生态环境学报 ›› 2022, Vol. 31 ›› Issue (12): 2431-2440.DOI: 10.16258/j.cnki.1674-5906.2022.12.018
谢洁芬1,2(), 章家恩1,2,3,4,*(
), 危晖1,2,3,4, 刘自强2, 陈璇2
收稿日期:
2022-08-09
出版日期:
2022-12-18
发布日期:
2023-02-15
通讯作者:
*章家恩(1968 年生),男,教授,博士,博士研究生导师,主要从事生态学相关科研与教学工作。E-mail: jeanzh@scau.edu.cn作者简介:
谢洁芬(1980年生),女,讲师,博士研究生,主要研究方向为生态系统生态学。E-mail: jfxie@scau.edu.cn
基金资助:
XIE Jiefen1,2(), ZHANG Jiaen1,2,3,4,*(
), WEI Hui1,2,3,4, LIU Ziqiang2, CHEN Xuan2
Received:
2022-08-09
Online:
2022-12-18
Published:
2023-02-15
摘要:
微塑料污染作为新型的生态环境问题,是全球共同面临的严峻挑战,其对生态系统的威胁及潜在风险已成为当前环境领域的研究热点。自然界中的微塑料与多种污染物共存所产生的复合污染,比微塑料单一污染造成的后果更严重,因此,对微塑料复合污染的内在机制研究及所采取的防控对策将更加复杂。该文按照土壤环境中与微塑料产生复合污染的污染物的不同来源,将微塑料复合污染划分为两种类型:污染物来自土壤环境中的重金属、持久性有机污染物和抗生素等,称为外源性复合污染;污染物来自微塑料自身所释放的有毒添加剂等,则称为内源性复合污染。综述了土壤中微塑料复合污染的3种主要路径:一是微塑料与土壤环境中常见的主要污染物,如重金属、持久性有机污染物、抗生素等发生吸附作用;二是微塑料与土壤微生物等形成生物膜;三是微塑料与自身释放的有毒添加剂形成共同污染。同时,分析了微塑料与以上不同污染物和自身释放的添加剂共同作用的过程、相关影响因素,以及微塑料复合污染所引发的生态毒性效应。在此基础上,对土壤微塑料复合污染研究一些未来发展方向进行了展望。该文旨在为深入探究土壤中微塑料复合污染的互作机理、风险评估和综合治理提供参考。
中图分类号:
谢洁芬, 章家恩, 危晖, 刘自强, 陈璇. 土壤中微塑料复合污染研究进展与展望[J]. 生态环境学报, 2022, 31(12): 2431-2440.
XIE Jiefen, ZHANG Jiaen, WEI Hui, LIU Ziqiang, CHEN Xuan. Microplastic-based Compound Pollution in Soil: An overview[J]. Ecology and Environment, 2022, 31(12): 2431-2440.
图1 基于VOSviewer分析的微塑料热点网络共现图 (a)WOS的可视化分析标签视图(Overlay visualization);(b)CNKI 的可视化分析聚类视图(Network visualization)
Figure 1 Hotspot network co-occurrence diagram based on VOSviewer analysis with microplastics as the search term
图2 WOS,CNKI数据库中以土壤微塑料为主题发表的文章数量分布(2011年1月1日—2022年8月31日)
Figure 2 The number distribution of articles published on the theme of soil microplastics in WOS and CNKI databases (January 1, 2011?August 31, 2022)
污染类型 Pollution type | 常见污染物 Common pollutant | 污染成分 Pollution component | 主要微塑料类型 Major types of microplastic | 微塑料粒径 Microplastic particle size | 复合效应 Composition effect | 文献 Reference |
---|---|---|---|---|---|---|
外源性污染 Exogenous pollution | 重金属 Heavy meta | As | PVC | — | 对蚯蚓毒性较低 | Wang et al., |
Cu | PA, PE, PS, PET, PVC, PMMA | 70‒350 μm | 铜离子的吸附受 微塑料类型影响较大 | Yang et al., | ||
Zn | HDPE | <5 mm | 增加锌的生物利用性 | Hodsonet al., | ||
外源性污染 Exogenous pollution | 持久性有机污染物 Persistent organic pollutant | 邻苯二甲酸酯类 | PVC, PE, PS | <75 μm | 吸附呈现高度线性 | Liu et al., |
多溴联苯醚 | PET | <75 μm | 累积负荷多溴联苯醚 | Gaylor et al., | ||
4-(2, 4-二氯苯氧基)丁酸,阿特拉津 | PE | 250 μm | 降低土壤吸附能力 | Hüffer et al., | ||
多环芳烃、多氯联苯 | PE, PS | 250 μm, 300 μm | 多环芳烃和多氯联苯的 组织浓度降低 | Wang et al., | ||
外源性污染 Exogenous pollution | 抗生素 Antibiotic | 磺胺嘧啶、阿莫西林、四环素、环丙沙星、甲氧苄啶 | PE, PS, PP, PA, PVC | 75‒180 μm | 吸附能力因抗生素、微塑料类型和环境条件而异 | Li et al., |
四环素 | PE | <1 m | 抑制四环素降解和扩散 | Sun et al., | ||
内源性污染 Endogenous pollution | 微塑料添加剂 Microplastic additive (增塑剂 plasticizer) | 邻苯二甲酸酯类 | PVC | — | 对生物健康造成威胁 | 赵一默等, |
表1 微塑料和土壤中常见多种污染物产生的复合效应
Table 1 Combined effect of microplastics with other common pollutants in soil
污染类型 Pollution type | 常见污染物 Common pollutant | 污染成分 Pollution component | 主要微塑料类型 Major types of microplastic | 微塑料粒径 Microplastic particle size | 复合效应 Composition effect | 文献 Reference |
---|---|---|---|---|---|---|
外源性污染 Exogenous pollution | 重金属 Heavy meta | As | PVC | — | 对蚯蚓毒性较低 | Wang et al., |
Cu | PA, PE, PS, PET, PVC, PMMA | 70‒350 μm | 铜离子的吸附受 微塑料类型影响较大 | Yang et al., | ||
Zn | HDPE | <5 mm | 增加锌的生物利用性 | Hodsonet al., | ||
外源性污染 Exogenous pollution | 持久性有机污染物 Persistent organic pollutant | 邻苯二甲酸酯类 | PVC, PE, PS | <75 μm | 吸附呈现高度线性 | Liu et al., |
多溴联苯醚 | PET | <75 μm | 累积负荷多溴联苯醚 | Gaylor et al., | ||
4-(2, 4-二氯苯氧基)丁酸,阿特拉津 | PE | 250 μm | 降低土壤吸附能力 | Hüffer et al., | ||
多环芳烃、多氯联苯 | PE, PS | 250 μm, 300 μm | 多环芳烃和多氯联苯的 组织浓度降低 | Wang et al., | ||
外源性污染 Exogenous pollution | 抗生素 Antibiotic | 磺胺嘧啶、阿莫西林、四环素、环丙沙星、甲氧苄啶 | PE, PS, PP, PA, PVC | 75‒180 μm | 吸附能力因抗生素、微塑料类型和环境条件而异 | Li et al., |
四环素 | PE | <1 m | 抑制四环素降解和扩散 | Sun et al., | ||
内源性污染 Endogenous pollution | 微塑料添加剂 Microplastic additive (增塑剂 plasticizer) | 邻苯二甲酸酯类 | PVC | — | 对生物健康造成威胁 | 赵一默等, |
吸附对象 Adsorption object | 主要互作机理 Main interaction mechanism | 主要影响因素 Main influencing factors | 复合污染效应和风险 Compound pollution effects and risks |
---|---|---|---|
重金属 Heavy metal | 主要是与金属阳离子通过络合作用 (Zou et al., | 1. 微塑料种类及其老化程度等影响吸附的速率 (Massos et al., 2. 土壤环境的异质化如DOC增加,改变重金属的流动性和生物利用度,影响吸附量 (Nizzetto et al., | 1. 吸附的重金属成为土壤动物接触重金属的来源,并可能介导重金属进入食物链,增加重金属对土壤动物的生态毒理效应 (Zhou et al., 2. 增加农田中重金属的解吸量和重金属有效态含量,同时,加大微塑料渗入地下水及被作物吸收的风险 (朱永官等, |
持久性有机 污染物 Persistent organic pollutants | 主要是受范德华力、比表面积所主导的分配作用和表面吸附 (任欣伟等, | 1. 微塑料自身特性如含氧官能团不同,吸附的作用力不同,影响吸附值 (Hüffer et al., 2018; Müller et al., 2018; Xu et al., 2. 土壤环境因子对微塑料吸附有机污染物产生影响 (Hodson et al., | 1. 影响持久性有机污染物在土壤环境中迁移及分配 (侯军华等, 2. 增加土壤溶液中的可溶性有机物比例,影响土壤结构或改变土壤中过氧化氢酶等活性 (Liu et al., |
抗生素 Antibiotic | 主要是微塑料的多孔结构和形成氢键 (Li et al., | 1. 微塑料自身特性如比表面积等影响吸附量 (Shen et al., 2. 土壤环境因子如土壤中的无机颗粒物与微塑料竞争吸附抗生素 (赵方凯等, | 1. 抑制土壤中抗生素降解和加速部分抗生素迁移 (Li et al., 2. 影响抗生素的解吸 (Xu et al., |
表2 微塑料对土壤中部分典型污染物的吸附作用
Table 2 Adsorption of microplastics on typical pollutants in soil
吸附对象 Adsorption object | 主要互作机理 Main interaction mechanism | 主要影响因素 Main influencing factors | 复合污染效应和风险 Compound pollution effects and risks |
---|---|---|---|
重金属 Heavy metal | 主要是与金属阳离子通过络合作用 (Zou et al., | 1. 微塑料种类及其老化程度等影响吸附的速率 (Massos et al., 2. 土壤环境的异质化如DOC增加,改变重金属的流动性和生物利用度,影响吸附量 (Nizzetto et al., | 1. 吸附的重金属成为土壤动物接触重金属的来源,并可能介导重金属进入食物链,增加重金属对土壤动物的生态毒理效应 (Zhou et al., 2. 增加农田中重金属的解吸量和重金属有效态含量,同时,加大微塑料渗入地下水及被作物吸收的风险 (朱永官等, |
持久性有机 污染物 Persistent organic pollutants | 主要是受范德华力、比表面积所主导的分配作用和表面吸附 (任欣伟等, | 1. 微塑料自身特性如含氧官能团不同,吸附的作用力不同,影响吸附值 (Hüffer et al., 2018; Müller et al., 2018; Xu et al., 2. 土壤环境因子对微塑料吸附有机污染物产生影响 (Hodson et al., | 1. 影响持久性有机污染物在土壤环境中迁移及分配 (侯军华等, 2. 增加土壤溶液中的可溶性有机物比例,影响土壤结构或改变土壤中过氧化氢酶等活性 (Liu et al., |
抗生素 Antibiotic | 主要是微塑料的多孔结构和形成氢键 (Li et al., | 1. 微塑料自身特性如比表面积等影响吸附量 (Shen et al., 2. 土壤环境因子如土壤中的无机颗粒物与微塑料竞争吸附抗生素 (赵方凯等, | 1. 抑制土壤中抗生素降解和加速部分抗生素迁移 (Li et al., 2. 影响抗生素的解吸 (Xu et al., |
[1] |
ARIAS-ANDRES M, KETTNER M T, MIKI T, et al., 2018. Microplastics: New substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems[J]. Science of the Total Environment, 635: 1152-1159.
DOI URL |
[2] |
BAKKER D P, KLIJNSTRA J W, BUSSCHER H J, et al., 2003. The effect of dissolved organic carbon on bacterial adhesion to conditioning films adsorbed on glass from natural seawater collected during different seasons[J]. Biofouling, 19(6): 391-397.
PMID |
[3] |
BATOOL I, QADIR A, LEVERMORE J, et al., 2022. Dynamics of airborne microplastics, appraisal and distributional behaviour in atmosphere: A review[J]. Science of the Total Environment, 806(Part 4): 150745.
DOI URL |
[4] |
CARPENTER E J, SMITH K L, 1972. Plastics on the Sargasso Sea surface[J]. Science, 175(4027): 1240-1241.
PMID |
[5] |
CHEN Y S, WU C F, ZHANG H B, et al., 2013. Empirical estimation of pollution load and contamination levels of phthalate esters in agricultural soils from plastic film mulching in China[J]. Environmental Earth Sciences, 70(1): 239-247.
DOI URL |
[6] |
DATTA M S, SLIWERSKA E, GORE J, et al., 2016. Microbial interactions lead to rapid micro-scale successions on model marine particles[J]. Nature Communications, 7: 11965.
DOI PMID |
[7] |
DE T C A, DEVRIESE L I, HAEGEMAN A, et al., 2015. Bacterial community profiling of plastic litter in the Belgian part of the North Sea[J]. Environmental Science & Technology, 49(16): 9629-9638.
DOI URL |
[8] | DHALIWAL S S, NARESH R K, MANDAL A, et al., 2019. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review[J]. Environmental and Sustainability Indicators, 1-2: 100007. |
[9] |
FAURE F, DEMARS C, WIESER O, et al., 2015. Plastic pollution in Swiss surface waters: nature and concentrations, interaction with pollutants[J]. Environmental Chemistry, 12(5): 582-591.
DOI URL |
[10] |
FOULON V, LE R F, LAMBERT C, et al., 2016. Colonization of polystyrene microparticles by vibrio crassostreae: Light and electron microscopic investigation[J]. Environmental Science & Technology, 50(20): 10988-10996.
DOI URL |
[11] |
GAYLOR M O, HARVEY E, HALE R C, 2013. Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils[J]. Environmental Science & Technology, 47(23): 13831-13839.
DOI URL |
[12] |
GUO X Y, WANG X L, ZHOU X Z, et al., 2012. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition[J]. Environmental Science & Technology, 46(13): 7252-7259.
DOI URL |
[13] |
HERMABESSIERE L, DEHAUT A, PAUL-PONT I, et al., 2017. Occurrence and effects of plastic additives on marine environments and organisms: A review[J]. Chemosphere, 182:781-793.
DOI PMID |
[14] |
HODSON M E, DUFFUS-HODSON C A, CLARK A, et al., 2017. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates[J]. Environmental Science & Technology, 51(8): 4714-4721.
DOI URL |
[15] |
HUANG Y, ZHAO Y R, WANG J, et al., 2019. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 254(Part A): 112983.
DOI URL |
[16] |
HÜFFER T, HOFMANN T, 2016. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution[J]. Environment Pollution, 214: 194-201.
DOI URL |
[17] |
HÜFFER T, METZELDER F, SIGMUND G, et al., 2019. Polyethylene microplastics influence the transport of organic contaminants in soil[J]. Science of the Total Environment, 657: 242-247.
DOI URL |
[18] |
HÜFFER T, WENIGER A K, HOFMANN T, 2018. Data on sorption of organic compounds by aged polystyrene microplastic particles[J]. Data Brief, 18: 474-479.
DOI PMID |
[19] |
IMRAN M, DAS K R, NAIK M M, 2019. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat[J]. Chemosphere, 215: 846-857.
DOI PMID |
[20] |
KETTNER M T, ROJAS JIMENEZ K, OBERBECKMANN S, et al., 2017. Microplastics alter composition of fungal communities in aquatic ecosystems[J]. Environmental Microbiology, 19(11): 4447-4459.
DOI PMID |
[21] | KOELMANS A A, 2015. Modeling the role of microplastics in bioaccumulation of organic chemicals to marine aquatic organisms: A critical review[M]// Marine Anthropogenic Litter. Cham: Springer: 309-324. |
[22] |
LANG M F, YU X Q, LIU J H, et al., 2020. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics[J]. Science of the Total Environment, 722: 137762.
DOI URL |
[23] |
LI C C, GAN Y D, DONG J Y, et al., 2020a. Impact of microplastics on microbial community in sediments of the Huangjinxia Reservoir-water source of a water diversion project in western China[J]. Chemosphere, 253: 126740.
DOI URL |
[24] | LI J, GUO K, CAO Y S, et al., 2020b. Enhance in mobility of oxytetracycline in a sandy loamy soil caused by the presence of microplastics[J]. Environmental Pollution, 269: 16151. |
[25] |
LI J, ZHANG K N, ZHANG H, 2018. Adsorption of antibiotics on microplastics[J]. Environmental Pollution, 237: 460-467.
DOI PMID |
[26] |
LIU D T, ZHANG Y H, CHEN L Y, et al., 2022. Prevalence of small sized microplastics is coastal sediments detected by multipoint confocal micro-Raman spectrum scanning[J]. Science of the Total Environment, 831: 154741.
DOI URL |
[27] |
LIU F F, LIU G Z, ZHU Z L, et al., 2019. Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry[J]. Chemosphere, 214: 688-694.
DOI URL |
[28] |
LIU H F, YANG X M, LIU G B, et al., 2017. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 185: 907-917.
DOI PMID |
[29] |
MASSOS A, TURNER A, 2017. Cadmium, lead and bromine in beached microplastics[J]. Environmental Pollution, 227: 139-145.
DOI PMID |
[30] |
MEI W P, CHEN G E, BAO J Q, et al., 2020. Interactions between microplastics and organic compounds in aquatic environments: A mini review[J]. Science of the Total Environment, 736: 139472.
DOI URL |
[31] |
MÜLLER A, BECKER R, DORGERLOH U, et al., 2018. The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics[J]. Environmental Pollution, 240: 639-646.
DOI PMID |
[32] |
NET S, SEMPÉRÉR, DELMONT A, et al., 2015. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices[J]. Environmental Science & Technology, 49(7): 4019-4035.
DOI URL |
[33] |
NIZZETTO L, FUTTER M, LANGAAS S, 2016a. Are agricultural soils dumps for microplastics of urban origin?[J]. Environmental Science & Technology, 50(20): 10777-10779.
DOI URL |
[34] | NIZZETTO L, LANGAAS S, FUTTER M, 2016b. Pollution: Do microplastics spill on to farm soils?[J]. Nature, 537(7621): 488. |
[35] |
OBERBECKMANN S, LODER M G J, LABRENZ M, 2015. Marine microplastic-associated biofilms-a review[J]. Environmental Chemistry, 12: 551-562.
DOI URL |
[36] |
PALUSELLI A, FAUVELLE V, GALGANI F, et al., 2019. Phthalate release from plastic fragments and degradation in seawater[J]. Environmental Science & Technology, 53(1): 166-175.
DOI URL |
[37] |
PINTO M, LANGER T M, HÜFFER T, et al., 2019. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession[J]. PLoS ONE, 14(6): e0217165.
DOI URL |
[38] |
RICHARD H, CARPENTER E J, KOMADA T, et al., 2019. Biofilm facilitates metal accumulation onto microplastics in estuarine waters[J]. Science of the Total Environment, 683: 600-608.
DOI URL |
[39] |
RILLIG M C, LEHMANN A, 2020. Microplastic in terrestrial ecosystems[J]. Science, 368(6498): 1430-1431.
DOI PMID |
[40] |
ROAGER L, SONNENSCHEIN E C, 2019. Bacterial candidates for colonization and degradation of marine plastic debris[J]. Environmental Science & Technology, 53(20): 11636-11643.
DOI URL |
[41] | RUMMEL C D, JAHNKE A, GOROKHOVA E, et al., 2017. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment[J]. Environmental Science & Technology Letters, 4: 258-267. |
[42] |
SEIDENSTICKER S, GRATHWOHL P, LAMPRECHT J, et al., 2018. A combined experimental and modeling study to evaluate pH-dependent sorption of polar and non-polar compounds to polyethylene and polystyrene microplastics[J]. Environmental Sciences Europe, 30(1): 30.
DOI PMID |
[43] |
SHEN X C, LI D C, SIMA X F, et al., 2018. The effects of environmental conditions on the enrichment of antibiotics on microplastics in simulated natural water column[J]. Environmental Research, 166: 377-383.
DOI URL |
[44] |
SUN J T, JIN L, HE T T, et al., 2020. Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China[J]. Science of the Total Environment, 740: 140001.
DOI URL |
[45] |
SUN M M, YE M, JIAO W T, et al., 2018. Changes in tetracycline partitioning and bacteria/phage-comediated ARGs in microplastic- contaminated greenhouse soil facilitated by sophorolipid[J]. Journal of Hazardous Materials, 345: 131-139.
DOI URL |
[46] |
THOMPSON R C, OLSEN Y, MITCHELL R P, et al., 2004. Lost at sea: Where is all the plastic?[J]. Science, 304: 838.
PMID |
[47] | TU C, ZHOU Q, ZHANG C J, et al., 2020. Biofilms of microplastics[M]// Microplastics in Terrestrial Environments. Cham: Springer: 299-320. |
[48] |
UZUN P, FARAZANDE S, GUVEN B, 2022. Mathematical modeling of microplastic abundance, distribution, and transport in water environments: A review[J]. Chemosphere, 288(Part 2): 132517.
DOI URL |
[49] |
WANG H T, DING J, XIONG C, et al., 2019a. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica [J]. Environmental Pollution, 251: 110-116.
DOI URL |
[50] |
WANG J, COFFIN S, SUN C L, et al., 2019b. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil[J]. Environmental Pollution, 249: 776-784.
DOI URL |
[51] |
WANG J, LIU X H, LI Y, et al., 2019c. Microplastics as contaminants in the soil environment: A mini-review[J]. Science of the Total Environment, 691: 848-857.
DOI URL |
[52] |
WANG S S, XUE N N, LI W F, et al., 2020. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters[J]. Science of the Total Environment, 708: 134594.
DOI URL |
[53] |
WANG W F, WANG J, 2018. Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics[J]. Chemosphere, 193: 567-573.
DOI PMID |
[54] |
WANG Y, ZHOU B H, CHEN H L, et al., 2022. Distribution, biological effects and biofilms of microplastics in freshwater systems-A review[J]. Chemosphere, 299: 134370.
DOI URL |
[55] |
WU P F, CAI Z W, JIN H B, et al., 2019. Adsorption mechanisms of five bisphenol analogues on PVC microplastics[J]. Science of the Total Environment, 650: 671-678.
DOI |
[56] |
WU X W, LIU P, HUANG H Y, et al., 2020. Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations[J]. Science of the Total Environment, 717: 137033.
DOI URL |
[57] |
XU B L, LIU F, BROOKES P C, et al., 2018. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter[J]. Environmental Pollution, 240: 87-94.
DOI PMID |
[58] |
XU Z L, QIAN X T, WANG C, et al., 2020. Environmentally relevant concentrations of microplastic exhibits negligible impacts on thiacloprid dissipation and enzyme activity in soil[J]. Environmental Research, 189: 109892.
DOI URL |
[59] |
YANG J, CANG L, SUN Q, et al., 2019. Effects of soil environmental factors and UV aging on Cu2+ adsorption on microplastics[J]. Environmental Science and Pollution Research, 26: 23027-23036.
DOI URL |
[60] | YIN J N, HUANG G H, LI M N, et al., 2021. Will the chemical contaminants in agricultural soil affect the ecotoxicity of microplastics?[J]. ACS Agricultural Science & Technology, 1: 314. |
[61] |
YOU Y M, WANG Z G, XU W H, et al., 2019. Phthalic acid esters disturbed the genetic information processing and improved the carbon metabolism in black soils[J]. Science of the Total Environment, 653: 212-222.
DOI URL |
[62] |
YU H, HOU J H DANG Q L, et al., 2020. Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels[J]. Journal of Hazardous Materials, 395: 122690-122700.
DOI URL |
[63] |
YUSUF A, SODIQ A, GIWA A, et al., 2022. Updated review on microplastics in water, their occurrence, detection, measurement, environmental pollution, and the need for regulatory standards[J]. Environmental Pollution, 292(Part B): 118421.
DOI URL |
[64] |
ZETTLER E R, MINCER T J, AMARAL ZETTLER L A, 2013. Life in the “plastisphere”: Microbial communities on plastic marine debris[J]. Environmental Science & Technology, 47: 7137-7146.
DOI URL |
[65] |
ZHANG H B, WANG J Q, ZHOU B Y, et al., 2018a. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors[J]. Environmental Pollution, 243(Part B): 1550-1557.
DOI URL |
[66] | ZHANG H B, ZHOU Q, XIE Z Y, et al., 2018b. Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in north China[J]. Science of the Total Environment, 616-617: 1505-1512. |
[67] |
ZHOU Y F, LIU X N, WANG J, 2020. Ecotoxicological effects of microplastics and cadmium on the earthworm Eisenia foetida[J]. Journal of Hazardous Materials, 392: 122273.
DOI URL |
[68] |
ZOU J Y, LIU X P, ZHANG D M, et al., 2020. Adsorption of three bivalent metals by four chemical distinct microplastics[J]. Chemosphere, 248: 126064.
DOI URL |
[69] | 陈蕾, 高山雪, 徐一卢, 2021. 塑料添加剂向生态环境中的释放与迁移研究进展[J]. 生态学报, 41(8): 3315-3324. |
CHEN L, GAO S X, XU Y L, 2021. Progress on release and migration of plastic additives to ecological environment[J]. Acta ecologica sinica, 41(8): 3315-3324. | |
[70] | 褚献献, 郑波, 何楠, 等, 2021. 微塑料与污染物相互作用的研究进展[J]. 环境化学, 40(2): 427-435. |
CHU X X, ZHENG B, HE N, et al., 2021. Progress on the interaction between microplastics and contaminants[J]. Environmental Chemistry, 40(2): 427-435. | |
[71] | 范玉梅, 石佳颖, 高李璟, 2019. 土壤中微塑料的来源及检测[J]. 化工时刊, 33(6): 28-31. |
FAN Y M, SHI J Y, GAO L J, 2019. The source and detection of microplastics in soil systems[J]. Chemical Industry Times, 33(6): 28-31. | |
[72] | 付东东, 张琼洁, 范正权, 等, 2019. 微米级聚苯乙烯对铜的吸附特性[J]. 中国环境科学, 39(11): 4769-4775. |
FU D D, ZHANG Q J, FAN Z Q, et al., 2019. Adsorption characteristics of copper ions on polystyrene microplastics[J]. China Environmental Science, 39(11): 4769-4775. | |
[73] | 侯军华, 檀文炳, 余红, 等, 2020. 土壤环境中微塑料的污染现状及其影响研究进展[J]. 环境工程, 38(2): 16-27, 15. |
HOU J H, TAN W B, YU H, et al., 2020. Microplastics in soil ecosystem: A review on sources, fate and ecological impact[J]. Environmental Engineering, 38(2): 16-27, 15. | |
[74] | 侯俊, 许晓雅, 程芳, 等, 2020. 微塑料与有机污染物的相互作用及环境行为研究进展[J]. 河海大学学报(自然科学版), 48(1): 22-28. |
HOU J, XU X Y, CHENG F, et al., 2020. Research progress on interaction and environment behavior between microplastics and organic pollutants[J]. Journal of Hehai University (Natural Sciences), 48(1): 22-28. | |
[75] | 季梦如, 马旖旎, 季荣, 2020. 微塑料圈: 环境微塑料对微生物的载体作用[J]. 环境保护, 48(23): 19-27. |
JI M R, MA Y N, JI R, 2020. Plastisphere: The vector effects of microplastics on microbial communities[J]. Environmental Protection, 48(23): 19-27. | |
[76] | 鞠志成, 金德才, 邓晔, 2021. 土壤中塑料与微生物的相互作用及其生态效应[J]. 中国环境科学, 41(5): 2352-2361. |
JU Z C, JIN D C, DENG Y, 2021. The interaction between plastics and microorganisms in soil and their ecological effects[J]. China Environmental Science, 41(5): 2352-2361. | |
[77] | 李爱峰, 李方晓, 邱江兵, 等, 2019. 水环境中微塑料的污染现状、生物毒性及控制对策[J]. 中国海洋大学学报 (自然科学版), 49(10): 88-100. |
LI A F, LI F X, QIU J B, et al., 2019. Pollution status, biological toxicity and control strategy of microplastics in water environments: A review[J]. Periodical of Ocean University of China, 49(10): 88-100. | |
[78] | 李昇昇, 李良忠, 李敏, 等, 2020. 环境样品中微塑料及其结合污染物鉴别分析研究进展[J]. 环境化学, 39(4): 960-974. |
LI S S, LI L Z, LI M, et al., 2020. Study on identification of microplastics and the combined pollutants in environmental samples[J]. Environmental Chemistry, 39(4): 960-974. | |
[79] | 李守益, 2019. 微塑料的老化过程及其对污染物吸附的影响机制[D]. 淮南:安徽理工大学: 4-5. |
LI S Y, 2019. The aging process of microplastics and its influence on the sorption of pollutants[D]. Huainan:Anhui University of Science and Technology: 4-5. | |
[80] | 林旭萌, 宿程远, 吴淑敏, 等, 2021. 微塑料PES与2, 4-DCP复合污染对厌氧污泥胞外聚合物与微生物群落的影响[J]. 环境科学, 42(4): 1946-1955. |
LIN X M, SU C Y, WU S M, et al., 2021. Effects of PES and 2, 4- DCP on the extracellular polymeric substances and microbial community of anaerobic granular sludge[J]. Environmental Science, 42(4): 1946-1955. | |
[81] | 刘沙沙, 付建平, 郭楚玲, 等, 2019. 微塑料的环境行为及其生态毒性研究进展[J]. 农业环境科学学报, 38(5): 957-969. |
LIU S S, FU J P, GUO C L, et al., 2019. Research progress on environmental behavior and ecological toxicity of microplastics[J]. Journal of Agro-Environment Science, 38(5): 957-969. | |
[82] | 罗凯, 李文红, 章海波, 等, 2014. 南京典型设施菜地有机肥和土壤中四环素类抗生素的污染特征调查[J]. 土壤, 46(2): 330-338. |
LUO K, LI W H, ZHANG H B, et al., 2014. Pollution characteristics of tetracycline antibiotics in typical protected vegetable organic fertilizer of Nanjing city[J]. Soils, 46(2): 330-338. | |
[83] | 骆永明, 施华宏, 涂晨, 等, 2021. 环境中微塑料研究进展与展望[J]. 科学通报, 66(13): 1547-1562. |
LUO Y M, SHI H H, TU C, et al., 2021. Research progresses and prospects of microplastics in the environment[J]. Chinese Science Bulletin, 66(13): 1547-1562. | |
[84] | 任欣伟, 唐景春, 于宸, 等, 2018. 土壤微塑料污染及生态效应研究进展[J]. 农业环境科学学报, 37(6): 1045-1058. |
REN X W, TANG J C, YU C, et al., 2018. Advances in research on the ecological effects of microplastic pollution on soil ecosystems[J]. Journal of Agro-Environment Science, 37(6): 1045-1058. | |
[85] |
宋欢, 罗锡明, 张莉, 等, 2019. 微塑料对水中甲基橙的吸附特征分析[J]. 地学前缘, 26(6): 19-27.
DOI |
SONG H, LUO X M, ZHANG L, et al., 2019. Characteristic analysis of methylorange adsorption on microplastics in water[J]. Earth Science Frontiers, 26(6): 19-27.
DOI |
|
[86] | 田其凡, 何玘霜, 陆安祥, 等, 2020. 农田土壤抗生素抗性基因与微生物群落的关系[J]. 环境化学, 39(5): 1346-1355. |
TIAN Q F, HE Q S, LU A X, et al., 2020. Relationship between antibiotic resistance genes and microbial communities in farmland soil[J]. Environmental Chemistry, 39(5): 1346-1355. | |
[87] | 万红友, 王俊凯, 张伟, 2022. 土壤微塑料与重金属、持久性有机污染物和抗生素作用影响因素综述[J]. 农业资源与环境学报, 39(4): 643-650. |
WAN H Y, WANG J K, ZHANG W, 2022. Key influencing factors for interactions between microplastics and heavy metals, persistent organic pollutants, and antibiotics in soil[J]. Journal of Agricultural Resources and Environment, 39(4): 643-650. | |
[88] | 王一飞, 李淼, 于海瀛, 等, 2019. 微塑料对环境中有机污染物吸附解吸的研究进展[J]. 生态毒理学报, 14(4): 23-30. |
WANG Y F, LI M, YU H Y, et al., 2019. Research progress on the adsorption and desorption between microplastics and environmental organic pollutants[J]. Asian Journal of Ecotoxicology, 14(4): 23-30. | |
[89] | 徐鹏程, 郭健, 马东, 等, 2020. 新制和老化微塑料对多溴联苯醚的吸附[J]. 环境科学, 41(3): 1329-1337. |
XU P C, GUO J, MA D, et al., 2020. Sorption of polybrominated diphenyl ethers by virgin and aged microplastics[J]. Environmental Science, 41(3): 1329-1337. | |
[90] | 徐湘博, 孙明星, 张林秀, 等, 2021. 土壤微塑料污染研究进展与展望[J]. 农业资源与环境学报, 38(1): 1-9. |
XU X B, SUN M X, ZHANG L X, et al., 2021. Research progress and prospect of soil microplastic pollution[J]. Journal of Agricultural Resources and Environment, 38(1): 1-9. | |
[91] | 徐擎擎, 张哿, 邹亚丹, 等, 2018. 微塑料与有机污染物的相互作用研究进展[J]. 生态毒理学报, 13(1): 40-49. |
XU Q Q, ZHANG G, ZOU Y D, et al., 2018. Interactions between microplastics and organic pollutants: Current status and knowledge gaps[J]. Asian Journal of Ecotoxicology, 13(1): 40-49. | |
[92] | 徐希媛, 王帅, 郑立, 等, 2019. 中国南北方近岸海域中微塑料附生真核生物群落结构特征分析[J]. 海洋科学进展, 37(4): 652-663. |
XU X Y, WANG S, ZHANG L, et al., 2019. Community structure and diversity of microplastics attached eukaryotes in southern and northern shorelines of China[J]. Advances in Marine Science, 37(4): 652-663. | |
[93] | 杨杰, 仓龙, 邱炜, 等, 2019. 不同土壤环境因素对微塑料吸附四环素的影响[J]. 农业环境科学学报, 38(11): 2503-2510. |
YANG J, CANG L, QIU W, et al., 2019. Effects of different soil environmental factors on tetracycline adsorption of microplastics[J]. Journal of Agro-Environment Science, 38(11): 2503-2510. | |
[94] | 杨杰, 李连祯, 周倩, 等, 2021. 土壤环境中微塑料污染: 来源、过程及风险[J]. 土壤学报, 58(2): 281-298. |
YANG J, LI L Z, ZHOU Q, et al., 2021. Microplastics contamination of soil environment: Sources, processes and risks[J]. Acta Pedologica Sinica, 58(2): 281-298. | |
[95] | 张悦, 袁骐, 蒋玫, 等, 2019. 邻苯二甲酸酯类毒性及检测方法研究进展[J]. 环境化学, 38(5): 1035-1046. |
ZHANG Y, YUAN Q, JIANG M, et al., 2019. Research progress in toxicity and detection methods of phthalic acid esters[J]. Environmental Chemistry, 38(5): 1035-1046. | |
[96] | 赵方凯, 杨磊, 乔敏, 等, 2017. 土壤中抗生素的环境行为及分布特征研究进展[J]. 土壤, 49(3): 428-436. |
ZHAO F K, YANG L, QIAO M, et al., 2017. Environmental behavior and distribution of antibiotics in soils: A review[J]. Soils, 49(3): 428-436. | |
[97] | 赵一默, 海睿洋, 王伊妹, 等, 2021. 微塑料浸提液的生物毒性研究[J]. 高等教育在线 (7): 96-97. |
ZHAO Y M, HAI R Y, WANG Y M, et al., 2021. Study on biological toxicity of microplastics extract[J]. Higher Education Online (7): 96-97. | |
[98] | 周倩, 章海波, 周阳, 等, 2018. 滨海河口潮滩中微塑料的表面风化和成分变化[J]. 科学通报, 63(2): 214-223. |
ZHOU Q, ZHANG H B, ZHOU Y, et al., 2018. Surface weathering and changes in components of microplastics from estuarine beaches[J]. Chinese Science Bulletin, 63(2): 214-223. | |
[99] | 朱永官, 朱冬, 许通, 等, 2019. (微)塑料污染对土壤生态系统的影响: 进展与思考[J]. 农业环境科学学报, 38(1): 1-6. |
ZHU Y G, ZHU D, XU T, et al., 2019. Impacts of (micro) plastics on soil ecosystem: Progress and perspective[J]. Journal of Agro- Environment Science, 38(1): 1-6. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 周玉祥, 赵玉, 聂仁东, 丁丁, 郭立华, 周佳峥. 下辽河平原土地沙漠化程度及预测研究[J]. 生态环境学报, 2023, 32(6): 1133-1139. |
[3] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[4] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[5] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[6] | 周沁苑, 董全民, 王芳草, 刘玉祯, 冯斌, 杨晓霞, 俞旸, 张春平, 曹铨, 刘文亭. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报, 2023, 32(4): 660-667. |
[7] | 潘昱伶, 璩向宁, 李琴, 王磊, 王筱平, 谭鹏, 崔庚, 安雨, 佟守正. 黄河宁夏段典型滩涂湿地土壤理化因子空间分布特征及其对微地形的响应[J]. 生态环境学报, 2023, 32(4): 668-677. |
[8] | 赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686. |
[9] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[10] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[11] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[12] | 秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468. |
[13] | 唐海明, 石丽红, 文丽, 程凯凯, 李超, 龙泽东, 肖志武, 李微艳, 郭勇. 长期施肥对双季稻田根际土壤氮素的影响[J]. 生态环境学报, 2023, 32(3): 492-499. |
[14] | 刘抗旱, 郑刘根, 张理群, 丁丹, 单士锋. 复合型植物源活化剂强化蜈蚣草修复砷污染土壤的效应研究[J]. 生态环境学报, 2023, 32(3): 635-642. |
[15] | 樊慧琳, 张佳敏, 李欢, 王艳玲. 坡耕地稻田剖面磷的储存格局与流失风险研究[J]. 生态环境学报, 2023, 32(2): 283-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||