cn作者简介:
吉冰静(1992年生),女,博士研究生,主要从事新型有机污染物方面的研究。E-mail: 1531776535@qq.com
基金资助:
JI Bingjing1,2,3(), LIU Yi4, WU Yang1,2, GAO Shutao1,2, ZENG Xiangying1,2,*(
), YU Zhiqiang1,2
Received:
2022-01-24
Online:
2022-07-18
Published:
2022-08-31
摘要:
为了解和评估人类活动对河口海岸带沉积物质量的影响,在长江口及邻近东海海域采集87个表层沉积物样品,研究了16种优控多环芳烃(polycyclic aromatic hydrocarbons,PAHs)和8种含氧多环芳烃(oxygenated PAH,O-PAHs)的含量与组成及空间分布特征,解析它们的主要输入来源及潜在生态风险。研究发现,沉积物中检出16种PAHs和7种O-PAHs,其中Σ15PAHs(不包括萘)质量分数范围为5.53—415 ng∙g-1,苯并[b]荧蒽、苯并[a]蒽、菲和芘是主要PAHs;Σ7O-PAHs质量分数范围为8.93—158 ng∙g-1,主要成分为蒽醌。基于PAHs诊断参数,研究区域沉积物中PAHs主要来源生物质和化石燃料的燃烧。从空间分布看,PAHs和O-PAHs主要分布在长江入海口、杭州湾入海口以及长江口泥质区和浙江—福建沿岸泥质区沉积物中,并随着向东海延伸,质量分数呈现由西南向东北逐渐下降的趋势。研究结果表明,陆源PAHs和O-PAHs主要经长江及其支流、钱塘江输入研究区域;此后在多重洋流共同作用下,吸附于颗粒物上的PAHs和O-PAHs沉降于泥质区;区域繁忙的船舶运输对沉积物中PAHs和O-PAHs分布有重要贡献。采用沉积物质量标准评估生态风险,结果表明苯并[a]蒽和二苯并[a, h]蒽单体会对底栖生物造成一定的生态风险,其余单体以及ΣPAHs综合生态风险有限。
中图分类号:
吉冰静, 刘艺, 吴杨, 高淑涛, 曾祥英, 于志强. 长江口及邻近东海沉积物中多环芳烃和含氧多环芳烃的分布特征、来源及生态风险[J]. 生态环境学报, 2022, 31(7): 1400-1408.
JI Bingjing, LIU Yi, WU Yang, GAO Shutao, ZENG Xiangying, YU Zhiqiang. Occurrence, Source and Potential Ecological Risk of Parent and Oxygenated Polycyclic Aromatic Hydrocarbons in Sediments of Yangtze River Estuary and Adjacent East China Sea[J]. Ecology and Environment, 2022, 31(7): 1400-1408.
图1 采样点示意图 灰色泥质区为长江口泥质区和浙江—福建沿岸泥质区
Figure 1 Map of the sampling sites in Yangtze River Estuary and adjacent East China Sea Upper: the Yangtze River Estuary Mud Zone; lower: Zhejiang-Fujian Coastal Mud Zone
化合物 Compound | 美国USA | 加拿大Canada | |||
---|---|---|---|---|---|
影响范围低值ERL | 影响范围中值ERM | 初始效应阈值TEL | 可能效应值PEL | ||
苊烯 Acy | 44 | 640 | 5.87 | 128 | |
苊 Ace | 16 | 500 | 6.71 | 88.9 | |
芴 Fl | 19 | 540 | 21.2 | 144 | |
菲 Phe | 240 | 1500 | 86.7 | 544 | |
蒽 Ant | 85.3 | 1100 | 46.9 | 245 | |
荧蒽 Flu | 600 | 5100 | 113 | 1494 | |
低分子量多环芳烃 ΣLMW-PAHs | 552 | 3160 | — | — | |
芘 Pyr | 665 | 2600 | 153 | 1398 | |
苯并[a]蒽 BaA | 261 | 1600 | 74.8 | 693 | |
䓛 Chr | 384 | 2800 | 108 | 846 | |
苯并[b]荧蒽 BbF | — | — | — | — | |
苯并[k]荧蒽 BkF | — | — | — | — | |
苯并[a]芘 BaP | 430 | 1600 | 88.8 | 763 | |
茚并[1, 2, 3-cd]芘 InP | — | — | — | — | |
二苯并[a,h]蒽 DBA | 63.4 | 260 | 6.22 | 135 | |
苯并[g, h, i]苝 BgP | 85 | 330 | — | — | |
高分子量多环芳烃 ΣHMW-PAHs | 1700 | 9600 | — | — | |
多环芳烃 ΣPAHs | 4022 | 44792 | — | — |
表1 PAHs单体的沉积物质量标准
Table 1 Sediment quality guidelines of PAHs ng·g-1 (by dry mass)
化合物 Compound | 美国USA | 加拿大Canada | |||
---|---|---|---|---|---|
影响范围低值ERL | 影响范围中值ERM | 初始效应阈值TEL | 可能效应值PEL | ||
苊烯 Acy | 44 | 640 | 5.87 | 128 | |
苊 Ace | 16 | 500 | 6.71 | 88.9 | |
芴 Fl | 19 | 540 | 21.2 | 144 | |
菲 Phe | 240 | 1500 | 86.7 | 544 | |
蒽 Ant | 85.3 | 1100 | 46.9 | 245 | |
荧蒽 Flu | 600 | 5100 | 113 | 1494 | |
低分子量多环芳烃 ΣLMW-PAHs | 552 | 3160 | — | — | |
芘 Pyr | 665 | 2600 | 153 | 1398 | |
苯并[a]蒽 BaA | 261 | 1600 | 74.8 | 693 | |
䓛 Chr | 384 | 2800 | 108 | 846 | |
苯并[b]荧蒽 BbF | — | — | — | — | |
苯并[k]荧蒽 BkF | — | — | — | — | |
苯并[a]芘 BaP | 430 | 1600 | 88.8 | 763 | |
茚并[1, 2, 3-cd]芘 InP | — | — | — | — | |
二苯并[a,h]蒽 DBA | 63.4 | 260 | 6.22 | 135 | |
苯并[g, h, i]苝 BgP | 85 | 330 | — | — | |
高分子量多环芳烃 ΣHMW-PAHs | 1700 | 9600 | — | — | |
多环芳烃 ΣPAHs | 4022 | 44792 | — | — |
化合物 Compound | 范围 Range | 均值 Mean | 中值 Median | 检出率 DF% | |
---|---|---|---|---|---|
多环芳烃PAHs | 苊烯 Acy | 0.127-1.38 | 0.407 | 0.371 | 100 |
苊Ace | 0.188-4.92 | 0.656 | 0.496 | 100 | |
芴 Fl | 0.441-10.0 | 2.94 | 2.51 | 100 | |
菲 Phe | 0.737-29.9 | 10.2 | 8.91 | 100 | |
蒽 Ant | 0.177-9.44 | 1.87 | 1.24 | 100 | |
荧蒽 Flu | 0.875-34.7 | 9.08 | 6.93 | 100 | |
芘 Pyr | 0.894-48.0 | 10.5 | 6.92 | 100 | |
苯并[a]蒽 BaA | 0.246-79.4 | 11.4 | 7.55 | 100 | |
䓛 Chr | 0.169-47.7 | 7.26 | 4.28 | 100 | |
苯并[b]荧蒽BbF | 0.354-73.2 | 13.1 | 8.64 | 100 | |
苯并[k]荧蒽BkF | 0.152-32.1 | 7.19 | 5.40 | 100 | |
苯并[a]芘BaP | ND-51.7 | 7.59 | 3.23 | 86 | |
茚并[1, 2, 3-cd]芘 InP | 0.255-22.0 | 6.20 | 4.09 | 100 | |
二苯并[a, h]蒽 DBA | ND-12.9 | 2.29 | 1.16 | 87 | |
苯并[g, h, i]苝 BgP | 0.404-40.4 | 7.83 | 3.77 | 100 | |
15种多环芳烃 ∑15PAHs | 5.53-415 | 98.5 | 68.1 | ||
含氧 多环芳烃 O-PAHs | 9-芴酮 9-Fl | 0.945-13.6 | 4.80 | 4.35 | 100 |
4H-环戊二烯并[d, e, f]-4-酮 PheO | 0.146-4.27 | 1.34 | 0.875 | 100 | |
蒽醌 AQ | 6.51-123 | 29.2 | 22.9 | 100 | |
2-甲基蒽醌 2-MAQ | 0.269-11.4 | 1.41 | 0.946 | 100 | |
苯并[a]芴-11-酮 BaF-11-one | 0.171-5.40 | 1.92 | 1.47 | 100 | |
苯并蒽酮 BezO | ND-1.76 | 0.164 | ND | 49 | |
苯并蒽-7, 12-二酮 BaA-7, 12-D | ND-5.02 | 1.66 | 1.22 | 99 | |
7种含氧多环芳烃 ∑7O-PAHs | 8.93-158 | 40.5 | 33.5 | ||
总有机碳含量TOC% | 0.072-0.518 | 0.253 | 0.232 |
表2 长江入海口及邻近东海沉积物中PAHs和O-PAHs的质量分数水平
Table 2 Concentrations of PAHs and O-PAHs and their compound in sediments (ng·g-1, by dry mass) from Yangtze River Estuary and adjacent East China Sea
化合物 Compound | 范围 Range | 均值 Mean | 中值 Median | 检出率 DF% | |
---|---|---|---|---|---|
多环芳烃PAHs | 苊烯 Acy | 0.127-1.38 | 0.407 | 0.371 | 100 |
苊Ace | 0.188-4.92 | 0.656 | 0.496 | 100 | |
芴 Fl | 0.441-10.0 | 2.94 | 2.51 | 100 | |
菲 Phe | 0.737-29.9 | 10.2 | 8.91 | 100 | |
蒽 Ant | 0.177-9.44 | 1.87 | 1.24 | 100 | |
荧蒽 Flu | 0.875-34.7 | 9.08 | 6.93 | 100 | |
芘 Pyr | 0.894-48.0 | 10.5 | 6.92 | 100 | |
苯并[a]蒽 BaA | 0.246-79.4 | 11.4 | 7.55 | 100 | |
䓛 Chr | 0.169-47.7 | 7.26 | 4.28 | 100 | |
苯并[b]荧蒽BbF | 0.354-73.2 | 13.1 | 8.64 | 100 | |
苯并[k]荧蒽BkF | 0.152-32.1 | 7.19 | 5.40 | 100 | |
苯并[a]芘BaP | ND-51.7 | 7.59 | 3.23 | 86 | |
茚并[1, 2, 3-cd]芘 InP | 0.255-22.0 | 6.20 | 4.09 | 100 | |
二苯并[a, h]蒽 DBA | ND-12.9 | 2.29 | 1.16 | 87 | |
苯并[g, h, i]苝 BgP | 0.404-40.4 | 7.83 | 3.77 | 100 | |
15种多环芳烃 ∑15PAHs | 5.53-415 | 98.5 | 68.1 | ||
含氧 多环芳烃 O-PAHs | 9-芴酮 9-Fl | 0.945-13.6 | 4.80 | 4.35 | 100 |
4H-环戊二烯并[d, e, f]-4-酮 PheO | 0.146-4.27 | 1.34 | 0.875 | 100 | |
蒽醌 AQ | 6.51-123 | 29.2 | 22.9 | 100 | |
2-甲基蒽醌 2-MAQ | 0.269-11.4 | 1.41 | 0.946 | 100 | |
苯并[a]芴-11-酮 BaF-11-one | 0.171-5.40 | 1.92 | 1.47 | 100 | |
苯并蒽酮 BezO | ND-1.76 | 0.164 | ND | 49 | |
苯并蒽-7, 12-二酮 BaA-7, 12-D | ND-5.02 | 1.66 | 1.22 | 99 | |
7种含氧多环芳烃 ∑7O-PAHs | 8.93-158 | 40.5 | 33.5 | ||
总有机碳含量TOC% | 0.072-0.518 | 0.253 | 0.232 |
[1] |
ABBAS I, BADRAN G, VERDIN A, et al., 2018. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: sources, analysis and toxicity[J]. Environmental Chemistry Letters, 16(2): 439-475.
DOI URL |
[2] |
BANSAL V, KUMAR P, KWON E E, et al., 2017. Review of the quantification techniques for polycyclic aromatic hydrocarbons (PAHs) in food products[J]. Critical Reviews in Food Science and Nutrition, 57(15): 3297-3312.
DOI URL |
[3] |
BARAKAT A O, MOSTAFA A, WADE T L, et al., 2011. Distribution and characteristics of PAHs in sediments from the Mediterranean coastal environment of Egypt[J]. Marine Pollution Bulletin, 62(9): 1969-1978.
DOI URL |
[4] |
BI C J, WANG X P, JIA J P, et al., 2018. Spatial variation and sources of polycyclic aromatic hydrocarbons influenced by intensive land use in an urbanized river network of East China[J]. Science of the Total Environment, 627: 671-680.
DOI URL |
[5] |
CAI M, ZHAO Z, YANG H, et al., 2012. Spatial distribution of per- and polyfluoroalkyl compounds in coastal waters from the East to South China Sea[J]. Environmental Pollution, 161: 162-169.
DOI URL |
[6] | CANADIAN COUNCIL OF MINISTERS OF THE ENVIRONMENT, 2002. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, Summary Tables Update 2002 [EB/OL]. Canada: Government of Canada Public Works & Government Services, [2022-01-23]. https://ccme.ca/en/summary-table. |
[7] |
CHEN Y Y, ZHU L Z, ZHOU R B, 2007. Characterization and distribution of polycyclic aromatic hydrocarbon in surface water and sediment from Qiantang River, China[J]. Journal of Hazardous Materials, 141(1): 148-155.
DOI URL |
[8] |
DICKHUT R M, CANUEL E A, GUSTAFSON K E, et al., 2000. Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region[J]. Environmental Science & Technology, 34(21): 4635-4640.
DOI URL |
[9] |
GAO S H, CHEN J, SHEN Z Y, et al., 2013. Seasonal and spatial distributions and possible sources of polychlorinated biphenyls in surface sediments of Yangtze Estuary, China[J]. Chemosphere, 91(6): 809-816.
DOI URL |
[10] |
GUAN Y F, WANG J Z, NI H G, et al., 2007. Riverine inputs of polybrominated diphenyl ethers from the Pearl River Delta (China) to the coastal ocean[J]. Environmental Science & Technology, 41(17): 6007-6013.
DOI URL |
[11] |
HUANG B, LIU M, BI X H, et al., 2014. Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta region, China[J]. Atmospheric Pollution Research, 5(2): 210-218.
DOI URL |
[12] |
IDOWU O, CARBERY M, O'CONNOR W, et al., 2020. Speciation and source apportionment of polycyclic aromatic compounds (PACs) in sediments of the largest salt water lake of Australia[J]. Chemosphere, DOI: 10.1016/j.chemosphere.2019.125779.
DOI |
[13] |
JOHNSEN S, GRIBBESTAD I S, JOHANSEN S, 1989. Formation of chlorinated PAH-a possible health hazard from water chlorination[J]. Science of the Total Environment, 81-82: 231-238.
DOI URL |
[14] |
KEITH L H, TELLIARD W A, 1979. Priority Pollutants I-a Perspective View[J]. Environmental Science & Technology, 13(4): 416-423.
DOI URL |
[15] |
KURAL G, BALKS N A, AKSU A, 2018. Source identification of Polycyclic Aromatic Hydrocarbons (PAHs) in the urban environment of İstanbul[J]. International Journal of Environment and Geoinformatics, 5(1): 53-67.
DOI URL |
[16] |
LI D, YUN Y, GAO R, 2019. Oxygenated Polycyclic aromatic hydrocarbons (Oxy-PAHs) facilitate lung cancer metastasis by epigenetically regulating the epithelial-to-mesenchymal transition (EMT)[J]. Environmental Pollution, 255(Part 2): 113261.
DOI URL |
[17] |
LI W, WANG C, SHEN H Z, et al., 2015. Concentrations and origins of nitro-polycyclic aromatic hydrocarbons and oxy-polycyclic aromatic hydrocarbons in ambient air in urban and rural areas in northern China[J]. Environmental Pollution, 197: 156-164.
DOI URL |
[18] |
LIN T, GUO Z G, LI Y Y, et al., 2015. Air-Seawater Exchange of Organochlorine Pesticides along the Sediment Plume of a Large Contaminated River[J]. Environmental Science & Technology, 49(9): 5354-5362.
DOI URL |
[19] |
LIU L Y, WANG J Z, WEI G L, et al., 2012. Polycyclic aromatic hydrocarbons (PAHs) in continental shelf sediment of China: implications for anthropogenic influences on coastal marine environment[J]. Environmental Pollution, 167: 155-162.
DOI URL |
[20] |
LONG E R, MACDONALD D D, SMITH S L, et al., 1995. Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments[J]. Environmental Management, 19(1): 81-97.
DOI URL |
[21] |
LÜ M, LUAN X L, LIAO C Y, et al., 2020. Human impacts on polycyclic aromatic hydrocarbon distribution in Chinese intertidal zones[J]. Nature Sustainability, 3(10): 878-884.
DOI URL |
[22] |
MONTUORI P, AURINO S, GARZONIO F, et al., 2016. Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in water and sediments from Tiber River and estuary, Italy[J]. Science of the Total Environment, 566-567: 1254-1267.
DOI URL |
[23] |
MOTELAY-MASSEI A, GARBAN B, TIPHAGNE-LARCHER K, et al., 2006. Mass balance for polycyclic aromatic hydrocarbons in the urban watershed of Le Havre (France): transport and fate of PAHs from the atmosphere to the outlet[J]. Water Research, 40(10): 1995-2006.
DOI URL |
[24] |
PICHLER N, MARIA DE SOUZA F, FERREIRA DOS SANTOS V, et al., 2021. Polycyclic aromatic hydrocarbons (PAHs) in sediments of the amazon coast: Evidence for localized sources in contrast to massive regional biomass burning[J]. Environmental Pollution, 268(Part B): 115958.
DOI URL |
[25] |
QIAO M, CAO W, LIU B C, et al., 2017. Simultaneous detection of chlorinated polycyclic aromatic hydrocarbons with polycyclic aromatic hydrocarbons by gas chromatography-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 409(13): 3465-3473.
DOI URL |
[26] |
QIAO M, QI W X, LIU H J, et al., 2013. Simultaneous determination of typical substituted and parent polycyclic aromatic hydrocarbons in water and solid matrix by gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 1291: 129-136.
DOI URL |
[27] |
SARKAR A, BHAGAT J, SAHA SARKER M, et al., 2017. Evaluation of the impact of bioaccumulation of PAH from the marine environment on DNA integrity and oxidative stress in marine rock oyster (Saccostrea cucullata) along the Arabian sea coast[J]. Ecotoxicology, 26(8): 1105-1116.
DOI URL |
[28] |
SHEN M, YU Y J, ZHENG G J, et al., 2006. Polychlorinated biphenyls and polybrominated diphenyl ethers in surface sediments from the Yangtze River Delta[J]. Marine Pollution Bulletin, 52(10): 1299-1304.
DOI URL |
[29] |
SUN X, YIN R S, HU L M, et al., 2020. Isotopic tracing of mercury sources in estuarine-inner shelf sediments of the East China Sea[J]. Environmental Pollution, DOI: 10.1016/j.envpol.2020.114356.
DOI |
[30] |
WANG Y Z, ZHANG S L, CUI W Y, et al., 2018. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface water from the Yongding River basin, China: Seasonal distribution, source apportionment, and potential risk assessment[J]. Science of the Total Environment, 618: 419-429.
DOI URL |
[31] |
WANG Y, LI X, LI B H, et al., 2012. Characterization, sources, and potential risk assessment of PAHs in surface sediments from nearshore and farther shore zones of the Yangtze estuary, China[J]. Environmental Science and Pollution Research International, 19(9): 4148-4158.
DOI URL |
[32] |
WEI C, BANDOWE B A M, HAN Y M, et al., 2015. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi'an, Central China[J]. Chemosphere, 134: 512-520.
DOI URL |
[33] |
YA M L, WU Y L, XU L, et al., 2021. Compound-specific radiocarbon reveals sources and land-sea transport of polycyclic aromatic hydrocarbons in an urban estuary[J]. Water Research, DOI: 10.1016/j.watres.2021.117134.
DOI |
[34] |
YAO P, ZHAO B, BIANCHI T S, et al., 2014. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 91: 1-11.
DOI URL |
[35] |
YIN R S, GUO Z G, HU L M, et al., 2018. Mercury inputs to Chinese marginal seas: impact of industrialization and development of China[J]. Journal of Geophysical Research-Oceans, 123(8): 5599-5611.
DOI URL |
[36] |
ZAKARIA M P, TAKADA H, TSUTSUMI S, et al., 2002. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: A widespread input of petrogenic PAHs[J]. Environmental Science & Technology, 36(9): 1907-1918.
DOI URL |
[37] |
ZENG X, LIU Y, XU L, et al., 2021. Co-occurrence and potential ecological risk of parent and oxygenated polycyclic aromatic hydrocarbons in coastal sediments of the Taiwan Strait[J]. Mar Pollut Bull, 173(Part B): 113093.
DOI URL |
[38] |
ZHANG J, YANG L, MELLOUKI A, et al., 2018. Diurnal concentrations, sources, and cancer risk assessments of PM2.5-bound PAHs, NPAHs, and OPAHs in urban, marine and mountain environments[J]. Chemosphere, 209: 147-155.
DOI URL |
[39] |
ZHAO J B, ZHANG Y J, WANG T, et al., 2019a. Characterization of PM2.5-bound polycyclic aromatic hydrocarbons and their derivatives (nitro-and oxy-PAHs) emissions from two ship engines under different operating conditions[J]. Chemosphere, 225: 43-52.
DOI URL |
[40] |
ZHAO T G, GUO Z G, YAO P, et al., 2019b. Deposition flux and mass inventory of polychlorinated biphenyls in sediments of the Yangtze River Estuary and inner shelf, East China Sea: Implications for contributions of large-river input and e-waste dismantling[J]. Science of the Total Environment, 647: 1222-1229.
DOI URL |
[41] |
ZHENG B H, WANG L P, LEI K, et al., 2016. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China[J]. Chemosphere, 149: 91-100.
DOI URL |
[42] |
ZHU T, RAO Z, GUO F, et al., 2018. Simultaneous Determination of 32 Polycyclic Aromatic Hydrocarbon Derivatives and Parent PAHs Using Gas Chromatography-Mass Spectrometry: Application in Groundwater Screening[J]. Bulletin of Environmental Contamination and Toxicology, 101(5): 664-671.
DOI URL |
[43] | 李慧娟, 2013. 短链氯化石蜡在东海近海环境中的分布及迁移转化研究[D]. 青岛: 中国海洋大学. |
LI H J, 2013. The distribution and migration of short chain chlorinated paraffins in the offshore regions of East China Sea[D]. Qingdao: Ocean University of China. | |
[44] | 栾晓琳, 2019. 我国典型潮间带沉积物中持久性毒害物的污染特征、风险评价和源汇分析[D]. 北京: 中国科学院大学. |
LUAN X L, 2019. Current pollution features, risk assessment and source analysis of persistent toxic substances in typical intertidal sediments of China[D]. Beijing: University of Chinese Academy of Sciences. | |
[45] | 张佳雯, 2020. 基于被动采样的珠三角城市群大气持久性有机污染物的污染特征及暴露风险研究[D]. 北京: 中国科学院大学. |
ZHANG J W, 2020. A Study on pollution characteristics and exposure risks of airborne persistent organic pollutants in the Pearl River Delta Cities based on passive sampling[D]. Beijing: University of Chinese Academy of Sciences. | |
[46] | 赵龙妹, 2018. 成晶节杆菌NT16降解多环芳烃和含氧多环芳烃的特性及机理研究[D]. 西安: 西安建筑科技大学. |
ZHAO L M, 2018. Study on the characteristics of polycyclic aromatic hydrocarbons and oxygen-containing polycyclic aromatic hydrocarbons degradation by arthrobacter crystallopoietes NT16[D]. Xi’an: Xi’an University of Architecture and Technology. |
[1] | 张广毅, 张嘉涛, 王晓伟. 湖泊底泥微生物燃料电池中磷形态分布及释放研究[J]. 生态环境学报, 2023, 32(3): 590-598. |
[2] | 杨奇丽, 窦韦丽, 刘之文, 郭景, 吕刚. 正构烷烃示源的阜新细河河道石油烃类污染特征及其影响因素分析[J]. 生态环境学报, 2023, 32(3): 599-608. |
[3] | 童银栋, 黄兰兰, 杨宁, 张奕妍, 李子芃, 邵波. 全球水体微囊藻毒素分布特征及其潜在环境风险分析[J]. 生态环境学报, 2023, 32(1): 129-138. |
[4] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[5] | 彭红丽, 谭海霞, 王颖, 魏建梅, 冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价[J]. 生态环境学报, 2022, 31(6): 1235-1243. |
[6] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[7] | 施建飞, 靳正忠, 周智彬, 王鑫. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023. |
[8] | 程文远, 李法云, 吕建华, 吝美霞, 王玮. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834. |
[9] | 张云, 舒抒, 罗鑫, 钟琴, 邹华. 水环境中糖皮质激素的环境行为及生态风险研究进展[J]. 生态环境学报, 2022, 31(2): 400-408. |
[10] | 任珺, 潘佳璇, 陶玲, 仝云龙, 王若安, 孙新妮. 氢氧化钠改性坡缕石对Cd污染土壤的钝化修复效果[J]. 生态环境学报, 2022, 31(12): 2422-2430. |
[11] | 谢洁芬, 章家恩, 危晖, 刘自强, 陈璇. 土壤中微塑料复合污染研究进展与展望[J]. 生态环境学报, 2022, 31(12): 2431-2440. |
[12] | 张楷悦, 刘增辉, 王颜昊, 王敬宽, 崔德杰, 柳新伟. 黄河三角洲自然保护区土壤PAHs的风险评估和空间特征[J]. 生态环境学报, 2022, 31(11): 2198-2205. |
[13] | 谢邵文, 郭晓淞, 杨芬, 黄强, 陈曼佳, 魏兴琥, 刘承帅. 广州市城市公园土壤重金属累积特征、形态分布及其生态风险[J]. 生态环境学报, 2022, 31(11): 2206-2215. |
[14] | 刘志坚, 董元华, 张琇, 卿成实. 卫宁平原农用地土壤重金属污染特征与生态风险研究[J]. 生态环境学报, 2022, 31(11): 2216-2224. |
[15] | 王飞, 赵颖. 太原市污灌区农田土壤中多环芳烃污染特征及生态风险评价[J]. 生态环境学报, 2022, 31(1): 160-169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||