生态环境学报 ›› 2022, Vol. 31 ›› Issue (6): 1253-1262.DOI: 10.16258/j.cnki.1674-5906.2022.06.022
朱立安(), 张会化, 程炯*(
), 李婷, 林梓, 李俊杰
收稿日期:
2021-06-16
出版日期:
2022-06-18
发布日期:
2022-07-29
通讯作者:
*程炯,研究员,主要从事土壤生态、面源污染控制、耕地质量建设与土地资源可持续利用等研究。E-mail: 85951452@qq.com作者简介:
朱立安(1974年生),男,副研究员,主要从事土壤环境与区域生态、水土保持与生态修复研究。E-mail: 715546440@qq.com
基金资助:
ZHU Li'an(), ZHANG Huihua, CHENG Jiong*(
), LI Ting, LIN ZI, LI Junjie
Received:
2021-06-16
Online:
2022-06-18
Published:
2022-07-29
摘要:
收集珠江三角洲440个林地表层(0—20 cm)土壤重金属环境数据,通过筛选值和Hakanson潜在生态风险值对珠江三角洲林地土壤生态风险空间格局及形成进行研究分析,以期对统筹珠江三角洲生态土地利用及环境管控,维护自然生态系统的完整性和健康水平提供理论依据。研究结果表明,(1)珠江三角洲林地土壤重金属Cd、Hg、As、Pb、Cr、Cu、Ni、Zn质量分数范围分别为0.001—1.03、0.01—0.92、0.71—580、4.79—520、0.01—131、0.02—192、1.73—78.1、0.01—227 mg∙kg-1,平均含量较低但分布不均匀,变异系数较大的为As、Cd、Cu,局部区域含量较高。(2)风险值评估显示,珠江三角洲林地土壤不少于73.43%处于低潜在生态风险水平,但局部土壤存在中度潜在生态风险至强度潜在生态风险,以Hg和Cd为主;筛选值评估显示,珠江三角洲大部分林地土壤可能受到重金属(以Cr、Hg为主)生态影响。(3)格局分析表明,珠江三角洲中部林地土壤Cd潜在生态风险较高,中部和东部林地土壤Hg潜在生态风险较高;格局形成分析显示,不同重金属及不同生态风险重金属的来源可能存在不同的形成机制,Cd主要受北江和西江水流迁移的影响,其次为干湿沉降,而Hg主要受经济开发及干湿沉降的影响,Cr则是由于自然本底值较高。(4)Hg和Cd元素是珠江三角洲区域土壤生态风险管控的关键因子,其次为Cr和As。该研究对珠江三角洲土壤污染生态管控与粤港澳大湾区生态安全一体化布局有较高的参考价值。
中图分类号:
朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262.
ZHU Li'an, ZHANG Huihua, CHENG Jiong, LI Ting, LIN ZI, LI Junjie. Potential Ecological Risk Pattern Analysis of Heavy Metals in Soil of Forestry Land in The Pearl River Delta[J]. Ecology and Environment, 2022, 31(6): 1253-1262.
潜在污染风险等级 Potential pollution risk level | 土壤重金属 Soil heavy metal | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
镉 Cd | 镉 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | ||||||||
低潜在生态风险 Low potential ecological risk | ≤0.15 | ≤0.13 | ≤100 | ≤480 | ≤1540 | ≤256 | ≤224 | ≤3880 | |||||||
中潜在生态风险 Moderate potential ecological risk | 0.29 | 0.26 | 200 | 960 | 3080 | 512 | 448 | 7760 | |||||||
较强潜在生态风险 Relatively strong potential ecological risk | 0.59 | 0.52 | 400 | 1920 | 6160 | 1024 | 896 | 15520 | |||||||
强潜在生态风险 Strong potential ecological risk | 1.17 | 1.04 | 800 | 3840 | 12320 | 2048 | 1792 | 31040 | |||||||
极强潜在生态风险 Extremely strong potential ecological risk | >1.17 | >1.04 | >800 | >3840 | >12320 | >2048 | >1792 | >31040 |
表1 基于Hakanson潜在生态风险风险值
Table 1 Risk value of potential ecological risks based on Hakanson mg∙kg-1
潜在污染风险等级 Potential pollution risk level | 土壤重金属 Soil heavy metal | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
镉 Cd | 镉 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | ||||||||
低潜在生态风险 Low potential ecological risk | ≤0.15 | ≤0.13 | ≤100 | ≤480 | ≤1540 | ≤256 | ≤224 | ≤3880 | |||||||
中潜在生态风险 Moderate potential ecological risk | 0.29 | 0.26 | 200 | 960 | 3080 | 512 | 448 | 7760 | |||||||
较强潜在生态风险 Relatively strong potential ecological risk | 0.59 | 0.52 | 400 | 1920 | 6160 | 1024 | 896 | 15520 | |||||||
强潜在生态风险 Strong potential ecological risk | 1.17 | 1.04 | 800 | 3840 | 12320 | 2048 | 1792 | 31040 | |||||||
极强潜在生态风险 Extremely strong potential ecological risk | >1.17 | >1.04 | >800 | >3840 | >12320 | >2048 | >1792 | >31040 |
项目Item | 土壤重金属 Soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
筛选值 Screening values * | 0.09 | 0.06 | 35 | 167.9 | 21.1 | 88.4 | 25.1 | 90.1 |
表2 风险评价分析筛选值
Table 2 Screening values of risk assessment analysis mg∙kg-1
项目Item | 土壤重金属 Soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
筛选值 Screening values * | 0.09 | 0.06 | 35 | 167.9 | 21.1 | 88.4 | 25.1 | 90.1 |
图2 珠江三角洲林业用地8种土壤重金属正态分布特征
Figure 2 Normal distribution characteristics of eight heavy metals in soil of forest land in the Pearl River Delta n=440. The same below
统计项目 Statistical item | 土壤重金属含量 Content of soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
土壤含量平均值 Soil mean content | 0.102 | 0.096 | 14.41 | 41.65 | 38.76 | 15.31 | 12.05 | 53.72 |
标准差 Standard deviation | 0.128 | 0.091 | 31.33 | 30.83 | 26.70 | 16.79 | 10.01 | 30.30 |
最大值 Maximum | 1.03 | 0.921 | 579.97 | 520.00 | 130.67 | 192.00 | 78.10 | 227.37 |
最小值 Minimum | 0.001 | 0.01 | 0.71 | 4.79 | 0.01 | 0.02 | 1.73 | 0.01 |
变异系数 Variation coefficient | 1.25 | 0.95 | 2.17 | 0.74 | 0.69 | 1.10 | 0.83 | 0.56 |
中位数 Median | 0.067 | 0.072 | 7.59 | 37.97 | 33.17 | 11.18 | 9.02 | 46.28 |
珠江三角洲背景值 Background values of Pearl River Delta* | 0.11 | 0.13 | 25 | 60 | 77 | 32 | 28 | 97 |
表3 研究区域土壤重金属含量分析
Table 3 Soil heavy metal content analysis in the study area mg∙kg-1
统计项目 Statistical item | 土壤重金属含量 Content of soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
土壤含量平均值 Soil mean content | 0.102 | 0.096 | 14.41 | 41.65 | 38.76 | 15.31 | 12.05 | 53.72 |
标准差 Standard deviation | 0.128 | 0.091 | 31.33 | 30.83 | 26.70 | 16.79 | 10.01 | 30.30 |
最大值 Maximum | 1.03 | 0.921 | 579.97 | 520.00 | 130.67 | 192.00 | 78.10 | 227.37 |
最小值 Minimum | 0.001 | 0.01 | 0.71 | 4.79 | 0.01 | 0.02 | 1.73 | 0.01 |
变异系数 Variation coefficient | 1.25 | 0.95 | 2.17 | 0.74 | 0.69 | 1.10 | 0.83 | 0.56 |
中位数 Median | 0.067 | 0.072 | 7.59 | 37.97 | 33.17 | 11.18 | 9.02 | 46.28 |
珠江三角洲背景值 Background values of Pearl River Delta* | 0.11 | 0.13 | 25 | 60 | 77 | 32 | 28 | 97 |
风险值 The risk value | 土壤重金属Soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
低潜在生态风险 Low potential ecological risk | 91.17 | 83.17 | 99.32 | 99.77 | 100 | 100 | 100 | 100 |
中潜在生态风险 Moderate potential ecological risk | 7.27 | 13.18 | 0.45 | 0.23 | — | — | — | — |
较强潜在生态风险 Relatively strong potential ecological risk | 1.36 | 2.51 | — | — | — | — | — | — |
强潜在生态风险 Strong potential ecological risk | 0.2 | 1.14 | 0.23 | — | — | — | — | — |
极强潜在生态风险 Extremely strong potential ecological risk | — | — | — | — | — | — | — | — |
表4 基于风险值的潜在生态风险林地土壤面积占比
Table 4 Proportion of soil area in forest land with ecological risk of heavy metals at different levels %
风险值 The risk value | 土壤重金属Soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
低潜在生态风险 Low potential ecological risk | 91.17 | 83.17 | 99.32 | 99.77 | 100 | 100 | 100 | 100 |
中潜在生态风险 Moderate potential ecological risk | 7.27 | 13.18 | 0.45 | 0.23 | — | — | — | — |
较强潜在生态风险 Relatively strong potential ecological risk | 1.36 | 2.51 | — | — | — | — | — | — |
强潜在生态风险 Strong potential ecological risk | 0.2 | 1.14 | 0.23 | — | — | — | — | — |
极强潜在生态风险 Extremely strong potential ecological risk | — | — | — | — | — | — | — | — |
筛选值 Screening value | 土壤重金属 Soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
可接受风险(低于筛选值) Acceptable risk (below screening value) | 73.37 | 20.51 | 95.27 | 99.84 | 21.56 | 99.85 | 96.25 | 96.25 |
不可接受风险(高于筛选值)Unacceptable risk (higher than screening value) | 26.73 | 79.49 | 4.73 | 0.16 | 78.46 | 0.15 | 3.75 | 3.75 |
表5 基于筛选值的生态风险林地土壤面积占比
Table 5 Soil area proportion of ecological risk forest land based on screening value %
筛选值 Screening value | 土壤重金属 Soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
可接受风险(低于筛选值) Acceptable risk (below screening value) | 73.37 | 20.51 | 95.27 | 99.84 | 21.56 | 99.85 | 96.25 | 96.25 |
不可接受风险(高于筛选值)Unacceptable risk (higher than screening value) | 26.73 | 79.49 | 4.73 | 0.16 | 78.46 | 0.15 | 3.75 | 3.75 |
[1] | BUCH A C, BROWN G G, CORREIA M E F, et al., 2017. Ecotoxicology of mercury in tropical forest soils: Impact on earthworms[J]. Science of the Total Environment, 589: 222-231. |
[2] |
CHEN J W, ZHANG H, LI J J, et al., 2020. The toxic factor of copper should be adjusted during the ecological risk assessment for soil bacterial community[J]. Ecological Indicators, DOI: 10.1016/j.ecolind.2020.106072.
DOI URL |
[3] | FANG T, LU W X, LI J, et al., 2017. Levels and risk assessment of metals in sediment and fish from Chaohu Lake, Anhui Province, China[J]. Environmental Science &Pollution Research, 24(18): 15390-15400. |
[4] | FREY B, STEMMER M, WIDMER F, et al., 2006. Microbial activity and community structure of a soil after heavy metal contamination in a model forest ecosystem[J]. Soil Biology & Biochemistry, 38(7): 1745-1756. |
[5] | HAKANSON L, 1980. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 14(8): 975-1001. |
[6] | HE W, BAI Z L, LIU W X, et al., 2016. Occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls and heavy metals in surface sediments from a large eutrophic Chinese lake (Lake Chaohu)[J]. Environmental Science and Pollution Research, 23(11): 10335-10348. |
[7] | HU Y N, LIU X P, BAI J M, et al., 2013. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization[J]. Environmental Science and Pollution Research, 20(9): 6150-6159. |
[8] | JIANG R, WANG M E, CHEN W P, et al., 2019. Ecological risk of combined pollution on soil ecosystem functions: Insight from the functional sensitivity and stability[J]. Environmental Pollution, 255(1): 113184. |
[9] |
LIU K H, LI C M, TANG S Q, et al., 2020. Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi, China[J]. Chemosphere, DOI: 10.1016/j.chemosphere.2020.126415.
DOI URL |
[10] | LIU Y Q, DU Q Y, WANG Q, et al., 2017. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region[J]. Environmental Pollution, 226: 370-378. |
[11] | MULLER G, 1969. Index of geoaccumlation in sediments of the Rhine river[J]. Geojournal, 2(3): 108-118. |
[12] | RICO A, WAICHMAN A V, GEBER CORRȆA R, et al., 2011. Effects of malathion and carbendazim on Amazonian freshwater organisms: comparison of tropical and temperate species sensitivity distributions[J]. Ecotoxicology, 20(4): 625-634. |
[13] |
WAN Y N, JIANG B, WEI D P, et al., 2020. Ecological criteria for zinc in Chinese soil as affected by soil properties[J]. Ecotoxicology and Environmental Safety, DOI: 10.1016/j.ecoenv.2020.110418.
DOI URL |
[14] | ZHANG C S, WANG L J, 2001. Multi-element Geochemistry of Sediments from the Pearl River System, China[J]. Applied Geochemistry, 16(9-10): 1251-1259. |
[15] | ZHANG H H, CHEN J J, ZHU L, et al., 2014. Anthropogenic mercury enrichment factors and contributions in soils of Guangdong Province, South China[J]. Journal of Genchemical Exploration, 144(Part B): 312-319. |
[16] | ZHANG Y M, WANG J, MENG K, et al., 2019. Changes of heavy metal content in sediments at Haizhou Bay and risk assessment[J]. Applied ecology and environmental research, 17(5): 11327-11339. |
[17] | 楚春晖, 佘宇晨, 佘济云, 等, 2014. 亚热带不同森林类型的土壤重金属空间分布特征及其潜在生态风险[J]. 水土保持学报, 28(5): 258-263. |
CHU C H, SHE Y C, SHE J Y, et al., 2014. Spatial distribution and ecological risk assessment of heavy metals in soil from different forrests in subtropics[J]. Journal of Soil and Water Conservation, 28(5): 258-263. | |
[18] | 陈文新, 1990. 土壤与环境微生物学[M]. 北京: 中国农业大学出版社: 70-233. |
CHEN W X, 1990. Soil and environmental microbiology[M]. Beijing: China Agricultural University Press: 70-233. | |
[19] | 常春英, 肖荣波, 林亲铁, 等, 2016. 珠三角地区土壤氧化物对重金属生物有效性的影响[J]. 广东工业大学学报, 33(4): 84-94. |
CHANG C Y, XIAO R B, LIN Q T, et al., 2016. Effect of soil oxides on the bioavailability of heavy metals in the Pearl River Delta region[J]. Journal of Guangdong University of Technology, 33(4): 84-94. | |
[20] | 陈俊坚, 张会化, 刘鉴明, 等, 2011. 广东省区域地质背景下土壤表层重金属元素空间分布特征及其影响因子分析[J]. 生态环境学报, 20(4): 646-651. |
CHEN J J, ZHANG H H, LIU J M, et al., 2011. Spatial distributions and controlled factors of heavy metals in surface soils in Guangdong based on the regional geology[J]. Ecology and Environmental Sciences, 20(4): 646-651. | |
[21] | 方晰, 唐志娟, 田大伦, 等, 2012. 长沙城市森林土壤7种重金属含量特征及其潜在生态风险[J]. 生态学报, 32(23): 7595-7606. |
FANG X, TANG Z J, TIAN D L, et al., 2012. Distribution and ecological risk assessment of 7 heavy metals in urban forest soils in Changsha City[J]. Acta Ecologica Sinica, 32(23): 7595-7606. | |
[22] | 广东省质量技术监督局, 2014. 土壤重金属风险评价筛选值珠江三角洲: DB 44/T 1414-2014[S]. |
Guangdong Burean of Quality and Technical Supervision, 2014. Screening values of soil heavy metals risk assessment in Pearl River Delta: DB 44/T 1414-2014[S]. | |
[23] | 国家环境保护局, 1997. 土壤质量铅、镉的测定石墨炉原子吸收分光光度法: GB/T 17141-1997[S]. |
National Environmental Protection Agency, 1997. Soil quality- determination of lead and cadmium-graphite furnace atomic absorption spectrophotometry: GB/T 17141-1997[S]. | |
[24] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2008. 土壤质量总汞、总砷、总铅的测定原子荧光法: GB/T 22105.1-2008、GB/T 22105.2-2008[S]. 北京: 中国标准出版社. |
General Administration of Quality Supervision Inspection and Quarantine of The People's Republic of China, Standardization Administration of The People's Republic of China, 2008. Soil mass - Determination of total mercury, total arsenic and total lead-atomic fluorescence method GB/T 22105.1- 2008, GB/T 22105.2-2008[S]. Beijing: Standards Press of China. | |
[25] | 韩志轩, 王学求, 迟清华, 等, 2018. 珠江三角洲冲积平原土壤重金属元素含量和来源解析[J]. 中国环境科学, 38(9): 3455-3463. |
HAN Z X, WANG X Q, CHI Q H, et al., 2018. Occurrence and source identification of heavy metals in the alluvial soils of Pearl River Delta region, south China[J]. China Environmental Science, 38(9): 3455-3463. | |
[26] | 何博, 赵慧, 王铁宇, 等, 2019. 典型城市化区域土壤重金属污染的空间特征与风险评价[J]. 环境科学, 40(6): 2869-2876. |
HE B, ZHAO H, WANG T Y, et al., 2019. Spatial distribution and risk assessment of heavy metals in soils from a typical urbanized area[J]. Environmental Science, 40(6): 2869-2876. | |
[27] | 李敏, 滕泽栋, 朱静, 等, 2018. 解磷微生物修复土壤重金属污染研究进展[J]. 生态学报, 38(10): 3393-3402. |
LI M, TENG Z D, ZHU J, et al., 2018. Research advances in heavy metal contaminated soil remediation by phosphate solubilizing microorganisms[J]. Acta Ecologica Sinica, 38(10): 3393-3402. | |
[28] | 李铖, 李芳柏, 吴志峰, 等, 2015. 景观格局对农业表层土壤重金属污染的影响[J]. 应用生态学报, 26(4): 1137-1144. |
LI C, LI F B, WU Z F, et al., 2015. Impacts of landscape patterns on heavy metal contamination of agricultural top soils in the Pearl River Delta, South China[J]. Chinese Journal of Applied Ecology, 26(4): 1137-1144. | |
[29] | 李飞, 黄瑾辉, 李雪, 等, 2015. 基于随机模糊理论的土壤重金属潜在生态风险评价及溯源分析[J]. 环境科学学报, 35(4): 1233-1240. |
LI F, HUANG J H, LI X, et al., 2015. Potential ecological risk assessment based on stochastic-fuzzy simulation for soils and pollution source identification[J]. Acta Scientiae Circumstantiae, 35(4): 1233-1240. | |
[30] | 孟紫强, 2006. 生态毒理学原理与方法[M]. 北京: 科学出版社: 324-325. |
MENG Z Q, 2006. Principles and methods of ecotoxicology[M]. Beijing: Science Press: 324-325. | |
[31] | 潘勇军, 陈步峰, 王兵, 等, 2013. 广州市森林生态系统服务功能评估[J]. 中南林业科技大学学报, 33(5): 73-78. |
PAN Y J, CHEN B F, WANG B, et al., 2013. Assessment of service functions of forest ecosystem for Guangzhou[J]. Journal of Central South University of Forestry & Technology, 33(5): 73-78. | |
[32] | 生态环境保护部, 2018. 生态安全土壤环境基准制定技术指南(征求意见稿)[EB/OL][2018-07-25]. https://www.sohu.com/a/245245191_760587. |
Ministry of Ecology and Environment of the People's Republic of China, 2018. Technical guideline for deriving soil environmmengtal criteria for ecological safety (draft for comments)[EB/OL][2018-07-25]. https://www.sohu.com/a/245245191_760587. | |
[33] | 生态环境部, 国家市场监督管理总局, 2018. 土壤环境质量农用地土壤污染风险管控标准 (试行): GB 15618-2018[S]. 北京: 中国标准出版社. |
Ministry of Ecology and Environment of the People's Republic of China, State Administration for Market Regulation, 2018. Soil environmental quality Soil pollution risk control standard for construction Land (Trial): GB 36600-2018[S]. Beijing: Standards Press of China. | |
[34] | 生态环境部, 国家市场监督管理总局, 2018. 土壤环境质量建设用地土壤污染风险管控标准(试行): GB 36600-2018[S]. 北京: 中国标准出版社. |
Ministry of Ecology and Environment of the People's Republic of China, State Administration for Market Regulation, 2018. Soil environmental quality Soil pollution risk control standard for Construction Land (Trial): GB 36600-2018[S]. Beijing: Standards Press of China. | |
[35] | 史明易, 王祖伟, 王嘉宝, 2019. Hakanson指数法在评价土壤重金属生态风险上的应用进展[J]. 土壤通报, 50(4): 1002-1008. |
SHI M Y, WANG Z W, WANG J B, 2019. Assessment for Ecological Risk of Soil Heavy Metals with Hakanson Index Method: A Review[J]. Chinese Journal of Soil Science, 50(4): 1002-1008. | |
[36] | 陶玲, 任珺, 祝广华, 等, 2007. 重金属对植物种子萌发的影响研究进展[J]. 农业环境科学学报, 26(S1): 52-57. |
TAO L, REN J, ZHU G H, et al., 2007. Advance on the effects of heavy metals on seed germination[J]. Journal of Agro-Environment Science, 26(S1): 52-57. | |
[37] | 田大勇, 常琛朝, 王成志, 等, 2015. 环境中重金属和有机污染物的物种敏感性分布研究进展[J]. 生态毒理学报, 2015, 10(3): 38-49. |
TIAN D Y, CHANG C C, WANG C Z, et al., 2015. Review of species sensitivity distributions for heavy metals and organic contaminants[J]. Asian Journal of Ecotoxicology, 2015, 10(3): 38-49. | |
[38] | 王小庆, 李菊梅, 韦东普, 等, 2014. 土壤中铜生态阈值的影响因素及其预测模型[J]. 中国环境科学, 34(2): 445-451. |
WANG X Q, LI J M, WEI D P, et al., 2014. Major soil factors affecting ecological threshold for copper and the predictable model[J]. China Environmental Science, 34(2): 445-451. | |
[39] | 王玉军, 刘存, 周东美, 等, 2016. 一种农田土壤重金属影响评价的新方法: 土壤和农产品综合质量指数法[J]. 农业环境科学学报, 35(7): 1225-1232. |
WANG Y J, LIU C, ZHOU D M, et al., 2016. A new approach for evaluating soil heavy metal impact: A comprehensive index combined soil environmental quality and agricultural products quality[J]. Journal of Agro-Environment Science, 35(7): 1225-1232. | |
[40] | 王玉军, 吴同亮, 周东美, 等, 2017. 农田土壤重金属污染评价研究进展[J]. 农业环境科学学报, 36(12): 2365-2378. |
WANG Y J, WU T L, ZHOU D M, et al., 2017. Advances in soil heavy metal pollution evaluation based on bibliometrics analysis[J]. Journal of Agro-Environment Science, 36(12): 2365-2378. | |
[41] | 王紫泉, 2017. 土壤酶对As污染毒性响应及作用机理研究[D]. 杨凌: 西北农林科技大学. |
WANG Z Q, 2017. Toxicity response of soil enzyme to arsenic pollution and the inhibition mechanism[D]. Yangling: Northwest A & F University. | |
[42] | 奚旦立, 孙裕生, 刘秀英, 2004. 环境监测[M]. 第3版. 北京: 高等教育出版社. |
XI D L, SUN Y S, LIU X Y, 2004. Environmental monitoring[M]. 3rd edition. Beijing: Higher Education Press. | |
[43] | 夏建东, 龙锦云, 高亚萍, 等, 2020. 巢湖沉积物重金属污染生态风险评价及来源解析[J]. 地球与环境, 48(2): 220-227. |
XIA J D, LONG J Y, GAO Y P, et al., 2020. Ecological risk assessment and source analysis of heavy metal pollutions in sediments of the Chaohu Lake[J]. Earth and Environment, 48(2): 220-227. | |
[44] |
夏星, 杨建军, 2019. 基于同步辐射技术研究土壤铁氧化物固定重金属分子机制的进展[J]. 应用生态学报, 30(1): 348-358.
DOI |
XIA X, YANG J J, 2019. Molecular sequestration mechanisms of heavy metals by iron oxides in soils using synchrotron-based techniques: A review[J]. Chinese Journal of Applied Ecology, 30(1): 348-358. | |
[45] | 徐湘博, 马中, 王瑛莹, 等, 2017. 湖南长株潭中度污染区土壤镉概率生态风险评价[J]. 环境保护科学, 43(4): 115-121. |
XU X B, MA Z, WANG Y Y, et al., 2017. Probabilistic ecological risk assessment of cadmium in the soils of Changsha-ZhuzhouXiangtan Area of Hunan Province[J]. Environmental Protection Science, 43(4): 115-121. | |
[46] | 夏增禄, 1994. 中国主要类型土壤若干重金属临界含量和环境容量区域分异的影响[J]. 土壤学报 (2): 161-169. |
XIA Z L, 1994. The influence of the critical content of heavy metals and the regional differentiation of environmental capacity in the main types of soils in China[J]. Acta Pedologica Sinica (2): 161-169. | |
[47] | 徐争启, 倪师军, 庹先国, 等, 2008. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 148(2): 112-115. |
XU Z Q, NI S J, TUO X G, et al., 2008. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 148(2): 112-115. | |
[48] | 游秀花, 聂丽华, 杨桂娣, 2005. 森林生态系统植物重金属 (Cu、Zn、Cd) 污染研究进展[J]. 福建林业科技, 32(3):154-159. |
YOU X H, NIE L H, YANG G D, 2005. Research progress in the plant heavy metal (Cu, Zn, Cd) pollution of forestry ecological system[J]. Journal of Fujian Forestry Science and Technology, 32(3): 154-159. | |
[49] | 张金池, 严逸伦, 曾锋, 2001. 重金属对森林生态系统效应的研究进展[J]. 南京林业大学学报 (自然科学版), 25(5): 52-56. |
ZHANG J C, YAN Y L, ZENG F, 2001. Advance in the research on domino effect of heavy metal ions in forest ecosystem[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 25(5): 52-56. | |
[50] | 章明奎, 王丽平, 2007. 重金属污染对土壤有机质积累的影响[J]. 应用生态学报, 7(18): 1479-1483. |
ZHANG M K, WANG L P, 2007. Impact of heavy metals pollution on soil or ganic matter accumulation[J]. Chinese Journal of Applied Ecology, 7(18): 1479-1483. | |
[51] | 郑丽萍, 王国庆, 龙涛, 等, 2018. 不同国家基于生态风险的土壤筛选值研究及启示[J]. 生态毒理学报, 13(6): 39-49. |
ZHENG L P, WANG G Q, LONG T, et al., 2018. A study of risk-based ecological soil screening levels among different countries and its implication for China[J]. Asian Journal of Ecotoxicology, 13(6): 39-49. | |
[52] | 朱立安, 胡羡聪, 柯欢, 等, 2020a. 佛山市城市森林生态系统服务价值估算研究[J]. 西南师范大学学报 (自然科学版), 45(3): 137-142. |
ZHU L A, HU X C, KE H, et al., 2020. On evaluation of urban forest ecosystem services in Foshan[J]. Journal of Southwest China Normal University (Natural Science Edition), 45(3): 137-142. | |
[53] | 朱立安, 曾清苹, 柳勇, 等, 2020b. 佛山城市典型森林群落土壤重金属分布、流通及枯落物富集特征研究[J]. 生态学报, 40(13): 4659-4669. |
ZHU L A, ZENG Q P, LIU Y, et al., 2020. Heavy metals distribution and circulation in soils and their enrichment characteristics by litter in urban typical forest communities in Foshan, China[J]. Acta Ecologica Sinica, 40(13): 4659-4669. | |
[54] | 朱永官, 陈保冬, 林爱军, 等, 2005. 珠江三角洲地区土壤重金属污染控制与修复研究的若干思考[J]. 环境科学学报, 5(12): 3-7. |
ZHU Y G, CHEN B D, LIN A J, et al., 2005. Heavy metal contamination in Pearl River Delta-Status and research priorities[J]. Acta Scientiae Circumstantiae, 25(12): 3-7. | |
[55] |
宗庆霞, 窦磊, 侯青叶, 等, 2017. 基于土地利用类型的土壤重金属区域生态风险评价: 以珠江三角洲经济区为例[J]. 地球科学进展, 32(8): 875-884.
DOI |
ZONG Q X, DOU L, HOU Q Y, et al., 2017. Regional ecological risk assessment of soil heavy metals in Pearl River Delta economic zone based on different land uses[J]. Advances in Earth Science, 32(8): 875-884. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 杨春亮, 刘旻霞, 王千月, 苗乐乐, 肖音迪, 王敏. 单户与联户放牧经营下草玉梅与嵩草种群空间格局及其关联性[J]. 生态环境学报, 2023, 32(4): 651-659. |
[3] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[4] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[5] | 宋志斌, 周佳诚, 谭路, 唐涛. 高原河流着生藻类群落沿海拔梯度的变化特征--以西藏黑曲、雪曲为例[J]. 生态环境学报, 2023, 32(2): 274-282. |
[6] | 肖洁芸, 周伟, 石佩琪. 土壤重金属含量高光谱反演[J]. 生态环境学报, 2023, 32(1): 175-182. |
[7] | 向兴, 满百膺, 张俊忠, 罗洋, 毛小涛, 张超, 孙丙华, 王希. 黄山土壤细菌群落及氮循环功能群的垂向分布格局[J]. 生态环境学报, 2023, 32(1): 56-69. |
[8] | 肖以华, 付志高, 许涵, 史欣, 唐海明, 陈步峰. 城市化对珠江三角洲不同功能群植物叶片功能性状的影响[J]. 生态环境学报, 2022, 31(9): 1783-1793. |
[9] | 黄宏, 郑欣芸, 李迎东, 赵旭, 俞锦辰, 汪振华. 大陈岛海域不同年龄褐菖鲉对重金属富集作用研究[J]. 生态环境学报, 2022, 31(9): 1885-1891. |
[10] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[11] | 苏泳松, 宋松, 陈叶, 叶子强, 钟润菲, 王昭尧. 珠江三角洲人类活动净氮输入时空特征及其影响因素[J]. 生态环境学报, 2022, 31(8): 1599-1609. |
[12] | 陶玲, 黄磊, 周怡蕾, 李中兴, 任珺. 污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022, 31(8): 1637-1646. |
[13] | 李莹, 张洲, 杨高明, 祖艳群, 李博, 陈建军. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8): 1657-1666. |
[14] | 罗松英, 李秋霞, 邱锦坤, 邓素炎, 李一锋, 陈碧珊. 南三岛土壤-红树植物系统中重金属形态特征及迁移转化规律[J]. 生态环境学报, 2022, 31(7): 1409-1416. |
[15] | 董乐恒, 王旭刚, 陈曼佳, 王子豪, 孙丽蓉, 石兆勇, 吴琪琪. 光照和避光条件下石灰性水稻土Fe氧化还原与Cu活性关系研究[J]. 生态环境学报, 2022, 31(7): 1448-1455. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||